1
|
Hu XQ, Zhang L. Role of transient receptor potential channels in the regulation of vascular tone. Drug Discov Today 2024; 29:104051. [PMID: 38838960 PMCID: PMC11938208 DOI: 10.1016/j.drudis.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
2
|
Akin EJ, Aoun J, Jimenez C, Mayne K, Baeck J, Young MD, Sullivan B, Sanders KM, Ward SM, Bulley S, Jaggar JH, Earley S, Greenwood IA, Leblanc N. ANO1, CaV1.2, and IP3R form a localized unit of EC-coupling in mouse pulmonary arterial smooth muscle. J Gen Physiol 2023; 155:e202213217. [PMID: 37702787 PMCID: PMC10499037 DOI: 10.1085/jgp.202213217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Pulmonary arterial (PA) smooth muscle cells (PASMC) generate vascular tone in response to agonists coupled to Gq-protein receptor signaling. Such agonists stimulate oscillating calcium waves, the frequency of which drives the strength of contraction. These Ca2+ events are modulated by a variety of ion channels including voltage-gated calcium channels (CaV1.2), the Tmem16a or Anoctamin-1 (ANO1)-encoded calcium-activated chloride (CaCC) channel, and Ca2+ release from the sarcoplasmic reticulum through inositol-trisphosphate receptors (IP3R). Although these calcium events have been characterized, it is unclear how these calcium oscillations underly a sustained contraction in these muscle cells. We used smooth muscle-specific ablation of ANO1 and pharmacological tools to establish the role of ANO1, CaV1.2, and IP3R in the contractile and intracellular Ca2+ signaling properties of mouse PA smooth muscle expressing the Ca2+ biosensor GCaMP3 or GCaMP6. Pharmacological block or genetic ablation of ANO1 or inhibition of CaV1.2 or IP3R, or Ca2+ store depletion equally inhibited 5-HT-induced tone and intracellular Ca2+ waves. Coimmunoprecipitation experiments showed that an anti-ANO1 antibody was able to pull down both CaV1.2 and IP3R. Confocal and superresolution nanomicroscopy showed that ANO1 coassembles with both CaV1.2 and IP3R at or near the plasma membrane of PASMC from wild-type mice. We conclude that the stable 5-HT-induced PA contraction results from the integration of stochastic and localized Ca2+ events supported by a microenvironment comprising ANO1, CaV1.2, and IP3R. In this model, ANO1 and CaV1.2 would indirectly support cyclical Ca2+ release events from IP3R and propagation of intracellular Ca2+ waves.
Collapse
Affiliation(s)
- Elizabeth J. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Joydeep Aoun
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Katie Mayne
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Julius Baeck
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Michael D. Young
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Brennan Sullivan
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Simon Bulley
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan H. Jaggar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott Earley
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Iain A. Greenwood
- Department of Vascular Pharmacology, Molecular and Clinical Science Research Institute, St. George’s University of London, London, UK
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| |
Collapse
|
3
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
4
|
Hiraishi K, Kurahara LH, Ishikawa K, Go T, Yokota N, Hu Y, Fujita T, Inoue R, Hirano K. Potential of the TRPM7 channel as a novel therapeutic target for pulmonary arterial hypertension. J Smooth Muscle Res 2022; 58:50-62. [PMID: 35944979 PMCID: PMC9364263 DOI: 10.1540/jsmr.58.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by
a progressive increase in pulmonary vascular resistance caused by pulmonary vascular
remodeling, which ultimately leads to right-sided heart failure. PAH remains incurable,
despite the development of PAH-targeted therapeutics centered on pulmonary artery
relaxants. It is necessary to identify the target molecules that contribute to pulmonary
artery remodeling. Transient receptor potential (TRP) channels have been suggested to
modulate pulmonary artery remodeling. Our study focused on the transient receptor
potential ion channel subfamily M, member 7, or the TRPM7 channel, which modulates
endothelial-to-mesenchymal transition and smooth muscle proliferation in the pulmonary
artery. In this review, we summarize the role and expression profile of TRPM7 channels in
PAH progression and discuss TRPM7 channels as possible therapeutic targets. In addition,
we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps
sinensis (OCS), on PAH progression, which partly involves TRPM7 inhibition.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kaori Ishikawa
- Department of General Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tetsuhiko Go
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Yokota
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yaopeng Hu
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Takayuki Fujita
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Ryuji Inoue
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
5
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
6
|
Fedinec AL, Liu J, Zhang R, Harsono M, Pourcyrous M, Parfenova H. The cold receptor TRPM8 activation leads to attenuation of endothelium-dependent cerebral vascular functions during head cooling. J Cereb Blood Flow Metab 2021; 41:2897-2906. [PMID: 34013806 PMCID: PMC8756482 DOI: 10.1177/0271678x211018035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Parfenova
- Helena Parfenova, Department of Physiology, University of Tennessee Health Science Center, 956 Court Avenue, Suite E332, Memphis, TN 38163, USA.
| |
Collapse
|
7
|
Zhang Y, Tang J, Li N, Tao J, Zhang Y, Zhang Y, Ye Y, Zheng Q, Xu T, Liu Y, Zhang P, Li L, Li H, He Y, Su H, He Q, Sun M, Xu Z. Prenatal hypoxia induced ET BR activation and abnormal ROS signalling in pulmonary artery cells of rat offspring. Reprod Toxicol 2021; 105:91-100. [PMID: 34478853 DOI: 10.1016/j.reprotox.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension is a progressive disorder characterized by remodeling and increased small pulmonary arteries resistance. Endothelin-1 (ET-1) was related to PAH and ET-1 receptors were up-regulated selectively in the lung when exposed to toxic factor hypoxia. However, the role of ET-1 signaling in the pathogenesis of prenatal hypoxia-induced pulmonary abnormalities remains to be elucidated. Pregnant rats were divided into prenatal hypoxia (10.5 % O2 from gestational day 4-21) and control group. Their three-month-old offspring male rats were tested for vascular functions and molecular analysis, DNA methylation was assessed for cellular hypoxia. Functional testing showed that ET-1-mediated vasoconstriction was enhanced, and the expressions of endothelin A receptor/B receptor (ETAR/ETBR), inositol 1,4,5-trisphosphate receptor, type 1, and the sensitivity of calcium channels were increased in the small pulmonary arteries following prenatal hypoxia. q-PCR and DHE staining showed that the expressions of NADPH oxidase 1/4 (Nox1/4) were up-regulated, along with the increased production of superoxide anion. Furthermore, superoxide anion promoted ET-1-mediated pulmonary artery contraction. In the pulmonary artery smooth muscle cell experiments, q-PCR, Western Blot, CCK8 and DHE staining showed that the expressions of ETBR, Nox1/4, and superoxide anion were increased by hypoxia, along with promoted cell proliferation. 2,2,6,6-Tetramethyl-1-piperidinyloxy reversed hypoxia-induced cell proliferation. ETBR antagonist BQ788 inhibited hypoxia-increased expressions of Nox1/4, superoxide anion production, and proliferation of cells. Moreover, methylation analysis indicated that hypoxia decreased the methylation levels of the ETBR promoter in the pulmonary artery smooth muscle cells. The results indicated that prenatal toxic factor hypoxia resulted in abnormal ETBR activation, which enhanced ET-1-mediated vasoconstriction of pulmonary arteries and pulmonary artery smooth muscle cell proliferation through ETBR/Nox1/4-derived ROS pathway.
Collapse
Affiliation(s)
- Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China; Wuxi Maternal & Child Health Hospital, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Wuxi Maternal & Child Health Hospital, Jiangsu, China
| | - Jianying Tao
- Department of Obstetrics & Gynecology, Suzhou Municipal Hospital, Suzhou, China
| | - Yan Zhang
- Wuxi Maternal & Child Health Hospital, Jiangsu, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yang Ye
- Wuxi Maternal & Child Health Hospital, Jiangsu, China
| | - Qiutong Zheng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Huan Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yun He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Hongyu Su
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinyuan He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China; Wuxi Maternal & Child Health Hospital, Jiangsu, China.
| |
Collapse
|
8
|
Li H, Ji B, Xu T, Zhao M, Zhang Y, Sun M, Xu Z, Gao Q. Antenatal Hypoxia Affects Pulmonary Artery Contractile Functions via Downregulating L-type Ca 2+ Channels Subunit Alpha1 C in Adult Male Offspring. J Am Heart Assoc 2021; 10:e019922. [PMID: 33843249 PMCID: PMC8174167 DOI: 10.1161/jaha.120.019922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Antenatal intrauterine fetal hypoxia is a common pregnancy complication that has profound adverse effects on an individual's vascular health later in life. Pulmonary arteries are sensitive to hypoxia, but adverse effects of antenatal hypoxia on pulmonary vasoreactivities in the offspring remain unknown. This study aimed to determine the effects and related mechanisms of antenatal hypoxia on pulmonary artery functions in adult male offspring. Methods and Results Pregnant Sprague‐Dawley rats were housed in a normoxic or hypoxic (10.5% O2) chamber from gestation days 10 to 20. Male offspring were euthanized at 16 weeks old (adult offspring). Pulmonary arteries were collected for vascular function, electrophysiology, target gene expression, and promoter methylation studies. In pulmonary artery rings, contractions to serotonin hydrochloride, angiotensin II, or phenylephrine were reduced in the antenatal hypoxic offspring, which resulted from inactivated L‐type Ca2+ channels. In pulmonary artery smooth muscle cells, the basal whole‐cell Ca2+ currents, as well as vasoconstrictor‐induced Ca2+ transients were significantly reduced in antenatal hypoxic offspring. In addition, increased promoter methylations within L‐type Ca2+ channel subunit alpha1 C were compatible with its reduced expressions. Conclusions This study indicated that antenatal hypoxia programmed long‐lasting vascular hypocontractility in the male offspring that is linked to decreases of L‐type Ca2+ channel subunit alpha1 C in the pulmonary arteries. Antenatal hypoxia resulted in pulmonary artery adverse outcomes in postnatal offspring, was strongly associated with reprogrammed L‐type Ca2+ channel subunit alpha1 C expression via a DNA methylation‐mediated epigenetic mechanism, advancing understanding toward the effect of antenatal hypoxia in early life on long‐term vascular health.
Collapse
Affiliation(s)
- Huan Li
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Bingyu Ji
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Ting Xu
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Meng Zhao
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Yingying Zhang
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Miao Sun
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Zhice Xu
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Qinqin Gao
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| |
Collapse
|
9
|
Wang RX, He RL, Jiao HX, Zhang RT, Guo JY, Liu XR, Gui LX, Lin MJ, Wu ZJ. Preventive treatment with ginsenoside Rb1 ameliorates monocrotaline-induced pulmonary arterial hypertension in rats and involves store-operated calcium entry inhibition. PHARMACEUTICAL BIOLOGY 2020; 58:1055-1063. [PMID: 33096951 PMCID: PMC7592893 DOI: 10.1080/13880209.2020.1831026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Ginsenoside Rb1, the main active ingredient of ginseng, exhibits ex vivo depression of store-operated calcium entry (SOCE) and related vasoconstriction in pulmonary arteries derived from pulmonary hypertension (PH) rats. However, the in vivo effects of ginsenoside Rb1 on PH remain unclear. OBJECTIVE This study explored the possibility of using ginsenoside Rb1 as an in vivo preventive medication for type I PH, i.e., pulmonary arterial hypertension (PAH), and potential mechanisms involving SOCE. MATERIALS AND METHODS Male Sprague-Dawley rats (170-180 g) were randomly divided into Control, MCT, and MCT + Rb1 groups (n = 20). Control rats received only saline injection. Rats in the MCT + Rb1 and MCT groups were intraperitoneally administered single doses of 50 mg/kg monocrotaline (MCT) combined with 30 mg/kg/day ginsenoside Rb1 or equivalent volumes of saline for 21 consecutive days. Subsequently, comprehensive parameters related to SOCE, vascular tone, histological changes and hemodynamics were measured. RESULTS Ginsenoside Rb1 reduced MCT-induced STIM1, TRPC1, and TRPC4 expression by 35.00, 31.96, and 32.24%, respectively, at the protein level. SOCE-related calcium entry and pulmonary artery contraction decreased by 162.6 nM and 71.72%. The mean pulmonary artery pressure, right ventricle systolic pressure, and right ventricular mass index decreased by 19.5 mmHg, 21.6 mmHg, and 39.50%. The wall thickness/radius ratios decreased by 14.67 and 17.65%, and the lumen area/total area ratios increased by 18.55 and 15.60% in intrapulmonary vessels with 51-100 and 101-150 μm o.d. CONCLUSION Ginsenoside Rb1, a promising candidate for PH prevention, inhibited SOCE and related pulmonary vasoconstriction, and relieved MCT-induced PAH in rats.
Collapse
Affiliation(s)
- Rui-Xing Wang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Rui-Lan He
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hai-Xia Jiao
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Run-Tian Zhang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jing-Yi Guo
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiao-Ru Liu
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Biochemistry and Molecular biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Long-Xin Gui
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Mo-Jun Lin
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Mo-Jun Lin Department of Physiology and Pathophysiology, Fujian Medical University, 1 Xueyuan Road, Shangjie Zhen, Minhou County, Fuzhou350108, P.R. China
| | - Zhi-Juan Wu
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- CONTACT Zhi-Juan Wu Department of Physiology and Pathophysiology, Fujian Medical University, 1 Xueyuan Road, Shangjie Zhen, Minhou County, Fuzhou350108, P.R. China
| |
Collapse
|
10
|
Liu Y, Mikrani R, He Y, Faran Ashraf Baig MM, Abbas M, Naveed M, Tang M, Zhang Q, Li C, Zhou X. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol 2020; 882:173312. [PMID: 32610057 DOI: 10.1016/j.ejphar.2020.173312] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Ion channels are important therapeutic targets due to their plethoric involvement in physiological and pathological consequences. The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a nonselective cation channel that controls Ca2+ homeostasis. It has been proposed to be the predominant thermoreceptor for cellular and behavioral responses to cold stimuli in the transient receptor potential (TRP) channel subfamilies and exploited so far to reach the clinical-stage of drug development. TRPM8 channels can be found in multiple organs and tissues, regulating several important processes such as cell proliferation, migration and apoptosis, inflammatory reactions, immunomodulatory effects, pain, and vascular muscle tension. The related disorders have been expanded to new fields ranging from cancer and migraine to dry eye disease, pruritus, irritable bowel syndrome (IBS), and chronic cough. This review is aimed to summarize the distribution of TRPM8 and disorders related to it from a clinical perspective, so as to broaden the scope of knowledge of researchers to conduct more studies on this subject.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Yanjun He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Naveed
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, 210017, PR China.
| |
Collapse
|
11
|
Dong F, Zhang J, Zhu S, Lan T, Yang J, Li L. Chrysin Alleviates Chronic Hypoxia–Induced Pulmonary Hypertension by Reducing Intracellular Calcium Concentration in Pulmonary Arterial Smooth Muscle Cells. J Cardiovasc Pharmacol 2019; 74:426-435. [DOI: 10.1097/fjc.0000000000000726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Silva DF, Wenceslau CF, Mccarthy CG, Szasz T, Ogbi S, Webb RC. TRPM8 channel activation triggers relaxation of pudendal artery with increased sensitivity in the hypertensive rats. Pharmacol Res 2019; 147:104329. [PMID: 31340190 DOI: 10.1016/j.phrs.2019.104329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is frequently encountered in patients with arterial hypertension and there is a recent functional correlation between the expression of thermoreceptor channels TRPM8 (melastatin 8) and alterations in blood pressure in hypertension. The aim of this study was to investigate the function of cold-sensing TRPM8 channel in internal pudendal artery (IPA) in both normotensive and hypertensive rats. METHODS We performed experiments integrating physiological, pharmacological, biochemical and cellular techniques. RESULTS TRPM8 channels are expressed in the IPA and in vascular smooth muscle cells from IPA. In addition, TRPM8 activation, by both a cooling compound icilin (82.1 ± 3.0%, n = 6) and cold temperature [thermal stimulus, basal tone (25 °C, 41.2 ± 3.4%, n = 5) or pre-contracted tone induced by phenylephrine (25 °C, 87.0 ± 3.6%, n = 7)], induced relaxation in IPA. Furthermore, the results showed that the concentration-response curve to icilin was significantly shifted to the right in different conditions, such as: the absence of the vascular endothelium, in the presence of L-NAME (10-4 M), or indomethacin (10-5 M) or by a combination of charybdotoxin (10-7 M) and apamin (5 × 10-6 M), and Y27632 (10-6 M). Interestingly, icilin-induced vasodilation was significantly higher in IPA from spontaneously hypertensive (SHR, E10-4M = 75.3 ± 1.7%) compared to wistar rats (E10-4M = 56.4 ± 2.6%), despite no changes in the TRPM8 expression in IPA between the strains, suggesting that the sensitivity of TRPM8 channels is higher in SHR. CONCLUSIONS These data demonstrate for the first time, the expression and function of TRPM8 channels in the IPA involving, at least in part, endothelium-derived relaxing factors and ROCK inhibition. Overall, this channel could potentially be a new target for the treatment of hypertension associated-ED.
Collapse
Affiliation(s)
- Darizy Flavia Silva
- Department of Bioregulation, Federal University of Bahia, Salvador, BA, Brazil.
| | - Camilla Ferreira Wenceslau
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cameron G Mccarthy
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Theodora Szasz
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Safia Ogbi
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, GA, USA
| |
Collapse
|