1
|
Parolini C. Sepsis and high-density lipoproteins: Pathophysiology and potential new therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167761. [PMID: 40044061 DOI: 10.1016/j.bbadis.2025.167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/19/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
In 2020, sepsis has been defined a worldwide health major issue (World Health Organization). Lung, urinary tract and abdominal cavity are the preferred sites of sepsis-linked infection. Research has highlighted that the advancement of sepsis is not only related to the presence of inflammation or microbial or host pattern recognition. Clinicians and researchers now recognized that a severe immunosuppression is also a common feature found in patients with sepsis, increasing the susceptibility to secondary infections. Lipopolysaccharides (LPS) are expressed on the cell surface of Gram-negative, whereas Gram-positive bacteria express peptidoglycan (PGN) and lipoteichoic acid (LTA). The main mechanism by which LPS trigger host innate immune responses is binding to TLR4-MD2 (toll-like receptor4-myeloid differentiation factor 2), whereas, PGN and LTA are exogenous ligands of TLR2. Nucleotide-binding oligomerization domain (NOD)-like receptors are the most well-characterized cytosolic pattern recognition receptors, which bind microbial molecules, endogenous by-products and environmental triggers. It has been demonstrated that high-density lipoproteins (HDL), besides their major role in promoting cholesterol efflux, possess diverse pleiotropic properties, ranging from a modulation of the immune system to anti-inflammatory, anti-apoptotic, and anti-oxidant functions. In addition, HDL are able at i) binding LPS, preventing the activating of TLR4, and ii) inducing the expression of ATF3 (Activating transcription factor 3), a negative regulator of the TLR signalling pathways, contributing at justifying their capacity to hamper infection-based illnesses. Therefore, reconstituted HDL (rHDL), constituted by apolipoprotein A-I/apolipoprotein A-IMilano complexed with phospholipids, may be considered as a new therapeutic tool for the management of sepsis.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", via Balzaretti 9 - Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
2
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
3
|
Amedei A, Parolini C. Editorial: Epigenetics of inflammatory reactions and pharmacological modulation. Front Pharmacol 2024; 15:1505196. [PMID: 39529877 PMCID: PMC11551011 DOI: 10.3389/fphar.2024.1505196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Lin J, Si Z, Wang A. Predictive value of ApoB/ApoA-I for recurrence within 1 year after first incident stroke. Front Neurol 2024; 14:1308442. [PMID: 38274879 PMCID: PMC10808791 DOI: 10.3389/fneur.2023.1308442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background ApoB/ApoA-I ratio is a reliable indicator of cholesterol balance, particularly in the prediction of ischemic events risk. The aim of this study was to investigate the prognostic value of ApoB/ApoA-I for stroke recurrence within 1 year after the first incident. Methods We retrospectively included patients who were first diagnosed with acute (<7 days after onset) ischemic stroke. Blood samples were collected on admission, and serum ApoB and ApoA-I concentrations were measured. We analyzed the relationship between ApoB/ApoA-I ratio and ischemic stroke recurrence within 1 year. Results A total of 722 patients with acute ischemic stroke were included, of whom 102 experienced stroke recurrence within 1 year, with a recurrence rate of 14.1%. Serum ApoB/ApoA-I concentrations on admission were higher in patients with stroke recurrence at 1 year compared with those with a good prognosis (P < 0.001). The Kaplan-Meier survival curve revealed a significant difference in cumulative stroke recurrence rates across ApoB/ApoA-I tertiles (log-rank P-value < 0.001). A positive correlation between the ApoB/ApoA-I ratio and the risk of stroke recurrence within 1 year was demonstrated using Cox regression analysis, which remained significant after adjusting for traditional risk factors [hazard ratio (HR) 4.007, 95% confidence interval (CI) 1.661-9.666]. This relationship was particularly strong in patients with LAA stroke (HR 4.955, 95% CI 1.591-15.434). Subgroup analysis further revealed that a high ApoB/ApoA-I ratio was strongly associated with stroke recurrence regardless of whether patients had high or low LDL-C levels. Discussion ApoB/ApoA-I ratio, measured during the acute phase of the first stroke, was positively correlated with the risk of stroke recurrence within 1 year.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong, China
| | - Zhihua Si
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong, China
| | - Aihua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong, China
| |
Collapse
|
5
|
Ganzetti GS, Parolini C. Microarray analysis identifies human apoA-I Milano and apoA-II as determinants of the liver gene expression related to lipid and energy metabolism. Exp Cell Res 2023; 433:113826. [PMID: 37858836 DOI: 10.1016/j.yexcr.2023.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The phenotype of individuals carrying the apolipoprotein A-IMilano (apoA-IM), the mutant form of human apoA-I (apoA-I), is characterized by very low concentrations of HDL and apoA-I, and hypertriglyceridemia. Paradoxically, these subjects are not found to be at increased risk of premature cardiovascular disease compared to controls. Besides, various in vitro and in vivo studies have demonstrated that apoA-IM possesses greater anti-atherosclerotic activity compared to apoA-I. The molecular mechanisms explaining the apoA-IM carrier's phenotype and the apoA-IM higher efficacy are still not fully elucidated. To investigate such mechanisms, we crossed previously generated apoA-I (A-I k-in) or apoA-IM knock-in mice (A-IM k-in) with transgenic mice expressing human apoA-II but lacking murine apoA-I (hA-II) to generate hA-II/A-I k-in, and hA-II/A-IM k-in, respectively. These genetically modified mice completely reproduced the apoA-IM carrier's phenotype, including hypoalphalipoproteinemia and hypertriglyceridemia. Furthermore, by using the microarray methodology, we investigated the intrinsic differences in hepatic gene expression among these k-in mouse lines. The expression of 871, 1,018, 1129 and 764 genes was significantly altered between 1) hA-II/A-I and hA-II/A-IM k-in; 2) A-IM and hA-II/A-IM k-in; 3) A-I and A-IM; 4) A-I and hA-II/A-I k-in liver samples, respectively. Bioinformatics analysis highlighted that the hepatic expression of two genes, Elovl6 and Gatm, related to fatty acid/lipid and energy metabolism, respectively, is influenced by the presence of the apoA-IM natural variant and/or apoA-II.
Collapse
Affiliation(s)
- Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
6
|
Dahlberg D, Rummel J, Distante S, De Souza GA, Stensland ME, Mariussen E, Rootwelt H, Voie Ø, Hassel B. Glioblastoma microenvironment contains multiple hormonal and non-hormonal growth-stimulating factors. Fluids Barriers CNS 2022; 19:45. [PMID: 35659255 PMCID: PMC9166426 DOI: 10.1186/s12987-022-00333-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
Background The growth of malignant tumors is influenced by their microenvironment. Glioblastoma, an aggressive primary brain tumor, may have cysts containing fluid that represents the tumor microenvironment. The aim of this study was to investigate whether the cyst fluid of cystic glioblastomas contains growth-stimulating factors. Identification of such growth factors may pave the way for the development of targeted anti-glioblastoma therapies. Methods We performed hormone analysis of cyst fluid from 25 cystic glioblastomas and proteomics analysis of cyst fluid from another 12 cystic glioblastomas. Results Glioblastoma cyst fluid contained hormones within wide concentration ranges: Insulin-like growth factor 1 (0–13.7 nmol/L), insulin (1.4–133 pmol/L), erythropoietin (4.7–402 IU/L), growth hormone (0–0.93 µg/L), testosterone (0.2–10.1 nmol/L), estradiol (0–1.0 nmol/L), triiodothyronine (1.0–11.5). Tumor volume correlated with cyst fluid concentrations of growth hormone and testosterone. Survival correlated inversely with cyst fluid concentration of erythropoietin. Several hormones were present at concentrations that have been shown to stimulate glioblastoma growth in vitro. Concentrations of erythropoietin and estradiol (in men) were higher in cyst fluid than in serum, suggesting formation by tumor or brain tissue. Quantitatively, glioblastoma cyst fluid was dominated by serum proteins, illustrating blood–brain barrier leakage. Proteomics identified several proteins that stimulate tumor cell proliferation and invasiveness, others that inhibit apoptosis or mediate adaption to hypoxia and some that induce neovascularization or blood–brain barrier leakage. Conclusion The microenvironment of glioblastomas is rich in growth-stimulating factors that may originate from the circulation, the tumor, or the brain. The wide variation in cyst fluid hormone concentrations may differentially influence tumor growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00333-z.
Collapse
Affiliation(s)
- Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Nydalen, PO box 4950, 0424, Oslo, Norway.
| | - Jutta Rummel
- Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Oslo, Norway
| | - Sonia Distante
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Gustavo Antonio De Souza
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway.,Department of Biochemistry, Universidade Federal Do Rio Grande Do Norte, Natal, RN, Brazil
| | - Maria Ekman Stensland
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway
| | - Espen Mariussen
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway.,Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Øyvind Voie
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Oslo, Norway.,Norwegian Defence Research Establishment (FFI), Kjeller, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Hooshdaran B, Pressly BB, Alferiev IS, Smith JD, Zoltick PW, Tschabrunn CM, Wilensky RL, Gorman RC, Levy RJ, Fishbein I. Stent-based delivery of AAV2 vectors encoding oxidation-resistant apoA1. Sci Rep 2022; 12:5464. [PMID: 35361857 PMCID: PMC8971450 DOI: 10.1038/s41598-022-09524-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
In-stent restenosis (ISR) complicates revascularization in the coronary and peripheral arteries. Apolipoprotein A1 (apoA1), the principal protein component of HDL possesses inherent anti-atherosclerotic and anti-restenotic properties. These beneficial traits are lost when wild type apoA1(WT) is subjected to oxidative modifications. We investigated whether local delivery of adeno-associated viral (AAV) vectors expressing oxidation-resistant apoA1(4WF) preserves apoA1 functionality. The efflux of 3H-cholesterol from macrophages to the media conditioned by endogenously produced apoA1(4WF) was 2.1-fold higher than for apoA1(WT) conditioned media in the presence of hypochlorous acid emulating conditions of oxidative stress. The proliferation of apoA1(WT)- and apoA1(4FW)-transduced rat aortic smooth muscle cells (SMC) was inhibited by 66% ± 10% and 65% ± 11%, respectively, in comparison with non-transduced SMC (p < 0.001). Conversely, the proliferation of apoA1(4FW)-transduced, but not apoA1(WT)-transduced rat blood outgrowth endothelial cells (BOEC) was increased 41% ± 5% (p < 0.001). Both apoA1 transduction conditions similarly inhibited basal and TNFα-induced reactive oxygen species in rat aortic endothelial cells (RAEC) and resulted in the reduced rat monocyte attachment to the TNFα-activated endothelium. AAV2-eGFP vectors immobilized reversibly on stainless steel mesh surfaces through the protein G/anti-AAV2 antibody coupling, efficiently transduced cells in culture modeling stent-based delivery. In vivo studies in normal pigs, deploying AAV2 gene delivery stents (GDS) preloaded with AAV2-eGFP in the coronary arteries demonstrated transduction of the stented arteries. However, implantation of GDS formulated with AAV2-apoA1(4WF) failed to prevent in-stent restenosis in the atherosclerotic vasculature of hypercholesterolemic diabetic pigs. It is concluded that stent delivery of AAV2-4WF while feasible, is not effective for mitigation of restenosis in the presence of severe atherosclerotic disease.
Collapse
Affiliation(s)
- Bahman Hooshdaran
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Benjamin B Pressly
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Ivan S Alferiev
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Jonathan D Smith
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, USA
| | - Philip W Zoltick
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Cory M Tschabrunn
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert L Wilensky
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert J Levy
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ilia Fishbein
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
8
|
Cao H, Huang W. HDL and Sepsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:129-139. [DOI: 10.1007/978-981-19-1592-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Puppione DL, Tran DP, Zenaidee MA, Charugundla S, Whitelegge JP, Buffenstein R. Naked Mole-Rat, a Rodent with an Apolipoprotein A-I Dimer. Lipids 2020; 56:269-278. [PMID: 33336429 DOI: 10.1002/lipd.12286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/28/2023]
Abstract
A variety of rodents have been used as experimental animals in metabolic studies of plasma lipids and lipoproteins. These studies have included understanding the functional role of apolipoprotein A-I, the major protein on the surface of HDL. Reviewing the genomic database for entries for rodent apoA-I genes, it was discovered that the naked mole-rat (Heterocephalus glaber) gene encoded a protein with a cysteine at residue 28. Previously, two cases have been reported in which human heterozygotes had apoA-I with cysteine at residues 173 (apoA-I Milano) or at 151 (apoA-I Paris). Interestingly, both groups, in spite of having low levels of HDL and moderately elevated plasma triacylglycerols, had no evidence of cardiovascular disease. Moreover, the presence of the cysteine enabled the apoA-I to form both homodimers and heterodimers. Prior to this report, no other mammalian apoA-I has been found with a cysteine in its sequence. In addition, the encoded naked mole-rat protein had different amino acids at sites that were conserved in all other mammals. These differences resulted in naked mole-rat apoA-I having an unexpected neutral pI value, whereas other mammalian apoA-I have negative pI values. To verify these sequence differences and to determine if the N-terminal location of C28 precluded dimer formation, we conducted mass spectrometry analyses of apoA-I and other proteins associated with HDL. Consistent with the genomic data, our analyses confirmed the presence of C28 and the formation of a homodimer. Analysis of plasma lipids surprisingly revealed a profile similar to the human heterozygotes.
Collapse
Affiliation(s)
- Don L Puppione
- The Molecular Biology Institute, Boyer Hall, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Denise P Tran
- The Molecular Biology Institute, Boyer Hall, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Muhammad A Zenaidee
- The Molecular Biology Institute, Boyer Hall, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sarada Charugundla
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane & Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rochelle Buffenstein
- Barshop Institute for Aging and Longevity Studies and Department of Physiology, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX, USA.,Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| |
Collapse
|
10
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
11
|
Abstract
BACKGROUND Despite advances in the development of lipid-lowering therapies, clinical trials have shown that a significant residual risk of cardiovascular disease persists. Specifically, new drugs are needed for non-responding or statin-intolerant subjects or patients considered at very high risk for cardiovascular events even though are already on treatment with the best standard of care. RESULTS AND CONCLUSIONS Besides, genetic and epidemiological studies and Mendelian randomization analyses have strengthened the linear correlation between the concentration of low-density lipoprotein cholesterol (LDL-C) and the incidence of cardiovascular events and highlighted various novel therapeutic targets. This review describes the novel strategies to reduce the levels of LDL-C, non-HDL-C, triglyceride, apolipoprotein B, and Lp(a), focusing on those developed using biotechnology-based strategies.
Collapse
|
12
|
Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J 2020; 287:833-855. [DOI: 10.1111/febs.15217] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Placido Illiano
- The Miami Project to Cure Paralysis Department of Neurological Surgery University of Miami Miller School of Medicine FL USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis Department of Neurological Surgery University of Miami Miller School of Medicine FL USA
- Department of Neurobiology Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
- Department of Clinical Research BRIDGE‐Brain Research‐Inter‐Disciplinary Guided Excellence University of Southern Denmark Odense C Denmark
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Italy
| |
Collapse
|