1
|
Rock EM, Parker LA. The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting. Curr Top Behav Neurosci 2024. [PMID: 39739175 DOI: 10.1007/7854_2024_554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
3
|
Burke EL, Desai RI. Reinforcing and adverse observable effects of nicotine and minor tobacco alkaloids in squirrel monkeys. Drug Alcohol Depend 2024; 258:111280. [PMID: 38614019 PMCID: PMC11117166 DOI: 10.1016/j.drugalcdep.2024.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
The most prevalent psychoactive chemical in tobacco smoke is nicotine, which has been shown to maintain tobacco consumption as well as cause acute adverse effects at high doses, like nausea and emesis. Recent studies in laboratory animals have suggested that many non-nicotine constituents of tobacco smoke (e.g., minor tobacco alkaloids) may also contribute to tobacco's overall reinforcing and adverse effects. Here, we used intravenous (IV) self-administration (n = 3) and observation (n = 4) procedures in squirrel monkeys to, respectively, compare the reinforcing and adverse observable effects of nicotine and three prominent minor tobacco alkaloids, nornicotine, anatabine, and myosmine. In self-administration studies, male squirrel monkeys were trained to respond under a second-order fixed-interval schedule of reinforcement and dose-effects functions for nicotine and each of the minor tobacco alkaloids nornicotine, anatabine, and mysomine were determined. Observation studies were conducted in a different group of male squirrel monkeys to quantify the ability of nicotine, nornicotine, anatabine, and mysomine to produce adverse overt effects, including hypersalivation, emesis, and tremors. Results show that nicotine and to a lesser extent nornicotine were readily self-administered, whereas anatabine and myosmine were not. In observation studies, all minor tobacco alkaloids produced adverse observable effects that were either comparable or more pronounced than nicotine. Collectively, the present results showing that nicotine and the minor tobacco alkaloids nornicotine, anatabine, and myosmine produce differential reinforcing and acute adverse observable effects in monkeys provides further evidence that these constituents may differently contribute to the psychopharmacological and adverse effects of tobacco consumption.
Collapse
Affiliation(s)
- Emily L Burke
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital, Belmont, MA 02478, USA
| | - Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
4
|
Kangas BD. Examining the effects of psychoactive drugs on complex behavioral processes in laboratory animals. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:243-274. [PMID: 35341568 DOI: 10.1016/bs.apha.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Behavioral pharmacology has been aided significantly by the development of innovative cognitive tasks designed to examine complex behavioral processes in laboratory animals. Performance outcomes under these conditions have provided key metrics of drug action which serve to supplement traditional in vivo assays of physiologic and behavioral effects of psychoactive drugs. This chapter provides a primer of cognitive tasks designed to assay different aspects of complex behavior, including learning, cognitive flexibility, memory, attention, motivation, and impulsivity. Both capstone studies and recent publications are highlighted throughout to illustrate task value for two distinct but often interconnected translational strategies. First, task performance in laboratory animals can be utilized to elucidate how drugs of abuse affect complex behavioral processes. Here, the expectation is that adverse effects on such processes will have predictive relevance to consequences that will be experienced by humans. Second, these same task outcomes can be used to evaluate candidate therapeutics. In this case, the extent to which drug doses with medicinal value perturb task performance can contribute critical information for a more complete safety profile appraisal and advance the process of medications development. Methodological and theoretical considerations are discussed and include an emphasis on determining selectivity in drug action on complex behavioral processes.
Collapse
Affiliation(s)
- Brian D Kangas
- Behavioral Biology Program, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
5
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Effects of daily Δ 9-Tetrahydrocannabinol (THC) alone or combined with cannabidiol (CBD) on cognition-based behavior and activity in adolescent nonhuman primates. Drug Alcohol Depend 2021; 221:108629. [PMID: 33640678 PMCID: PMC8204682 DOI: 10.1016/j.drugalcdep.2021.108629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Daily use of marijuana is rising in adolescents, along with consumption of high potency marijuana products (high % Δ-9-tetrahydrocannabinol or THC). These dual, related trends have opened gaps in understanding the long-term effects of daily consumption of a high dose of THC in adolescents and whether a therapeutic dose of cannabidiol (CBD) modulates THC effects. METHODS Adolescent squirrel monkeys (Saimiri boliviensis) were treated daily for four months with vehicle (n = 4), a high THC dose (1 mg/kg i.m.; n = 4), or THC + CBD (1 mg/kg +3 mg/kg i.m.; n = 4), to investigate whether: (1) a daily high THC dose affects performance in tasks of cognition (repeated acquisition, discrimination reversal); (2) a daily high THC dose affects spontaneous behavior and day/night activity (3) tolerance develops to the behavioral effects of THC; (4) whether CBD modulates THC effects. RESULTS THC impaired performance of adolescent monkeys in a cognitive test initially, but not performance on a task of cognitive flexibility. THC reduced motor activity and increased sedentary behavior, with tolerance developing after weeks of daily treatment. Co-administered with THC, CBD did not modulate THC effects on cognitive performance, activity or tolerance, but prevented THC-induced emesis on the first day of daily treatment. CONCLUSIONS Daily high dosing with THC compromised performance on a task of cognition, and reduced activity in adolescent primates, with tolerance developing within weeks. Whether our observations are relevant to a broader range of cognitive tasks vital for daily function in human adolescents is uncertain.
Collapse
|