1
|
Zou B, Long Y, Gao R, Liu Q, Tian X, Liu B, Zhou Q. Nanodelivery system of traditional Chinese medicine bioactive compounds: Application in the treatment of prostate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155554. [PMID: 39341127 DOI: 10.1016/j.phymed.2024.155554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The long history of clinical experience in China have confirmed the effectiveness of traditional Chinese medicine (TCM) in treating prostate cancer (PCa). Until now, several bioactive compounds with anti-PCa potential, such as curcumin, gallic acid, and quercetin, have been extracted from TCM. Recent studies have shown that encapsulating these TCM bioactive compounds into nano-delivery system enhanced their bioavailability and improved their ability to target PCa tumors. PURPOSE This review aims to summarize the anti-PCa effects and molecular mechanisms of TCM bioactive compounds and discuss the clinical application prospects and future research trends of nano-delivery system based on these compounds. METHODS Literatures focusing on the treatment of PCa using traditional Chinese medicine compounds via nano-drug delivery system were searched from Electronic databases, including PubMed, Web of Science, and Scopus until December 2023. RESULTS Polyphenols, alkaloids, terpenes, and quinones exhibit anti-PCa effects through various pathways. Notably, compounds like curcumin, gallic acid, quercetin, and tanshinone have been extensively studied in nano-delivery systems for anti-PCa purpose. Nano-delivery systems enhance the biological activity of free compounds and reduce toxic side effects, as well. Commonly used nanomaterials for delivering TCM compounds include polymer nanomaterials, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and niosomes. CONCLUSION Research on nano-delivery systems for TCM bioactive compounds holds promising prospects for anti-PCa therapy. However, extensive clinical trials are necessary to evaluate the effectiveness and safety of these nanodrugs.
Collapse
Affiliation(s)
- Bo Zou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Yan Long
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Ruisong Gao
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Qizhi Liu
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Bin Liu
- College of Biology of Hunan University, Changsha 410208, Hunan, China.
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China.
| |
Collapse
|
2
|
Mitra Ghosh T, Mazumder S, Davis J, Yadav J, Akinpelu A, Alnaim A, Kumar H, Waliagha R, Church Bird AE, Rais-Bahrami S, Bird RC, Mistriotis P, Mishra A, Yates CC, Mitra AK, Arnold RD. Metronomic Administration of Topotecan Alone and in Combination with Docetaxel Inhibits Epithelial-mesenchymal Transition in Aggressive Variant Prostate Cancers. CANCER RESEARCH COMMUNICATIONS 2023; 3:1286-1311. [PMID: 37476073 PMCID: PMC10355222 DOI: 10.1158/2767-9764.crc-22-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Prostate cancer is the second leading cause of noncutaneous cancer-related deaths in American men. Androgen deprivation therapy (ADT), radical prostatectomy, and radiotherapy remain the primary treatment for patients with early-stage prostate cancer (castration-sensitive prostate cancer). Following ADT, many patients ultimately develop metastatic castration-resistant prostate cancer (mCRPC). Standard chemotherapy options for CRPC are docetaxel (DTX) and cabazitaxel, which increase median survival, although the development of resistance is common. Cancer stem-like cells possess mesenchymal phenotypes [epithelial-to-mesenchymal transition (EMT)] and play crucial roles in tumor initiation and progression of mCRPC. We have shown that low-dose continuous administration of topotecan (METRO-TOPO) inhibits prostate cancer growth by interfering with key cancer pathway genes. This study utilized bulk and single-cell or whole-transcriptome analysis [(RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq)], and we observed greater expression of several EMT markers, including Vimentin, hyaluronan synthase-3, S100 calcium binding protein A6, TGFB1, CD44, CD55, and CD109 in European American and African American aggressive variant prostate cancer (AVPC) subtypes-mCRPC, neuroendocrine variant (NEPC), and taxane-resistant. The taxane-resistant gene FSCN1 was also expressed highly in single-cell subclonal populations in mCRPC. Furthermore, metronomic-topotecan single agent and combinations with DTX downregulated these EMT markers as well as CD44+ and CD44+/CD133+ "stem-like" cell populations. A microfluidic chip-based cell invasion assay revealed that METRO-TOPO treatment as a single agent or in combination with DTX was potentially effective against invasive prostate cancer spread. Our RNA-seq and scRNA-seq analysis were supported by in silico and in vitro studies, suggesting METRO-TOPO combined with DTX may inhibit oncogenic progression by reducing cancer stemness in AVPC through the inhibition of EMT markers and multiple oncogenic factors/pathways. Significance The utilization of metronomic-like dosing regimens of topotecan alone and in combination with DTX resulted in the suppression of makers associated with EMT and stem-like cell populations in AVPC models. The identification of molecular signatures and their potential to serve as novel biomarkers for monitoring treatment efficacy and disease progression response to treatment efficacy and disease progression were achieved using bulk RNA-seq and single-cell-omics methodologies.
Collapse
Affiliation(s)
- Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Division of Urology, Department of Surgery, Mass General Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Suman Mazumder
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Joshua Davis
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Jyoti Yadav
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama
| | - Ahmed Alnaim
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Harish Kumar
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Razan Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Allison E. Church Bird
- Flow Cytometry and High-Speed Cell Sorting Laboratory, Auburn University, Auburn, Alabama
| | - Soroush Rais-Bahrami
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Urology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| | - R. Curtis Bird
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Clayton C. Yates
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, Alabama
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| |
Collapse
|
3
|
Davis JT, Ghosh TM, Mazumder S, Mitra A, Bird RC, Arnold RD. Extended Exposure Topotecan Significantly Improves Long-Term Drug Sensitivity by Decreasing Malignant Cell Heterogeneity and by Preventing Epithelial-Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24108490. [PMID: 37239838 DOI: 10.3390/ijms24108490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Maximum tolerable dosing (MTD) of chemotherapeutics has long been the gold standard for aggressive malignancies. Recently, alternative dosing strategies have gained traction for their improved toxicity profiles and unique mechanisms of action, such as inhibition of angiogenesis and stimulation of immunity. In this article, we investigated whether extended exposure (EE) topotecan could improve long-term drug sensitivity by preventing drug resistance. To achieve significantly longer exposure times, we used a spheroidal model system of castration-resistant prostate cancer. We also used state-of-the-art transcriptomic analysis to further elucidate any underlying phenotypic changes that occurred in the malignant population following each treatment. We determined that EE topotecan had a much higher barrier to resistance relative to MTD topotecan and was able to maintain consistent efficacy throughout the study period (EE IC50 of 54.4 nM (Week 6) vs. MTD IC50 of 2200 nM (Week 6) vs. 83.8 nM IC50 for control (Week 6) vs. 37.8 nM IC50 for control (Week 0)). As a possible explanation for these results, we determined that MTD topotecan stimulated epithelial-mesenchymal transition (EMT), upregulated efflux pumps, and produced altered topoisomerases relative to EE topotecan. Overall, EE topotecan resulted in a more sustained treatment response and maintained a less aggressive malignant phenotype relative to MTD topotecan.
Collapse
Affiliation(s)
- Joshua T Davis
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Urology Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Suman Mazumder
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Amit Mitra
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Richard Curtis Bird
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|