1
|
Ricci V, Chiappini S, Martinotti G, Maina G. Cannabis use and psychotic-like experiences: A systematic review of biological vulnerability, potency effects, and clinical trajectories. Psychiatry Res 2025; 348:116496. [PMID: 40252295 DOI: 10.1016/j.psychres.2025.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Epidemiological data have provided evidence that psychotic-like experiences (PLEs) occur in the general population without clinical impairment. According to the psychosis continuum hypothesis, PLEs are subject to multiple risk factors. This review synthesizes current research on biological, substance use-related, and environmental risk factors for PLEs in non-clinical populations. PubMed/Medline and Scopus databases were searched for peer-reviewed studies published until January 2024 investigating risk factors for PLEs in non-clinical samples. Following PRISMA guidelines, 38 full-text articles were analyzed after title/abstract and full-text screening (PROSPERO registration ID: N 1001,807). Four main risk factor categories emerged. Biological vulnerabilities included specific metabolic profiles, genetic predisposition, and neurobiological alterations. Substance use patterns, particularly high-potency cannabis, showed significant associations with PLEs, with evidence for bidirectional relationships. Socio-demographic factors revealed influences of digital media use, ethnic density, and gender differences. Outcome studies demonstrated associations between PLEs and consequences including suicidal behavior and cognitive impairments. Findings suggest a complex interplay between multiple risk factors in PLE development. More attention should be paid to the interaction between biological vulnerabilities and environmental factors, as these experiences may represent important markers for mental health outcomes. A comprehensive assessment approach and proactive early intervention strategies are essential for the timely identification and management of at-risk individuals. Our findings support a multifactorial model where genetic vulnerabilities, cannabis use patterns, and socio-environmental factors influence PLE trajectories. The bidirectional cannabis-PLE relationship suggests self-regulatory mechanisms that could inform preventive interventions. Early identification of PLEs in young cannabis users represents a crucial opportunity for targeted clinical interventions.
Collapse
Affiliation(s)
- Valerio Ricci
- University of Turin, Italy, San Luigi Gonzaga Hospital, 10043 Orbassano,; Regione Gonzole, 10 10043 Turin, Italy.
| | - Stefania Chiappini
- Psychiatry Department, Unicamillus International University of Medical Science, Rome, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppe Maina
- University of Turin, Italy, San Luigi Gonzaga Hospital, 10043 Orbassano,; Regione Gonzole, 10 10043 Turin, Italy; Department of Neurosciences "Rita Levi Montalcini", University of Turin, Italy
| |
Collapse
|
2
|
Slivicki RA, Wang JG, Nhat VTT, Kravitz AV, Creed MC, Gereau RW. Impact of Δ 9-Tetrahydrocannabinol and oxycodone co-administration on measures of antinociception, dependence, circadian activity, and reward in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569809. [PMID: 38105953 PMCID: PMC10723318 DOI: 10.1101/2023.12.04.569809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oxycodone is commonly prescribed for moderate to severe pain disorders. While efficacious, long-term use can result in tolerance, physical dependence, and the development of opioid use disorder. Cannabis and its derivatives such as Δ9-Tetrahydrocannabinol (Δ9-THC) have been reported to enhance oxycodone analgesia in animal models and in humans. However, it remains unclear if Δ9-THC may facilitate unwanted aspects of oxycodone intake, such as tolerance, dependence, and reward at analgesic doses. This study sought to evaluate the impact of co-administration of Δ9-THC and oxycodone across behavioral measures related to antinociception, dependence, circadian activity, and reward in both male and female mice. Oxycodone and Δ9-THC produced dose-dependent antinociceptive effects in the hotplate assay that were similar between sexes. Repeated treatment (twice daily for 5 days) resulted in antinociceptive tolerance. Combination treatment of oxycodone and Δ9-THC produced a greater antinociceptive effect than either administered alone, and delayed the development of antinociceptive tolerance. Repeated treatment with oxycodone produced physical dependence and alterations in circadian activity, neither of which were exacerbated by co-treatment with Δ9-THC. Combination treatment of oxycodone and Δ9-THC produced CPP when co-administered at doses that did not produce preference when administered alone. These data indicate that Δ9-THC may facilitate oxycodone-induced antinociception without augmenting certain unwanted features of opioid intake (e.g. dependence, circadian rhythm alterations). However, our findings also indicate that Δ9-THC may facilitate rewarding properties of oxycodone at therapeutically relevant doses which warrant consideration when evaluating this combination for its potential therapeutic utility.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Justin G. Wang
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University, St. Louis, MO
| | - Vy Trinh Tran Nhat
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Alexxai V. Kravitz
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Psychiatry, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
3
|
Lulek CF, Maulik M, Mitra S, Guindon J, Morgan DJ, Henderson-Redmond AN. Sex differences in acute delta-9-tetrahydrocannabinol (Δ 9-THC) response and tolerance as a function of mouse strain. Psychopharmacology (Berl) 2023; 240:1987-2003. [PMID: 37516707 PMCID: PMC10471687 DOI: 10.1007/s00213-023-06421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
Cannabinoids are increasingly used to alleviate pain; however, tolerance to their antinociceptive effects, including those of delta-9-tetrahydrocannabinol (Δ9-THC), may limit their therapeutic utility. With more women than men using medical cannabis for pain relief, it is crucial to understand how sex influences cannabinoid-mediated antinociception and tolerance. Though studies in rats consistently find females are more sensitive to the acute antinociceptive effects of cannabinoids, our work with mice consistently finds the converse. The present study examined whether our observed sex differences in Δ9-THC-induced antinociception and tolerance are consistent across multiple mouse strains or are strain-dependent. Male and female C57BL/6J (B6), DBA/2, AKR, and CBA/J mice were assessed for differences in acute Δ9-THC-induced antinociception and hypothermia prior to and following seven days of once-daily Δ9-THC administration. Consistent with our previous findings, male B6 mice were more sensitive to the acute antinociceptive effects of Δ9-THC than female littermates, an effect which dissipated with age. B6 males had decreased cannabinoid expression in the PAG compared to females. While DBA and CBA female mice showed increased Δ9-THC-antinociception compared to male littermates at 30 and 10 mg/kg Δ9-THC, respectively, these differences were less pronounced at higher doses, revealing that dose of Δ9-THC may also be important. Overall, CBA mice were more sensitive to Δ9-THC-induced antinociception while AKR mice were less responsive. These studies highlight the therapeutic potential of Δ9-THC in pain management and underscore the importance of considering not only Δ9-THC dose as a function of sex, but potentially genetic differences when evaluating their clinical utility.
Collapse
Affiliation(s)
- Courtney F Lulek
- Department of Biomedical Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Malabika Maulik
- Department of Biomedical Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV, 25755, USA
| | | |
Collapse
|
4
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|