1
|
Singh V, Shirbhate E, Kore R, Vishwakarma S, Parveen S, Veerasamy R, Tiwari AK, Rajak H. Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives. Mini Rev Med Chem 2025; 25:76-93. [PMID: 38982701 DOI: 10.2174/0113895575320344240625080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Subham Vishwakarma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Shadiya Parveen
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ravichandran Veerasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah Darul Aman, 08100, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, AR 72205, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| |
Collapse
|
2
|
Chen Y, Xu J, Liu X, Guo L, Yi P, Cheng C. Potential therapies targeting nuclear metabolic regulation in cancer. MedComm (Beijing) 2023; 4:e421. [PMID: 38034101 PMCID: PMC10685089 DOI: 10.1002/mco2.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The interplay between genetic alterations and metabolic dysregulation is increasingly recognized as a pivotal axis in cancer pathogenesis. Both elements are mutually reinforcing, thereby expediting the ontogeny and progression of malignant neoplasms. Intriguingly, recent findings have highlighted the translocation of metabolites and metabolic enzymes from the cytoplasm into the nuclear compartment, where they appear to be intimately associated with tumor cell proliferation. Despite these advancements, significant gaps persist in our understanding of their specific roles within the nuclear milieu, their modulatory effects on gene transcription and cellular proliferation, and the intricacies of their coordination with the genomic landscape. In this comprehensive review, we endeavor to elucidate the regulatory landscape of metabolic signaling within the nuclear domain, namely nuclear metabolic signaling involving metabolites and metabolic enzymes. We explore the roles and molecular mechanisms through which metabolic flux and enzymatic activity impact critical nuclear processes, including epigenetic modulation, DNA damage repair, and gene expression regulation. In conclusion, we underscore the paramount significance of nuclear metabolic signaling in cancer biology and enumerate potential therapeutic targets, associated pharmacological interventions, and implications for clinical applications. Importantly, these emergent findings not only augment our conceptual understanding of tumoral metabolism but also herald the potential for innovative therapeutic paradigms targeting the metabolism-genome transcriptional axis.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoyi Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linlin Guo
- Department of Microbiology and ImmunologyThe Indiana University School of MedicineIndianapolisIndianaUSA
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunming Cheng
- Department of Radiation OncologyJames Comprehensive Cancer Center and College of Medicine at The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
4
|
Wang J, Zhang X, Li M, Li R, Zhao M. Shifts in Intestinal Metabolic Profile Among Kidney Transplantation Recipients with Antibody-Mediated Rejection. Ther Clin Risk Manag 2023; 19:207-217. [PMID: 36896026 PMCID: PMC9990454 DOI: 10.2147/tcrm.s401414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Background Antibody-mediated rejection (AMR) is emerging as the main cause of graft loss after kidney transplantation. Our previous study revealed the gut microbiota alternation associated with AMR in kidney transplant recipients, which was predicted to affect the metabolism-related pathways. Methods To further investigate the shifts in intestinal metabolic profile among kidney transplantation recipients with AMR, fecal samples from kidney transplant recipients and patients with end-stage renal disease (ESRD) were subjected to untargeted LC-MS-based metabolomics. Results A total of 86 individuals were enrolled in this study, including 30 kidney transplantation recipients with AMR, 35 kidney transplant recipients with stable renal function (KT-SRF), and 21 participants with ESRD. Fecal metabolome in patients with ESRD and kidney transplantation recipients with KT-SRF were parallelly detected as controls. Our results demonstrated that intestinal metabolic profile of patients with AMR differed significantly from those with ESRD. A total of 172 and 25 differential metabolites were identified in the KT-AMR group, when compared with the ESRD group and the KT-SRF group, respectively, and 14 were common to the pairwise comparisons, some of which had good discriminative ability for AMR. KEGG pathway enrichment analysis demonstrated that the different metabolites between the KT-AMR and ESRD groups or between KT-AMR and KT-SRF groups were significantly enriched in 33 or 36 signaling pathways, respectively. Conclusion From the metabolic point of view, our findings may provide key clues for developing effective diagnostic biomarkers and therapeutic targets for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Junpeng Wang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Xiaofan Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengjun Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruoying Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Guo F, Wang H. Potential of histone deacetylase inhibitors for the therapy of ovarian cancer. Front Oncol 2022; 12:1057186. [PMID: 36505774 PMCID: PMC9732372 DOI: 10.3389/fonc.2022.1057186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemotherapy increase patient mortality. Accumulating evidence demonstrates that histone modifications play a key role in cancerization and progression. Histone deacetylases is associated with chromatin condensed structure and transcriptional repression and play a role in chromatin remodeling and epigenetics. Histone deacetylases are promising targets for therapeutic interventions intended to reverse aberrant epigenetic associated with cancer. Therefore, histone deacetylases inhibitors could be used as anti-cancer drugs. Preclinical studies have shown promising outcomes of histone deacetylases inhibitors in ovarian cancer while clinical trials have had mixed results and limited success as monotherapy. Therefore, combination therapy with different anticancer drugs for synergistic effects and newly selective histone deacetylases inhibitors development for lower toxicity are hot issues now. In this review, we summarize the latest studies on the classification and mechanisms of action of histone deacetylase and the clinical application of their inhibitors as monotherapy or combination therapy in ovarian cancer.
Collapse
Affiliation(s)
- Fengyi Guo
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongjing Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China,*Correspondence: Hongjing Wang,
| |
Collapse
|
6
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Masuda N, Tamura K, Yasojima H, Shimomura A, Sawaki M, Lee MJ, Yuno A, Trepel J, Kimura R, Nishimura Y, Saji S, Iwata H. Phase 1 trial of entinostat as monotherapy and combined with exemestane in Japanese patients with hormone receptor-positive advanced breast cancer. BMC Cancer 2021; 21:1269. [PMID: 34819039 PMCID: PMC8611843 DOI: 10.1186/s12885-021-08973-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Entinostat is an oral inhibitor of class I histone deacetylases intended for endocrine therapy-resistant patients with hormone receptor-positive (HR+) advanced or metastatic breast cancer (BC). We examined the safety, efficacy, and pharmacokinetics of entinostat monotherapy and combined entinostat/exemestane in Japanese patients. Methods This phase 1 study (3 + 3 dose-escalation design) enrolled postmenopausal women with advanced/metastatic HR+ BC previously treated with nonsteroidal aromatase inhibitors. Dose-limiting toxicities (DLTs) of entinostat monotherapy (3 mg/qw, 5 mg/qw, or 10 mg/q2w) and entinostat+exemestane (5 mg/qw + 25 mg/qd) were assessed. Pharmacokinetics, lysine acetylation (Ac-K), and T-cell activation markers were measured at multiple time points. Results Twelve patients were enrolled. No DLTs or grade 3–5 adverse events (AEs) occurred. Drug-related AEs (≥ 2 patients) during DLT observation were hypophosphatemia, nausea, and platelet count decreased. Six patients (50%) achieved stable disease (SD) for ≥ 6 months, including one treated for > 19 months. Median progression-free survival was 13.9 months (95% CI 1.9–not calculable); median overall survival was not reached. Area under the plasma concentration-time curve and Ac-K in peripheral blood CD19+ B cells increased dose-proportionally. The changing patterns of entinostat concentrations and Ac-K levels were well correlated. T-cell activation markers increased over time; CD69 increased more in patients with SD ≥ 6 months vs. SD < 6 months. Conclusions Entinostat monotherapy and combined entinostat/exemestane were well tolerated in Japanese patients, with no additional safety concerns compared with previous reports. The correlation between pharmacokinetics and Ac-K in peripheral blood CD19+ B cells, and also T-cell activation markers, merits further investigation. Trial registration JAPIC Clinical Trial Information, JapicCTI-153066. Registered 12 November 2015. ClinicalTrials.gov, NCT02623751. Registered 8 December 2015. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08973-4.
Collapse
Affiliation(s)
- Norikazu Masuda
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan. .,Present address: Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.,Present address: Department of Medical Oncology, Shimane University Hospital, Izumo, Shimane, Japan
| | - Hiroyuki Yasojima
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.,Present address: Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masataka Sawaki
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Present address: Department of Oral and Maxillofacial Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryoko Kimura
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | | | - Shigehira Saji
- Department of Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Cucchiara F, Ferraro S, Luci G, Bocci G. Relevant pharmacological interactions between alkylating agents and antiepileptic drugs: Preclinical and clinical data. Pharmacol Res 2021; 175:105976. [PMID: 34785318 DOI: 10.1016/j.phrs.2021.105976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/01/2023]
Abstract
Seizures are relatively common in cancer patients, and co-administration of chemotherapeutic and antiepileptic drugs (AEDs) is highly probable and necessary in many cases. Nonetheless, clinically relevant interactions between chemotherapeutic drugs and AEDs are rarely summarized and pharmacologically described. These interactions can cause insufficient tumor and seizure control or lead to unforeseen toxicity. This review focused on pharmacokinetic and pharmacodynamic interactions between alkylating agents and AEDs, helping readers to make a rational choice of treatment optimization, and thus improving patients' quality of life. As an example, phenobarbital, phenytoin, and carbamazepine, by increasing the hepatic metabolism of cyclophosphamide, ifosfamide and busulfan, yield smaller peak concentrations and a reduced area under the plasma concentration-time curve (AUC) of the prodrugs; alongside, the maximum concentration and AUC of their active products were increased with the possible onset of severe adverse drug reactions. On the other side, valproic acid, acting as histone deacetylase inhibitor, showed synergistic effects with temozolomide when tested in glioblastoma. The present review is aimed at providing evidence that may offer useful suggestions for rational pharmacological strategies in patients with seizures symptoms undertaking alkylating agents. Firstly, clinicians should avoid the use of enzyme-inducing AEDs in combination with alkylating agents and prefer the use of AEDs, such as levetiracetam, that have a low or no impact on hepatic metabolism. Secondly, a careful therapeutic drug monitoring of both alkylating agents and AEDs (and their active metabolites) is necessary to maintain therapeutic ranges and to avoid serious adverse reactions.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Luci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy.
| |
Collapse
|
9
|
Shaikh J, Patel K, Khan T. Advances in Pyrazole Based Scaffold as Cyclin-Dependent Kinase 2 Inhibitors for the Treatment of Cancer. Mini Rev Med Chem 2021; 22:1197-1215. [PMID: 34711160 DOI: 10.2174/1389557521666211027104957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
The transformation of a normal cell into a tumor cell is one of the initial steps in cell cycle deregulation. The cell cycle is regulated by cyclin-dependent kinases (CDKs) that belong to the protein kinase family. CDK2 is an enchanting target for specific genotypes tumors since cyclin E is selective for CDK2 and the deregulation of specific cancer forms. Thus, CDKs inhibitor specifically CDK2/cyclin A-E has the potential to be a valid cancer target as per the currently undergoing clinical trials. Mostly pyrazole scaffolds have shown selectivity and potency for CDK2 inhibitors. This review demonstrates pyrazole and pyrazole fused with other heterocyclic rings for anti-proliferative activity. Based on the in vitro and molecular docking studies, the IC50 value of various hybrids is revealed to display the most potent analogs for CDK2 inhibition. Thus, the review emphasizes various lead analogs of pyrazole hybrids which can be found to be very potent and selective for anti-cancer drugs.
Collapse
Affiliation(s)
- Jahara Shaikh
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56. India
| | - Kavitkumar Patel
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56. India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56. India
| |
Collapse
|
10
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
11
|
Zalloum WA, Zalloum N. Comparative QM/MM Molecular Dynamics and Umbrella Sampling Simulations: Interaction of the Zinc-Bound Intermediate Gem-Diolate Trapoxin A Inhibitor and Acetyl-l-lysine Substrate with Histone Deacetylase 8. J Phys Chem B 2021; 125:5321-5337. [PMID: 33998791 DOI: 10.1021/acs.jpcb.1c01696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeting the genetic material without destruction is a priority to develop safe anticancer drugs. Histone deacetylase 8 (HDAC8), which is proved to be involved in carcinogenesis, is an enzyme associated with the chromatin for post-translational deacetylation of acetylated lysine. In this study, HDAC8 co-crystallized with the intermediate state tetrapeptide Trapoxin A (TA) inhibitor and the holoenzyme are utilized to find their conformational ensembles. Furthermore, the co-crystallized intermediate gem-diolate TA was used to find optimum interactions with the active site residues by conventional molecular dynamics (MD) simulation and QM/MM umbrella sampling. Finally, the intermediate state of the acetyl-l-lysine substrate was explored by QM/MM steered MD and compared to the binding of the intermediate state of the inhibitor. This research showed that HDAC8 is flexible and exists in conformational ensembles in its holoenzyme state. Binding of the intermediate state TA stabilizes its conformation. The optimum binding to the active site of HDAC8 for structures of gem-diolate TA (intermediate state) and acetyl-l-lysine (intermediate state) was determined according to the corresponding energy profiles. The use of these models will aid in the design of potentially reversible, potent, and selective inhibitors of HDAC8 for cancer treatment.
Collapse
Affiliation(s)
- Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O. Box 2882, Amman 11821, Jordan
| | - Needa Zalloum
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
12
|
Yang H, Chen L, Sun Q, Yao F, Muhammad S, Sun C. The role of HDAC11 in obesity-related metabolic disorders: A critical review. J Cell Physiol 2021; 236:5582-5591. [PMID: 33481312 DOI: 10.1002/jcp.30286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
At present, metabolic diseases, such as obesity and diabetes, have become the world's top health threats. These diseases are closely related to the abnormal development and function of adipocytes and metabolic inflammation associated with obesity. Histone deacetylase 11 (HDAC11), with a relatively unique structure and function in the HDAC family, plays a vital role in regulating cell growth, migration, and cell death. Currently, research on new key regulatory functions of HDAC11 in metabolic homeostasis is receiving more and more attention, and HDAC11 has also become a potential therapeutic target in the treatment of obesity and obesity-related diseases. Here, we summarized the latest literature on the role of HDAC11 in regulating the progress of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangyao Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Saeed Muhammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
14
|
Wang H, Liu YC, Zhu CY, Yan F, Wang MZ, Chen XS, Wang XK, Pang BX, Li YH, Liu DH, Gao CJ, Liu SJ, Dou LP. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. J Exp Clin Cancer Res 2020; 39:278. [PMID: 33298132 PMCID: PMC7724824 DOI: 10.1186/s13046-020-01792-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Induction therapy for acute myeloid leukemia (AML) is an anthracycline-based chemotherapy regimen. However, many patients experience a relapse or exhibit refractory disease (R/R). There is an urgent need for more effective regimens to reverse anthracycline resistance in these patients. METHODS In this paper, Twenty-seven R/R AML patients with anthracycline resistance consecutively received chidamide in combination with anthracycline-based regimen as salvage therapy at the Chinese PLA General Hospital. RESULTS Of the 27 patients who had received one course of salvage therapy, 13 achieved a complete response and 1 achieved a partial response. We found that the HDAC3-AKT-P21-CDK2 signaling pathway was significantly upregulated in anthracycline-resistant AML cells compared to non-resistant cells. AML patients with higher levels of HDAC3 had lower event-free survival (EFS) and overall survival (OS) rates. Moreover, anthracycline-resistant AML cells are susceptible to chidamide, a histone deacetylase inhibitor which can inhibit cell proliferation, increase cell apoptosis and induce cell-cycle arrest in a time- and dose-dependent manner. Chidamide increases the sensitivity of anthracycline-resistant cells to anthracycline drugs, and these effects are associated with the inhibition of the HDAC3-AKT-P21-CDK2 signaling pathway. CONCLUSION Chidamide can increase anthracycline drug sensitivity by inhibiting HDAC3-AKT-P21-CDK2 signaling pathway, thus demonstrating the potential for application.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aminopyridines/administration & dosage
- Animals
- Anthracyclines/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis
- Benzamides/administration & dosage
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle
- Cell Proliferation
- Child
- Cyclin-Dependent Kinase 2/genetics
- Cyclin-Dependent Kinase 2/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Salvage Therapy
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Hao Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yu-Chen Liu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Cheng-Ying Zhu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Meng-Zhen Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Xiao-Su Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Kai Wang
- Department of Orthopedics, Xiqing Hospital, 403 Xiqing Road, Yangliuqing, Tianjin, 300000, China
| | - Bao-Xu Pang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yong-Hui Li
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Dai-Hong Liu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Chun-Ji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Shu-Jun Liu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA.
| | - Li-Ping Dou
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
15
|
Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R. Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:2449-2493. [PMID: 30332940 DOI: 10.2174/0929867325666181016163110] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Histone Deacetylase (HDAC) inhibitors are a relatively new class of anti-cancer agents that play important roles in epigenetic or non-epigenetic regulation, inducing death, apoptosis, and cell cycle arrest in cancer cells. Recently, their use has been clinically validated in cancer patients resulting in the approval by the FDA of four HDAC inhibitors, vorinostat, romidepsin, belinostat and panobinostat, used for the treatment of cutaneous/peripheral T-cell lymphoma and multiple myeloma. Many more HDAC inhibitors are at different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. Also, clinical trials of several HDAC inhibitors for use as anti-cancer drugs (alone or in combination with other anti-cancer therapeutics) are ongoing. In the intensifying efforts to discover new, hopefully, more therapeutically efficacious HDAC inhibitors, molecular modelingbased rational drug design has played an important role. In this review, we summarize four major structural classes of HDAC inhibitors (hydroxamic acid derivatives, aminobenzamide, cyclic peptide and short-chain fatty acids) that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Diego R Perinelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
16
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Ding XJ, Zhang R, Liu RP, Song XQ, Qiao X, Xie CZ, Zhao XH, Xu JY. A class of Pt( iv) triple-prodrugs targeting nucleic acids, thymidylate synthases and histone deacetylases. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01453e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A Pt(iv)-triple-prodrug, comprising VPA, 5-FU, regulated TS, HDAC, and γH2AX, showing higher efficiency and lower toxicity than cisplatin.
Collapse
Affiliation(s)
- Xiao-Jing Ding
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Ran Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Rui-Ping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xiu-He Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|
18
|
Elek GZ, Koppel K, Zubrytski DM, Konrad N, Järving I, Lopp M, Kananovich DG. Divergent Access to Histone Deacetylase Inhibitory Cyclopeptides via a Late-Stage Cyclopropane Ring Cleavage Strategy. Short Synthesis of Chlamydocin. Org Lett 2019; 21:8473-8478. [PMID: 31596600 DOI: 10.1021/acs.orglett.9b03305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unified step-economical strategy for accessing histone deacetylase inhibitory peptides is proposed, based on the late-stage installation of multiple zinc-binding functionalities via the cleavage of the strained cyclopropane ring in the common pluripotent cyclopropanol precursor. The efficacy of the proposed diversity-oriented approach has been validated by short stereoselective synthesis of natural product chlamydocin, containing a challenging-to-install fragment of (2S,9S)-2-amino-8-oxo-9,10-epoxydecanoic acid (Aoe) and a range of its analogues, derivatives of 2-amino-8-oxodecanoic and 2-aminosuberic acids.
Collapse
Affiliation(s)
- Gábor Zoltán Elek
- Tallinn University of Technology , School of Science, Department of Chemistry and Biotechnology , Akadeemia tee 15 , 12618 Tallinn , Estonia
| | - Kaur Koppel
- Tallinn University of Technology , School of Science, Department of Chemistry and Biotechnology , Akadeemia tee 15 , 12618 Tallinn , Estonia
| | - Dzmitry M Zubrytski
- Belarusian State University , Department of Organic Chemistry , Leningradskaya 14 , 220050 Minsk , Belarus
| | - Nele Konrad
- Tallinn University of Technology , School of Science, Department of Chemistry and Biotechnology , Akadeemia tee 15 , 12618 Tallinn , Estonia
| | - Ivar Järving
- Tallinn University of Technology , School of Science, Department of Chemistry and Biotechnology , Akadeemia tee 15 , 12618 Tallinn , Estonia
| | - Margus Lopp
- Tallinn University of Technology , School of Science, Department of Chemistry and Biotechnology , Akadeemia tee 15 , 12618 Tallinn , Estonia
| | - Dzmitry G Kananovich
- Tallinn University of Technology , School of Science, Department of Chemistry and Biotechnology , Akadeemia tee 15 , 12618 Tallinn , Estonia
| |
Collapse
|
19
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
20
|
Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:115-135. [PMID: 30881110 PMCID: PMC6410754 DOI: 10.2147/bctt.s189224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since its first documentation, breast cancer (BC) has been a conundrum that ails millions of women every year. This cancer has been well studied by researchers all over the world, which has improved the patient outcome significantly. There are many diagnostic markers to identify the disease, but early detection and then subclassification of this cancer remain dubious. Even after the correct diagnosis, more than half the patients come back with a more aggressive and metastatic tumor. The underpinning mechanism that governs the resistance includes over-amplification of receptors, mutations in key gene targets, and activation of different signaling. A plethora of drugs have been devised that have shown promising results in clinical settings. However, in recent times, the role played by cancer stem cells in disease progression and their interaction in mediating the resistance to cellular insults have come into the limelight. As breast cancer stem cells (BCSCs) are dormant in nature, it is highly likely that they fail to directly respond to the cytotoxic drugs which are meant for ablating rapidly proliferating cells. Furthermore, the absence of well-characterized, drug-able surface markers to date, has limited the application of targeted therapies in complete eradication of the disease. In this review, our intent is to discuss versatile therapeutics in practice followed by discussing the upcoming therapy strategies in the pipeline for BC. Furthermore, we focus on the roles played by BCSCs in mediating the resistance, and therefore, the aspects of new therapeutics against BCSCs under development that may ease the burden in future has also been discussed.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Maitreyi Rathod
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| |
Collapse
|
21
|
Abdulkareem AO, Babamale AO, Owolusi LO, Busari SA, Olatunji LA. Anti-plasmodial activity of sodium acetate in Plasmodium berghei-infected mice. J Basic Clin Physiol Pharmacol 2018; 29:493-498. [PMID: 29634486 DOI: 10.1515/jbcpp-2017-0203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Abstract
Background
Continuous increase in drug resistance has hindered the control of malaria infection and resulted in multi-drug-resistant parasite strains. This, therefore, intensifies the search for alternative treatments with no or less side effects. Several histone deacetylase inhibitors have been characterised to possess anti-malaria activity; however, their further development as anti-malaria agents has not recorded much success. The present study investigated the anti-plasmodial activity of sodium acetate in Plasmodium berghei-infected mice, aiming at finding a better alternative source of malaria chemotherapy.
Methods
Thirty female Swiss albino mice were randomly distributed into six groups. Groups A (uninfected control) and B (infected control) received only distilled water. Group C (artesunate control) were infected and treated orally with 4 mg/kg artesunate on the first day, and subsequently 2 mg/kg artesunate. Groups D, E and F were infected and orally treated with 50, 100 and 200 mg/kg sodium acetate, respectively.
Results
Sodium acetate significantly lowered parasitaemia (p<0.05) after 4 days post-treatment, and the parasite inhibition rate of 68.5% at 50 mg/kg compared favourably with the 73.3% rate of artesunate. Similarly, administration of 50 mg/kg sodium acetate improved serum total cholesterol relatively better than artesunate. Our results also revealed that sodium acetate does not interfere with liver function, as there was no significant difference (p>0.05) in the serum activities of aspartate aminotransferase and alanine aminotransferase in both infected treated and uninfected mice.
Conclusions
This study shows that sodium acetate may be a safe alternative source of anti-malaria drugs. Its effect on the serum total cholesterol also predicts its ability in correcting malaria-induced metabolic syndromes.
Collapse
Affiliation(s)
- Adam O Abdulkareem
- Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria, Phone: +2348066528548
| | | | - Lucky O Owolusi
- Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - Simbiat A Busari
- Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - Lawrence A Olatunji
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
22
|
Tian XL, Lu X, Feng JB, Cai TJ, Li S, Tian M, Liu QJ. Alterations in histone acetylation following exposure to 60Co γ-rays and their relationship with chromosome damage in human lymphoblastoid cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:215-222. [PMID: 29774413 DOI: 10.1007/s00411-018-0742-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Chromosome damage is related to DNA damage and erroneous repair. It can cause cell dysfunction and ultimately induce carcinogenesis. Histone acetylation is crucial for regulating chromatin structure and DNA damage repair. Ionizing radiation (IR) can alter histone acetylation. However, variations in histone acetylation in response to IR exposure and the relationship between histone acetylation and IR-induced chromosome damage remains unclear. Hence, this study investigated the variation in the total acetylation levels of H3 and H4 in human lymphocytes exposed to 0-2 Gy 60Co γ-rays. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was added to modify the histone acetylation state of irradiated cells. Then, the total acetylation level, enzyme activity, dicentric plus centric rings (dic + r) frequencies, and micronucleus (MN) frequencies of the treated cells were analyzed. Results indicated that the acetylation levels of H3 and H4 significantly decreased at 1 and 24 h, respectively, after radiation exposure. The acetylation levels of H3 and H4 in irradiated groups treated with SAHA were significantly higher than those in irradiated groups that were not treated with SAHA. SAHA treatment inhibited HDAC activity in cells exposed to 0-1 Gy 60Co γ-rays. SAHA treatment significantly decreased dic + r/cell and MN/cell in cells exposed to 0.5 or 1.0 Gy 60Co γ-rays relative to that in cells that did not receive SAHA treatment. In conclusion, histone acetylation is significantly affected by IR and is involved in chromosome damage induced by 60Co γ-radiation.
Collapse
Affiliation(s)
- Xue-Lei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China.
| |
Collapse
|
23
|
Petruzzella E, Sirota R, Solazzo I, Gandin V, Gibson D. Triple action Pt(iv) derivatives of cisplatin: a new class of potent anticancer agents that overcome resistance. Chem Sci 2018; 9:4299-4307. [PMID: 29780561 PMCID: PMC5944384 DOI: 10.1039/c8sc00428e] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/07/2018] [Indexed: 01/11/2023] Open
Abstract
A series of triple action Pt(iv) prodrugs was designed to test the hypothesis that multi-action compounds, where each bioactive moiety intervenes in several cellular processes, might be more effective than a single agent at killing cancer cells. In particular, "triple action" Pt(iv) derivatives of cisplatin, where the axial ligands are inhibitors of cyclooxygenase (COXi), histone deacetylase (HDACi) or pyruvate dehydrogenase kinase (PDKi) were developed. All compounds, ctc-[Pt(NH3)2(COXi)(PDKi)Cl2], ctc-[Pt(NH3)2(COXi)(HDACi)Cl2] and ctc-[Pt(NH3)2(HDACi)(PDKi)Cl2], where COXi = aspirin or ibuprofen, PDKi = dichloroacetate and HDACi = valproate or phenylbutyrate, were significantly more cytotoxic than cisplatin against all cell lines of an in-house panel of human cancer cells. They were particularly effective against thyroid and pancreatic cancer cells in monolayer cytotoxicity tests. Remarkably, in 3D spheroid cancer cell cultures, some triple action compounds showed an antitumor potency up to 50-fold higher than cisplatin against a KRAS mutated pancreatic cancer cell line (PSN-1 cells). Standard biochemical assays classically employed to explore structure activity relationships of platinum drugs, such as cellular uptake and binding to potential biological targets (DNA, HDAC, mitochondria, and COX), do not provide linear correlations with the overall cytotoxicity data. We observed a preferential induction of ROS production and of an anti-mitochondrial effect in cancer cells compared to rapidly dividing non-cancerous cells. Thus, we propose that these new triple action Pt(iv) derivatives of cisplatin are a novel and interesting class of potent and selective cytotoxic agents.
Collapse
Affiliation(s)
- Emanuele Petruzzella
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel .
| | - Roman Sirota
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel .
| | - Irene Solazzo
- Dipartimento di Scienze del Farmaco , Università di Padova , Via Marzolo 5 , 35131 , Padova , Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco , Università di Padova , Via Marzolo 5 , 35131 , Padova , Italy
| | - Dan Gibson
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel .
| |
Collapse
|
24
|
Sixto-López Y, Bello M, Correa-Basurto J. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking. J Biomol Struct Dyn 2018; 37:584-610. [PMID: 29447615 DOI: 10.1080/07391102.2018.1441072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K+) in both sites (HDAC1k), a second with K+ only at site 1 (HDAC1ks1), a third with K+ only at site 2 (HDAC1ks2) and a fourth with no K+ (HDAC1wk). We found that the presence or absence of K+ not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martiniano Bello
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| |
Collapse
|
25
|
Hirata Y, Sasaki T, Kanki H, Choong CJ, Nishiyama K, Kubo G, Hotei A, Taniguchi M, Mochizuki H, Uesato S. New 5-Aryl-Substituted 2-Aminobenzamide-Type HDAC Inhibitors with a Diketopiperazine Group and Their Ameliorating Effects on Ischemia-Induced Neuronal Cell Death. Sci Rep 2018; 8:1400. [PMID: 29362442 PMCID: PMC5780423 DOI: 10.1038/s41598-018-19664-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
We previously synthesized new 5-thienyl-substituted 2-aminobenzamide-type HDAC1, 2 inhibitors with the (4-ethyl-2,3-dioxopiperazine-1-carboxamido) methyl group. K-560 (1a) protected against neuronal cell death in a Parkinson’s disease model by up-regulating the expression of XIAP. This finding prompted us to design new K-560-related compounds. We examined the structure activity relationship (SAR) for the neuronal protective effects of newly synthesized and known K-560 derivatives after cerebral ischemia. Among them, K-856 (8), containing the (4-methyl-2,5-dioxopiperazin-1-yl) methyl group, exhibited a promising neuronal survival activity. The SAR study strongly suggested that the attachment of a monocyclic 2,3- or 2,5-diketopiperazine group to the 2-amino-5-aryl (but not 2-nitro-5-aryl) scaffold is necessary for K-560-related compounds to exert a potent neuroprotective effect.
Collapse
Affiliation(s)
- Yoshiyuki Hirata
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan.,Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Genki Kubo
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ayana Hotei
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Masahiko Taniguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shinichi Uesato
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan. .,Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
26
|
Chang YL, Huang LC, Chen YC, Wang YW, Hueng DY, Huang SM. The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines. Int J Biochem Cell Biol 2017; 92:155-163. [DOI: 10.1016/j.biocel.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023]
|
27
|
Nagarajan D, Wang L, Zhao W, Han X. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells. Oncotarget 2017; 8:101745-101759. [PMID: 29254201 PMCID: PMC5731911 DOI: 10.18632/oncotarget.21664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Radiation-induced pneumonitis and fibrosis are major complications following thoracic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis, including lung. Our previous studies have reported that radiation can induce EMT in the type II alveolar epithelial cells in both in vitro and in vivo. HDAC inhibitors are a new family of anti-cancer agents currently being used in several clinical trials. In addition to their intrinsic anti-tumor properties, HDAC inhibition is also important in other human diseases, including fibrosis and radiation-induced damage. In this study, we evaluated the effect of Trichostatin A (TSA), a HDAC inhibitor, on radiation-induced EMT in type II alveolar epithelial cells (RLE-6TN). Pre-treatment of RLE-6TN cells with TSA inhibited radiation-induced EMT-like morphological alterations including elevated protein level of α-SMA and Snail, reduction of E-cadherin expression, enhanced phosphorylation of GSK3β and ERK1/2, increased generation of ROS. Radiation enhanced the protein level of TGF-β1, which was blocked by N-acetylcysteine, an antioxidant. Treating cells with SB-431542, TGF-β1 type I receptor inhibitor, diminished radiation-induced alterations in the protein levels of p-GSK-3β, Snail-1 and α-SMA, suggesting a regulatory role of TGF-β1 in EMT. Pre-incubation of cells with TSA showed significant decrease in the level of TGF-β1 compared to radiation control. Collectively, these results demonstrate that i] radiation-induced EMT in RLE-6TN cells is mediated by ROS/MEK/ERK and ROS/TGF-β1 signaling pathways and ii] the inhibitory role of TSA in radiation-induced EMT appears to be due, at least in part, to its action of blocking ROS and TGF-β1 signaling.
Collapse
Affiliation(s)
- Devipriya Nagarajan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Lei Wang
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Weiling Zhao
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Tangshan People's Hospital, Tangshan, Hebei, China
| | - Xiaochen Han
- Tangshan People's Hospital, Tangshan, Hebei, China
| |
Collapse
|
28
|
Huang R, Langdon SP, Tse M, Mullen P, Um IH, Faratian D, Harrison DJ. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget 2016; 7:4695-711. [PMID: 26683361 PMCID: PMC4826236 DOI: 10.18632/oncotarget.6618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Chromatin undergoes structural changes in response to extracellular and environmental signals. We observed changes in nuclear morphology in cancer tissue biopsied after chemotherapy and hypothesised that these DNA damage-induced changes are mediated by histone deacetylases (HDACs). Nuclear morphological changes in cell lines (PE01 and PE04 models) and a xenograft model (OV1002) were measured in response to platinum chemotherapy by image analysis of nuclear texture. HDAC2 expression increased in PEO1 cells treated with cisplatin at 24h, which was accompanied by increased expression of heterochromatin protein 1 (HP1). HDAC2 and HP1 expression were also increased after carboplatin treatment in the OV1002 carboplatin-sensitive xenograft model but not in the insensitive HOX424 model. Expression of DNA damage response pathways (pBRCA1, γH2AX, pATM, pATR) showed time-dependent changes after cisplatin treatment. HDAC2 knockdown by siRNA reduced HP1 expression, induced DNA double strand breaks (DSB) measured by γH2AX, and interfered with the activation of DNA damage response induced by cisplatin. Furthermore, HDAC2 depletion affected γH2AX foci formation, cell cycle distribution, and apoptosis triggered by cisplatin, and was additive to the inhibitory effect of cisplatin in cell lines. By inhibiting expression of HDAC2, reversible alterations in chromatin patterns during cisplatin treatment were observed. These results demonstrate quantifiable alterations in nuclear morphology after chemotherapy, and implicate HDAC2 in higher order chromatin changes and cellular DNA damage responses in ovarian cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Huang
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Matthew Tse
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Peter Mullen
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - Dana Faratian
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| |
Collapse
|
29
|
Recent advances in electrochemical detection of important sulfhydryl-containing compounds. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. PHYTOCHEMISTRY REVIEWS 2016. [PMID: 0 DOI: 10.1007/s11101-014-9387-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
31
|
Redjal N, Reinshagen C, Le A, Walcott BP, McDonnell E, Dietrich J, Nahed BV. Valproic acid, compared to other antiepileptic drugs, is associated with improved overall and progression-free survival in glioblastoma but worse outcome in grade II/III gliomas treated with temozolomide. J Neurooncol 2016; 127:505-14. [PMID: 26830093 DOI: 10.1007/s11060-016-2054-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022]
Abstract
Valproic acid (VPA) is an anti-epileptic drug with properties of a histone deacetylase inhibitor (HDACi). HDACi play a key role in epigenetic regulation of gene expression and have been increasingly used as anticancer agents. Recent studies suggest that VPA is associated with improved survival in high-grade gliomas. However, effects on lower grade gliomas have not been examined. This study investigates whether use of VPA correlates with tumor grade, histological progression, progression-free and overall survival (OS) in grade II, III, and IV glioma patients. Data from 359 glioma patients (WHO II-IV) treated with temozolomide plus an antiepileptic drug (VPA or another antiepileptic drug) between January 1997 and June 2013 at the Massachusetts General Hospital was analyzed retrospectively. After confounder adjustment, VPA was associated with a 28 % decrease in hazard of death (p = 0.031) and a 28 % decrease in the hazard of progression or death (p = 0.015) in glioblastoma. Additionally, VPA dose correlated with reduced hazard of death by 7 % (p = 0.002) and reduced hazard of progression or death by 5 % (p < 0.001) with each 100 g increase in total dose. Conversely, in grade II and III gliomas VPA was associated with a 118 % increased risk of tumor progression or death (p = 0.014), and every additional 100 g of VPA raised the hazard of progression or death by 4 %, although not statistically significant (p = 0.064). Moreover, grade II and III glioma patients taking VPA had 2.17 times the risk of histological progression (p = 0.020), although this effect was no longer significant after confounder adjustment. In conclusion, VPA was associated with improved survival in glioblastoma in a dose-dependent manner. However, in grade II and III gliomas, VPA was linked to histological progression and decrease in progression-free survival. Prospective evaluation of VPA treatment for glioma patients is warranted to confirm these findings.
Collapse
Affiliation(s)
- Navid Redjal
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White Building Room, Gray 502, Boston, MA, 02114, USA.
| | - Clemens Reinshagen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | - Andrew Le
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White Building Room, Gray 502, Boston, MA, 02114, USA
| | - Brian P Walcott
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White Building Room, Gray 502, Boston, MA, 02114, USA
| | - Erin McDonnell
- MGH Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, 50 Staniford Street, Boston, MA, 02114, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, 02114, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White Building Room, Gray 502, Boston, MA, 02114, USA
| |
Collapse
|
32
|
Hadianawala M, Datta B. Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators. RSC Adv 2016. [DOI: 10.1039/c5ra27341b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sulfonylurea derivatives are zinc metalloenzyme modulators.
Collapse
Affiliation(s)
- Murtuza Hadianawala
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- VGEC Complex Chandkheda
- Ahmedabad 382424
- India
| | - Bhaskar Datta
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- VGEC Complex Chandkheda
- Ahmedabad 382424
- India
| |
Collapse
|
33
|
Synthesis of 1,2-benzisoxazole tethered 1,2,3-triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing p21 and tubulin acetylation. Bioorg Med Chem 2015; 23:6157-65. [DOI: 10.1016/j.bmc.2015.07.069] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
|
34
|
The Effect of MGCD0103 on CYP450 Isoforms Activity of Rats by Cocktail Method. BIOMED RESEARCH INTERNATIONAL 2015; 2015:517295. [PMID: 26357656 PMCID: PMC4556830 DOI: 10.1155/2015/517295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/10/2015] [Accepted: 04/22/2015] [Indexed: 01/29/2023]
Abstract
MGCD0103, an isotype-selective histone deacetylase inhibitor (HDACi), has been clinically evaluated for the treatment of hematologic malignancies and advanced solid tumors, alone and in combination with standard-of-care agents. In order to investigate the effects of MGCD0103 on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of human CYP2B1, CYP1A2, CYP2C11, CYP2D6, CYP3A4, and CYP2C9. The rats were randomly divided into MGCD0103 group (Low, Medium, and High) and control group. The MGCD0103 group rats were given 20, 40, and 80 mg/kg (Low, Medium, and High) MGCD0103 by continuous intragastric administration for 7 days. Six probe drugs, bupropion, phenacetin, tolbutamide, metoprolol, testosterone, and omeprazole, were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. Statistical pharmacokinetics difference for tolbutamide in rats were observed by comparing MGCD0103 group with control group. Continuous 7-day intragastric administration of MGCD0103 slightly induces the activities of CYP2C11 of rats.
Collapse
|
35
|
Carrillo AK, Guiguemde WA, Guy RK. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT). Bioorg Med Chem 2015; 23:5151-5. [DOI: 10.1016/j.bmc.2014.12.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 01/31/2023]
|
36
|
Chao MW, Lai MJ, Liou JP, Chang YL, Wang JC, Pan SL, Teng CM. The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo. J Hematol Oncol 2015; 8:82. [PMID: 26156322 PMCID: PMC4504084 DOI: 10.1186/s13045-015-0176-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023] Open
Abstract
Background Combination therapy is a key strategy for minimizing drug resistance, a common problem in cancer therapy. The microtubule-depolymerizing agent vincristine is widely used in the treatment of acute leukemia. In order to decrease toxicity and chemoresistance of vincristine, this study will investigate the effects of combination vincristine and vorinostat (suberoylanilide hydroxamic acid (SAHA)), a pan-histone deacetylase inhibitor, on human acute T cell lymphoblastic leukemia cells. Methods Cell viability experiments were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and cell cycle distributions as well as mitochondria membrane potential were analyzed by flow cytometry. In vitro tubulin polymerization assay was used to test tubulin assembly, and immunofluorescence analysis was performed to detect microtubule distribution and morphology. In vivo effect of the combination was evaluated by a MOLT-4 xenograft model. Statistical analysis was assessed by Bonferroni’s t test. Results Cell viability showed that the combination of vincristine and SAHA exhibited greater cytotoxicity with an IC50 value of 0.88 nM, compared to each drug alone, 3.3 and 840 nM. This combination synergically induced G2/M arrest, followed by an increase in cell number at the sub-G1 phase and caspase activation. Moreover, the results of vincristine combined with an HDAC6 inhibitor (tubastatin A), which acetylated α-tubulin, were consistent with the effects of vincristine/SAHA co-treatment, thus suggesting that SAHA may alter microtubule dynamics through HDAC6 inhibition. Conclusion These findings indicate that the combination of vincristine and SAHA on T cell leukemic cells resulted in a change in microtubule dynamics contributing to M phase arrest followed by induction of the apoptotic pathway. These data suggest that the combination effect of vincristine/SAHA could have an important preclinical basis for future clinical trial testing. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0176-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min-Wu Chao
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei, Taiwan
| | - Mei-Jung Lai
- Center for Translational Medicine, Taipei Medical University, No. 250, Wu-hsing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250, Wu-hsing Street, Taipei, 11031, Taiwan
| | - Ya-Ling Chang
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei, Taiwan
| | - Jing-Chi Wang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wu-hsing St., Taipei, 11031, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wu-hsing St., Taipei, 11031, Taiwan.
| | - Che-Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei, Taiwan.
| |
Collapse
|
37
|
Liu N, Zhuang S. Treatment of chronic kidney diseases with histone deacetylase inhibitors. Front Physiol 2015; 6:121. [PMID: 25972812 PMCID: PMC4411966 DOI: 10.3389/fphys.2015.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/02/2015] [Indexed: 01/30/2023] Open
Abstract
Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models.
Collapse
Affiliation(s)
- Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine Shanghai, China ; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University Providence, RI, USA
| |
Collapse
|
38
|
Olson D, Udeshi ND, Wolfson NA, Pitcairn CA, Sullivan ED, Jaffe JD, Svinkina T, Natoli T, Lu X, Paulk J, McCarren P, Wagner FF, Barker D, Howe E, Lazzaro F, Gale JP, Zhang YL, Subramanian A, Fierke CA, Carr SA, Holson EB. An unbiased approach to identify endogenous substrates of "histone" deacetylase 8. ACS Chem Biol 2014; 9:2210-6. [PMID: 25089360 PMCID: PMC4201337 DOI: 10.1021/cb500492r] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/04/2014] [Indexed: 12/24/2022]
Abstract
Despite being extensively characterized structurally and biochemically, the functional role of histone deacetylase 8 (HDAC8) has remained largely obscure due in part to a lack of known cellular substrates. Herein, we describe an unbiased approach using chemical tools in conjunction with sophisticated proteomics methods to identify novel non-histone nuclear substrates of HDAC8, including the tumor suppressor ARID1A. These newly discovered substrates of HDAC8 are involved in diverse biological processes including mitosis, transcription, chromatin remodeling, and RNA splicing and may help guide therapeutic strategies that target the function of HDAC8.
Collapse
Affiliation(s)
- David
E. Olson
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Namrata D. Udeshi
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Noah A. Wolfson
- Department of Biological
Chemistry, Interdepartmental
Program in Chemical Biology, and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carol Ann Pitcairn
- Department of Biological
Chemistry, Interdepartmental
Program in Chemical Biology, and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eric D. Sullivan
- Department of Biological
Chemistry, Interdepartmental
Program in Chemical Biology, and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jacob D. Jaffe
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Tanya Svinkina
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Ted Natoli
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Xiaodong Lu
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Joshiawa Paulk
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Patrick McCarren
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Florence F. Wagner
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Doug Barker
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Eleanor Howe
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Fanny Lazzaro
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jennifer P. Gale
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Aravind Subramanian
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Carol A. Fierke
- Department of Biological
Chemistry, Interdepartmental
Program in Chemical Biology, and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven A. Carr
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Edward B. Holson
- Stanley Center for Psychiatric Research, Proteomics Platform, Cancer Program, and Center for the
Science of Therapeutics, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
39
|
Han RF, Li K, Yang ZS, Chen ZG, Yang WC. Trichostatin A induces mesenchymal-like morphological change and gene expression but inhibits migration and colony formation in human cancer cells. Mol Med Rep 2014; 10:3211-6. [PMID: 25269990 DOI: 10.3892/mmr.2014.2594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 06/23/2014] [Indexed: 11/05/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl from lysine residues in histones and other proteins, which results in gene transcriptional repression and subsequent changes in signaling events. HDACs inhibitors (HDACIs) have been used to reverse the aberrant epigenetic changes associated with cancer. However, the effects of HDACIs on epithelial-mesenchymal transition (EMT) in human cancer cells remain unclear. EMT is a fundamental process governing morphogenesis in multicellular organisms and promotes cancer invasion and metastasis. In this study, human cancer cells were treated with the HDACI trichostatin A (TSA). TSA was found to induce mesenchymal‑like morphological changes in BGC-823 human gastric cancer and MCF-7 breast cancer cells, and increase the expression levels of the mesenchymal markers Vimentin and Twist. However, the expression levels of the epithelial cell marker E-cadherin were also increased in response to TSA treatment, while cell migration was reduced by TSA. Furthermore, TSA decreased cancer cell colony formation in BGC-823 and MCF-7 cells, and led to the deregulation of β-catenin, a critical signaling molecule involved in EMT. In conclusion, the results suggested that TSA exhibits dual functions in EMT induction and inhibition in human cancer cells, but the detailed mechanisms require further investigation.
Collapse
Affiliation(s)
- Rong-Fei Han
- Department of Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Kai Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zi-Shan Yang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhi-Guo Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wan-Cai Yang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
40
|
Zhong L, Zhang X, Covasa M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol 2014; 20:7878-7886. [PMID: 24976724 PMCID: PMC4069315 DOI: 10.3748/wjg.v20.i24.7878] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/07/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths worldwide and the fourth most common cancer diagnosed among men and women in the United States. Considering the risk factors of CRC, dietary therapy has become one of the most effective approaches in reducing CRC morbidity and mortality. The use of probiotics is increasing in popularity for both the prevention and treatment of a variety of diseases. As the most common types of microbes used as probiotics, lactic acid bacteria (LAB) are comprised of an ecologically diverse group of microorganisms united by formation of lactic acid as the primary metabolite of sugar metabolism. LAB have been successfully used in managing diarrhea, food allergies, and inflammatory bowel disease. LAB also demonstrated a host of properties in preventing colorectal cancer development by inhibiting initiation or progression through multiple pathways. In this review, we discuss recent insights into cellular and molecular mechanisms of LAB in CRC prevention including apoptosis, antioxidant DNA damages, immune responses, and epigenetics. The emerging experimental findings from clinical trials as well as the proposed mechanisms of gut microbiota in carcinogenesis will also be briefly discussed.
Collapse
|
41
|
Rossi A. Potential role of histone deacetylase inhibitors in the treatment of advanced non-small-cell lung cancer. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Histones are highly alkaline proteins of cell nuclei that package and order DNA into structural units called nucleosomes. The balance between the acetylation and deacetylation of hystones is mediated by two different sets of enzymes: histone acetyltransferases and histone deacetylases (HDACs). HDAC inhibitors, a novel class of anticancer agents, acting by regulating chromatin structure and function, induce acetylation of histones, which ultimately results in apoptosis and cell cycle arrest, modulate anticancer immunity and inhibition of angiogenesis. HDAC inhibitors are being clinically investigated for the treatment of several hematological and solid tumors. The potential role of HDAC inhibitors in the treatment of advanced non-small-cell lung cancer patients, including their clinical effectiveness and future developments, is discussed here.
Collapse
|
42
|
Li X, Zhang Y, Zhang L, Xu Y, Xu W. 3D QSAR and docking studies of a series of histone deacetylase inhibitors. Med Chem Res 2014; 23:2229-2241. [DOI: 10.1007/s00044-013-0816-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Takahashi K. Influence of bacteria on epigenetic gene control. Cell Mol Life Sci 2014; 71:1045-54. [PMID: 24132510 PMCID: PMC11113846 DOI: 10.1007/s00018-013-1487-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/26/2023]
Abstract
Cellular information is inherited by daughter cells through epigenetic routes in addition to genetic routes. Epigenetics, which is primarily mediated by inheritable DNA methylation and histone post-translational modifications, involves changes in the chromatin structure important for regulating gene expression. It is widely known that epigenetic control of gene expression plays an essential role in cell differentiation processes in vertebrates. Furthermore, because epigenetic changes can occur reversibly depending on environmental factors in differentiated cells, they have recently attracted considerable attention as targets for disease prevention and treatment. These environmental factors include diet, exposure to bacteria or viruses, and air pollution, of which this review focuses on the influence of bacteria on epigenetic gene control in a host. Host-bacterial interactions not only occur upon pathogenic bacterial infection but also continuously exist between commensal bacteria and the host. These bacterial stimuli play an essential role in various biological responses involving external stimuli and in maintaining physiological homeostasis by altering epigenetic markers and machinery.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan,
| |
Collapse
|
44
|
Histone deacetylase inhibitors and epigenetic modifications as a novel strategy in renal cell carcinoma. Cancer J 2014; 19:333-40. [PMID: 23867515 DOI: 10.1097/ppo.0b013e3182a09e07] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent investigations of renal cell carcinoma (RCC) have revealed several epigenetic modifications, as well as alterations in the genes and enzymes that regulate these changes. Preclinical models have revealed that histone gene modifiers and epigenetic alterations may play a critical role in RCC tumorigenesis. Specific changes in DNA methylation and mutations of histone modifiers have been identified and may be associated with an aggressive phenotype. In addition, the potential of reversing the effects of these enzymes and hence reversing the cellular epigenetic landscape to a "normal phenotype" have led to an increasing interest in developing targeted chromatin remodeling agents. However, the translation of the understanding of these changes to the clinic for the treatment of RCC has posed significant challenges, partly due to tumor heterogeneity. This review describes the aberrant histone and DNA alterations recently reported in RCC and highlights the potential targeted chromatin remodeling therapies in the management of this disease.
Collapse
|
45
|
Shiva Shankar TV, Willems L. Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vascul Pharmacol 2014; 60:57-66. [PMID: 24445350 DOI: 10.1016/j.vph.2014.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/18/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
Abstract
In this review, we summarize the knowledge pertaining to the role of epigenetics in the regulation of angiogenesis. In particular, we show that lysine acetylation and cytosine methylation are important transcriptional regulators of angiogenic genes in endothelial cells. Lysine acetylation and cytosine methylation inhibitors idiosyncratically tune the transcriptome and affect expression of key modulators of angiogenesis such as VEGF and eNOS. Transcriptomic profiling also reveals a series of novel genes that are concomitantly affected by epigenetic modulators. The reversibility and overall tolerability of currently available epigenetic inhibitors open up the prospect of therapeutic intervention in pathologies where angiogenesis is exacerbated. This type of multitargeted strategy has the major advantage of overcoming the compensatory feedback mechanisms that characterize single anti-angiogenic factors.
Collapse
Affiliation(s)
- T V Shiva Shankar
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - L Willems
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium.
| |
Collapse
|
46
|
Tanji N, Ozawa A, Kikugawa T, Miura N, Sasaki T, Azuma K, Yokoyama M. Potential of histone deacetylase inhibitors for bladder cancer treatment. Expert Rev Anticancer Ther 2014; 11:959-65. [DOI: 10.1586/era.10.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev 2013; 32:723-61. [PMID: 24043487 PMCID: PMC7102343 DOI: 10.1007/s10555-013-9447-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 100 drugs are used to treat the many different cancers. They can be divided into agents with relatively broad, non-targeted specificity and targeted drugs developed on the basis of a more refined understanding of individual cancers and directed at specific molecular targets on different cancer cells. Individual drugs in both groups have been classified on the basis of their mechanism of action in killing cancer cells. The targeted drugs include proteasome inhibitors, toxic chimeric proteins and signal transduction inhibitors such as tyrosine kinase (non-receptor and receptor), serine/threonine kinase, histone deacetylase and mammalian target of rapamycin inhibitors. Increasingly used targeted vascular (VEGF) and platelet-derived endothelial growth factor blockade can provoke a range of pathological consequences. Many of the non-targeted drugs are cytotoxic, suppressing haematopoiesis as well as provoking cutaneous eruptions and vascular, lung and liver injury. Cytotoxic side effects of the targeted drugs occur less often and usually with less severity, but they show their own unusual adverse effects including, for example, a lengthened QT interval, a characteristic papulopustular rash, nail disorders and a hand-foot skin reaction variant. The term hypersensitivity is widely used across a number of disciplines but not always with the same definition in mind, and the terminology needs to be standardised. This is particularly apparent in cancer chemotherapy where anti-neoplastic drug-induced thrombocytopenia, neutropenia, anaemia, vascular disorders, liver injury and lung disease as well as many dermatological manifestations sometimes have an immune basis. The most insidious of all adverse consequences of targeted therapies, however, are tumour adaptation, increased malignancy and the invasive metastatic switch seen with anti-angiogenic drugs that inhibit the VEGF-A pathway. Adverse reactions to 44 non-targeted and 33 targeted, frequently used, chemotherapeutic drugs are presented together with discussions of diagnosis, premedications, desensitizations and importance of understanding the mechanisms underlying the various drug-induced reactions. There is need for wide-ranging acceptance of what constitutes a hypersensitivity reaction and for allergists to be more involved in the diagnosis, treatment and prevention of chemotherapeutic drug-induced hypersensitivity reactions.
Collapse
Affiliation(s)
- Brian A Baldo
- Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, New South Wales, Australia,
| | | |
Collapse
|
48
|
Abdelkarim H, Brunsteiner M, Neelarapu R, Bai H, Madriaga A, van Breemen RB, Blond SY, Gaponenko V, Petukhov PA. Photoreactive "nanorulers" detect a novel conformation of full length HDAC3-SMRT complex in solution. ACS Chem Biol 2013; 8:2538-49. [PMID: 24010878 DOI: 10.1021/cb400601g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylase 3 (HDAC3) is a promising epigenetic drug target for multiple therapeutic applications. Direct interaction between the Deacetylase Activating Domain of the silencing mediator for retinoid or thyroid-hormone receptors (SMRT-DAD) is required for activation of enzymatic activity of HDAC3. The structure of this complex and the nature of interactions with HDAC inhibitors in solution are unknown. Using novel photoreactive HDAC probes, "nanorulers", we determined the distance between the catalytic site of the full-length HDAC3 and SMRT-DAD in solution at physiologically relevant conditions and found it to be substantially different from that predicted by the X-ray model with a Δ379-428 aa truncated HDAC3. Further experiments indicated that in solution this distance might change in response to chemical stimuli, while the enzymatic activity remained unaffected. These observations were further validated by Saturation Transfer Difference (STD) NMR experiments. We propose that the observed changes in the distance are an important part of the histone code that remains to be explored. Mapping direct interactions and distances between macromolecules with such "nanorulers" as a function of cellular events facilitates better understanding of basic biology and ways for its manipulation in a cell- and tissue-specific manner.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Michael Brunsteiner
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Raghupathi Neelarapu
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - He Bai
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Antonett Madriaga
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Richard B. van Breemen
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | - Pavel A. Petukhov
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
49
|
Jin H, Liang L, Liu L, Deng W, Liu J. HDAC inhibitor DWP0016 activates p53 transcription and acetylation to inhibit cell growth in U251 glioblastoma cells. J Cell Biochem 2013; 114:1498-509. [PMID: 23297003 DOI: 10.1002/jcb.24491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 12/18/2012] [Indexed: 11/11/2022]
Abstract
Here we report a hydroacid named DWP0016, which exhibited HDAC inhibition and induced p53 acetylation in U251 glioblastoma cells. DWP0016 effectively inhibited the cell growth of U251 cells and other four carcinoma cell lines but did not affect the normal cells. Cell cycle distribution analysis showed DWP0016 arrested at G1 phase cell cycle dose-dependently in U251 cells. DWP0016 induced caspase-dependent and independent apoptosis in U251 cells, which was identified by flow cytometry analysis, caspases activity analysis, Western blotting assay, and caspases inhibition. Mechanisms research suggested that DWP0016 activated transcription and acetylation of tumor suppressor p53. DWP0016 regulated p300, CBP, and PCAF to facilitate p53 acetylation at lys382 in U251 cells. In addition, activation of p53 by DWP0016 promoted PUMA to catalyze mitochondrial pathway. Besides, siRNA assay indicated p53 was the key gene to induce growth inhibition, cell cycle arrest, and apoptosis in DWP0016 treated U251 cells. Conclusively, our results show DWP0016 is a potent HDAC inhibitor and the anti-tumor activity is consistent with its intended p53 activation mechanisms. These findings indicate the promising antitumor potential of DWP0016 for further glioblastoma treatment applications.
Collapse
Affiliation(s)
- Hui Jin
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Fouliard S, Robert R, Jacquet-Bescond A, du Rieu QC, Balasubramanian S, Loury D, Loriot Y, Hollebecque A, Kloos I, Soria JC, Chenel M, Depil S. Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I. Eur J Cancer 2013; 49:2791-7. [DOI: 10.1016/j.ejca.2013.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/02/2013] [Accepted: 05/12/2013] [Indexed: 11/25/2022]
|