1
|
Ishihara Y, Ando M, Goto Y, Kotani S, Watanabe N, Nakatani Y, Ishii S, Miyamoto N, Mano Y, Ishikawa Y. A novel selective phosphodiesterase 9 inhibitor, irsenontrine (E2027), enhances GluA1 phosphorylation in neurons and improves learning and memory via cyclic GMP elevation. Neuropharmacology 2025; 273:110428. [PMID: 40147639 DOI: 10.1016/j.neuropharm.2025.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Phosphodiesterase 9 (PDE9) plays a critical role in synaptic plasticity and cognitive function by modulating cyclic GMP (cGMP). Many reports have shown that PDE9 inhibition improves cognitive function and synaptic plasticity in rodents. Several studies have found that the NO/cGMP/PKG pathway is downregulated in patients with Alzheimer's disease (AD) or dementia with Lewy bodies (DLB) and in older individuals. A PDE9 inhibitor could therefore be a potential therapeutic approach for improving cognitive dysfunction in dementia, including in AD and DLB. We previously discovered a novel PDE9 inhibitor, irsenontrine (E2027). In the current study, irsenontrine showed highly selective affinity for PDE9 with more than 1800-fold selectivity over other PDEs. Irsenontrine maleate significantly increased intracellular cGMP levels in rat cortical primary neurons, and phosphorylation of AMPA receptor subunit GluA1 was induced following cGMP elevation. Oral administration of irsenontrine significantly upregulated cGMP levels in the hippocampus and cerebrospinal fluid (CSF) of naïve rats, and a novel object recognition test showed that irsenontrine administration also significantly improved learning and memory. The effects of irsenontrine were confirmed in rats treated with Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME), a model of learning and memory impairment due to downregulation of the cGMP pathway. l-NAME downregulated cGMP in the CSF and hippocampus and impaired novel object recognition, but oral administration of irsenontrine clearly attenuated these phenotypes. These results indicate that irsenontrine improves learning and memory via the elevation of cGMP levels, and they strongly suggest that irsenontrine could be a novel therapeutic approach against cognitive dysfunction.
Collapse
Affiliation(s)
- Yasuharu Ishihara
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, Degree Program in Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Mai Ando
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yasuaki Goto
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Sadaharu Kotani
- Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Naoto Watanabe
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yosuke Nakatani
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Satoko Ishii
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Norimasa Miyamoto
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuji Mano
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yukio Ishikawa
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
4
|
Zhang C, Xue ZH, Luo WH, Jiang MY, Wu Y. The therapeutic potential of phosphodiesterase 9 (PDE9) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:759-772. [PMID: 38979973 DOI: 10.1080/13543776.2024.2376632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Zhao-Hang Xue
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Mei-Yan Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Chen X, Delić D, Cao Y, Zhang Z, Wu H, Hasan AA, Gaballa MMS, Yin L, Krämer BK, Klein T, Shi X, He B, Shen L, Hocher B. Renal and cardiac effects of the PDE9 inhibitor BAY 73-6691 in 5/6 nephrectomized rats. Pflugers Arch 2024; 476:755-767. [PMID: 38305876 DOI: 10.1007/s00424-024-02915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
It has been suggested that the novel selective phosphodiesterase 9 (PDE9) inhibitor may improve cardiac and renal function by blocking 3',5'-cyclic guanosine monophosphate (cGMP) degradation. 5/6 nephrectomized (5/6Nx) rats were used to investigate the effects of the PDE9 inhibitor (BAY 73-6691) on the heart and kidney. Two doses of BAY 73-6691 (1 mg/kg/day and 5 mg/kg/day) were given for 95 days. The 5/6Nx rats developed albuminuria, a decrease in serum creatinine clearance (Ccr), and elevated serum troponin T levels. Echocardiographic data showed that 5/6 nephrectomy resulted in increased fractional shortening (FS), stroke volume (SV), and left ventricular ejection fraction (EF). However, 95 days of PDE9 inhibitor treatment did not improve any cardiac and renal functional parameter. Histopathologically, 5/6 nephrectomy resulted in severe kidney and heart damage, such as renal interstitial fibrosis, glomerulosclerosis, and enlarged cardiomyocytes. Telmisartan attenuated renal interstitial fibrosis and glomerulosclerosis as well as improved cardiomyocyte size. However, except for cardiomyocyte size and renal perivascular fibrosis, BAY 73-6691 had no effect on other cardiac and renal histologic parameters. Pathway enrichment analysis using RNA sequencing data of kidney and heart tissue identified chronic kidney disease pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, complement and coagulation cascades, and nuclear factor kappa B (NF-κB) signaling pathway. PDE9i did not affect any of these disease-related pathways. Two dosages of the PDE9 inhibitor BAY 73-6691 known to be effective in other rat models have only limited cardio-renal protective effects in 5/6 nephrectomized rats.
Collapse
Affiliation(s)
- Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Denis Delić
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397, Biberach, Germany
| | - Yaochen Cao
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Zeyu Zhang
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongwei Wu
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Lianghong Yin
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
- IMD Institut Für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany.
| |
Collapse
|
6
|
Zheng L, Zhou ZZ. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential. Eur J Med Chem 2023; 259:115682. [PMID: 37536210 DOI: 10.1016/j.ejmech.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Hudwekar AD, Kotwal P, Dar MI, Balgotra S, Dogra A, Kour J, Chobe SS, Nandi U, Hussain Syed S, Sawant SD. Pyrazolopyrimidinone Based Selective Inhibitors of PDE5 for the Treatment of Erectile Dysfunction. Chem Biodivers 2023; 20:e202200707. [PMID: 36915218 DOI: 10.1002/cbdv.202200707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Continuing research with our earlier finding of sildenafil based analogs in the search of new inhibitors of PDE5 for erectile dysfunction suggested that there is a scope of modifications at N-methylpiperazine ring with hydrophobic region followed by hydrogen bond donor or acceptor region. However, the leads identified earlier had some limitations like poor pharmacokinetic (PK) profile, low aqueous solubility and poor bioavailability. In this direction, a new series of sildenafil based analogs were designed, synthesized and screened for their PDE5 inhibitory activity. In this series compound 18 was found to have excellent in vitro activity with selectivity towards PDE5 isozyme, also the in vivo activity and pharmacokinetic profile was excellent. The cyp inhibition and CaCO2 permeability was also excellent for compound 18.
Collapse
Affiliation(s)
- Abhinandan D Hudwekar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Pankul Kotwal
- PK-PD Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Mohd Ishaq Dar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar- 190005, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Shilpi Balgotra
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
- Department of Chemistry, Central University of Jammu, Bagla Suchani, 181143, UT of J&K, India
| | - Ashish Dogra
- PK-PD Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Jaspreet Kour
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Santosh S Chobe
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College, Nashik, 422003, Maharashtra, India
| | - Utpal Nandi
- PK-PD Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sajad Hussain Syed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar- 190005, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, UT of J&K, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Meibom D, Micus S, Andreevski AL, Anlauf S, Bogner P, von Buehler CJ, Dieskau AP, Dreher J, Eitner F, Fliegner D, Follmann M, Gericke KM, Maassen S, Meyer J, Schlemmer KH, Steuber H, Tersteegen A, Wunder F. BAY-7081: A Potent, Selective, and Orally Bioavailable Cyanopyridone-Based PDE9A Inhibitor. J Med Chem 2022; 65:16420-16431. [PMID: 36475653 PMCID: PMC9791655 DOI: 10.1021/acs.jmedchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite advances in the treatment of heart failure in recent years, options for patients are still limited and the disease is associated with considerable morbidity and mortality. Modulating cyclic guanosine monophosphate levels within the natriuretic peptide signaling pathway by inhibiting PDE9A has been associated with beneficial effects in preclinical heart failure models. We herein report the identification of BAY-7081, a potent, selective, and orally bioavailable PDE9A inhibitor with very good aqueous solubility starting from a high-throughput screening hit. Key aspect of the optimization was a switch in metabolism of our lead structures from glucuronidation to oxidation. The switch proved being essential for the identification of compounds with improved pharmacokinetic profiles. By studying a tool compound in a transverse aortic constriction mouse model, we were able to substantiate the relevance of PDE9A inhibition in heart diseases.
Collapse
|
9
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
10
|
Jyoti Dutta B, Singh S, Seksaria S, Das Gupta G, Bodakhe SH, Singh A. Potential role of IP3/Ca 2+ signaling and phosphodiesterases: Relevance to neurodegeneration in Alzheimer's disease and possible therapeutic strategies. Biochem Pharmacol 2022; 201:115071. [PMID: 35525328 DOI: 10.1016/j.bcp.2022.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Despite large investments by industry and governments, no disease-modifying medications for the treatment of patients with Alzheimer's disease (AD) have been found. The failures of various clinical trials indicate the need for a more in-depth understanding of the pathophysiology of AD and for innovative therapeutic strategies for its treatment. Here, we review the rational for targeting IP3 signaling, cytosolic calcium dysregulation, phosphodiesterases (PDEs), and secondary messengers like cGMP and cAMP, as well as their correlations with the pathophysiology of AD. Various drugs targeting these signaling cascades are still in pre-clinical and clinical trials which support the ideas presented in this article. Further, we describe different molecular mechanisms and medications currently being used in various pre-clinical and clinical trials involving IP3/Ca+2 signaling. We also highlight various isoforms, as well as the functions and pharmacology of the PDEs broadly expressed in different parts of the brain and attempt to unravel the potential benefits of PDE inhibitors for use as novel medications to alleviate the pathogenesis of AD.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur - 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
11
|
Xi M, Sun T, Chai S, Xie M, Chen S, Deng L, Du K, Shen R, Sun H. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease. Eur J Med Chem 2022; 232:114170. [DOI: 10.1016/j.ejmech.2022.114170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
|
12
|
Orhan IE, Rauf A, Saleem M, Khalil AA. Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/ Phosphodiesterases (PDEs). Curr Top Med Chem 2022; 22:209-228. [PMID: 34503407 DOI: 10.2174/1568026621666210909164118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phosphodiesterases (PDEs) are a wide group of enzymes with multiple therapeutic actions, including vasorelaxation, cardiotonic, antidepressant, anti-inflammatory, antithrombotic, anti-spasmolytic, memory-enhancing, and anti-asthmatic. PDEs with eleven subtypes from PDE-1 to PDE-11 typically catalyze the cleavage of the phosphodiester bond and, hence, degrades either cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP). OBJECTIVE Several selective or non-selective inhibitors of the PDE subtypes are used clinically, i.e. sildenafil, rolipram, cysteine, etc. Recently, interest in plant-based pharmacologically bioactive compounds having potent PDEs inhibitory potential has increased. Purposely, extensive research has been carried out on natural products to explore new inhibitors of various PDEs. Therefore, this review summarizes the published data on natural PDEs inhibitors and their potential therapeutic applications. METHODS For this purpose, natural compounds with PDE inhibitory potential have been surveyed through several databases, including PubMed, Web of Sciences (WoS), Scopus, and Google Scholar. RESULTS According to a detailed literature survey, the most promising class of herbal compounds with PDE-inhibiting property has been found to belong to phenolics, including flavonoids (luteolin, kaempferol, icariin, etc.). Many other encouraging inhibitors from plants have also been identified, such as coumarins (23, 24) (licoarylcoumarin and glycocoumarin,), saponins (agapanthussaponins), lignans (31, 33) [(±)-schizandrin and kobusin], terpenes (28, 29, 31) (perianradulcin A, quinovic acid, and ursolic acid), anthraquinones (18, 19) (emodin and chrysophanol), and alkaloids (Sanjoinine-D) (36). CONCLUSION In this review, studies have revealed the PDE-inhibitory potential of natural plant extracts and their bioactive constituents in treating various diseases; however, further clinical studies comprising synergistic use of different therapies (synthetic & natural) to acquire multi-targeted results might also be a promising option.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 25120, KPK, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Ghazi University, Dera Ghazi Khan-32200, Punjab, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
13
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
14
|
Thapa K, Singh TG, Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 2021; 282:119843. [PMID: 34298037 DOI: 10.1016/j.lfs.2021.119843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) occurs in renal artery stenosis, partial nephrectomy and most commonly during kidney transplantation. It brings serious consequences such as DGF (Delayed Graft Function) or organ dysfunction leading to renal failure and ultimate death. There is no effective therapy to handle the consequences of Renal Ischemia/Reperfusion (I/R) injury. Cyclic nucleotides, cAMP and cGMP are the important second messengers that stimulate intracellular signal transduction for cell survival in response to growth factors and peptide hormones in normal tissues and in kidneys plays significant role that involves vascular tone regulation, inflammation and proliferation of parenchymal cells. Renal ischemia and subsequent reperfusion injury stimulate signal transduction pathways involved in oxidative stress, inflammation, alteration in renal blood flow leading to necrosis and apoptosis of renal cell. MATERIALS AND METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out. To understand the functioning of Phosphodiesterases (PDEs) and its pharmacological modulation in Renal Ischemia-Reperfusion Injury. KEY FINDINGS Current therapeutic options may not be enough to treat renal I/R injury in group of patients and therefore, the current review has discussed the general characteristics and physiology of PDEs and preclinical-studies defining the relationship between PDEs expression in renal injury due to I/R and its outcome on renal function. SIGNIFICANCE The role of PDE inhibitors in renal I/R injury and the clinical status of drugs for various renal diseases have been summarized in this review.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India; School of Pharmacy, Himachal Pradesh, India
| | | | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| |
Collapse
|
15
|
Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12 RNase. Nat Commun 2021; 12:4375. [PMID: 34272366 PMCID: PMC8285493 DOI: 10.1038/s41467-021-24495-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
DNMDP and related compounds, or velcrins, induce complex formation between the phosphodiesterase PDE3A and the SLFN12 protein, leading to a cytotoxic response in cancer cells that express elevated levels of both proteins. The mechanisms by which velcrins induce complex formation, and how the PDE3A-SLFN12 complex causes cancer cell death, are not fully understood. Here, we show that PDE3A and SLFN12 form a heterotetramer stabilized by binding of DNMDP. Interactions between the C-terminal alpha helix of SLFN12 and residues near the active site of PDE3A are required for complex formation, and are further stabilized by interactions between SLFN12 and DNMDP. Moreover, we demonstrate that SLFN12 is an RNase, that PDE3A binding increases SLFN12 RNase activity, and that SLFN12 RNase activity is required for DNMDP response. This new mechanistic understanding will facilitate development of velcrin compounds into new cancer therapies. The small molecule DNMDP acts as a velcrin by inducing complex formation between phosphodiesterase PDE3A and SLFN12, which kills cancer cells that express sufficient levels of both proteins. Here, the authors present the cryo-EM structure of the DNMDP-stabilized PDE3A-SLFN12 complex and show that SLFN12 is an RNase. PDE3A binding increases SLFN12 RNase activity, and SLFN12 RNase activity is required for DNMDP-mediated cancer cell killing.
Collapse
|
16
|
Diversifying the xanthine scaffold for potential phosphodiesterase 9A inhibitors: synthesis and validation. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Mechanisms That Activate 26S Proteasomes and Enhance Protein Degradation. Biomolecules 2021; 11:biom11060779. [PMID: 34067263 PMCID: PMC8224753 DOI: 10.3390/biom11060779] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Although ubiquitination is widely assumed to be the only regulated step in the ubiquitin–proteasome pathway, recent studies have demonstrated several important mechanisms that regulate the activities of the 26S proteasome. Most proteasomes in cells are inactive but, upon binding a ubiquitinated substrate, become activated by a two-step mechanism requiring an association of the ubiquitin chain with Usp14 and then a loosely folded protein domain with the ATPases. The initial activation step is signaled by Usp14’s UBL domain, and many UBL-domain-containing proteins (e.g., Rad23, Parkin) also activate the proteasome. ZFAND5 is a distinct type of activator that binds ubiquitin conjugates and the proteasome and stimulates proteolysis during muscle atrophy. The proteasome’s activities are also regulated through subunit phosphorylation. Agents that raise cAMP and activate PKA stimulate within minutes Rpn6 phosphorylation and enhance the selective degradation of short-lived proteins. Likewise, hormones, fasting, and exercise, which raise cAMP, activate proteasomes and proteolysis in target tissues. Agents that raise cGMP and activate PKG also stimulate 26S activities but modify different subunit(s) and stimulate also the degradation of long-lived cell proteins. Both kinases enhance the selective degradation of aggregation-prone proteins that cause neurodegenerative diseases. These new mechanisms regulating proteolysis thus have clear physiological importance and therapeutic potential.
Collapse
|
18
|
Sivakumar D, Mudedla S, Jang S, Kim H, Park H, Choi Y, Oh J, Wu S. Computational Study on Selective PDE9 Inhibitors on PDE9-Mg/Mg, PDE9-Zn/Mg, and PDE9-Zn/Zn Systems. Biomolecules 2021; 11:biom11050709. [PMID: 34068780 PMCID: PMC8151263 DOI: 10.3390/biom11050709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
PDE9 inhibitors have been studied to validate their potential to treat diabetes, neurodegenerative disorders, cardiovascular diseases, and erectile dysfunction. In this report, we have selected highly potent previously reported selective PDE9 inhibitors BAY73-6691R, BAY73-6691S, 28r, 28s, 3r, 3s, PF-0447943, PF-4181366, and 4r to elucidate the differences in their interaction patterns in the presence of different metal systems such as Zn/Mg, Mg/Mg, and Zn/Zn. The initial complexes were generated by molecular docking followed by molecular dynamics simulation for 100 ns in triplicate for each system to understand the interactions’ stability. The results were carefully analyzed, focusing on the ligands’ non-bonded interactions with PDE9 in different metal systems.
Collapse
Affiliation(s)
| | - Sathishkumar Mudedla
- R&D Center, Pharmcadd, 221, 17 APEC-ro, Haeundae-gu, Busan 48060, Korea; (D.S.); (S.M.); (S.J.)
| | - Seonghun Jang
- R&D Center, Pharmcadd, 221, 17 APEC-ro, Haeundae-gu, Busan 48060, Korea; (D.S.); (S.M.); (S.J.)
| | - Hyunjun Kim
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Hyunjin Park
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Yonwon Choi
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Joongyo Oh
- R&D Center, Huons co. Ltd., Ansan-si 15588, Korea; (H.K.); (H.P.); (Y.C.); (J.O.)
| | - Sangwook Wu
- R&D Center, Pharmcadd, 221, 17 APEC-ro, Haeundae-gu, Busan 48060, Korea; (D.S.); (S.M.); (S.J.)
- Correspondence: ; Tel.: +82-51-731-5688
| |
Collapse
|
19
|
Jiang H, Zheng Y, Ni J, Xu Y. BAY 73-6691 Alters Neuron Plasticity and Phosphorylation of Tau Through Regulation of Cyclic Guanosine Monophosphate/Protein Kinase G/Cyclic Adenosine Monophosphate Response Element-Binding Protein Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer’s disease (AD) is one of neurodegenerative diseases characterized by cognitive and memory decline, accompanying with neurofibrillary tangles (NFTs) made of hyperphosphorylated tau protein and senile plaques (SP) accumulated by β-amyloid protein (Aβ).
BAY 73-6691, an inhibitor of phosphodiesterase-9 (PDE-9), can improve learning and memory of elderly rats. However, the effects of BAY 73-6691 on neuroapoptotic and neuroinflammatory events, as well as synaptic plasticity of differentiated PC12 cells are remain unclear. In this work, we screened
apoptotic cells induced by Aβ25-35 via flow cytometry. TNF-α, IL-1β, IL-6 secreted by PC12 cells were estimated by ELISA kits. The levels of cGMP, PKG and CREB mediated by BAY 73-6691 were assessed. Moreover, we conducted western blots analysis
to evaluate the phosphorylation of tau and synaptic related proteins. Results showed that BAY 73-6691 could reduce Aβ25-35-triggered neuroapoptosis and neuroinflammation. Phosphorylation of tau was inhibited by BAY 73-6691, whereas sildenafil citrate (SC, an inhibitor
of cGMP) partially weakened the effect of BAY 73-6691. Additionally, synaptic plasticity restored by BAY 73-6691 was also suppressed via SC. Taken together, BAY 73-6691 exhibited neuro protective effects, and altered tau phosphorylation as well as synaptic related proteins through cGMP/PKG/CREB
pathway.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P. R. China
| | - Yan Zheng
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P. R. China
| | - Jie Ni
- Department of Emergency, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, 210000, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
20
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
21
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
22
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019; 10:4076-4101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | | | | | | | | | | | | - Maria Espelosin
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Susana Ursua
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | | | - Ana Garcia-Osta
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | |
Collapse
|
23
|
Reddy GL, Dar MI, Hudwekar AD, Mahajan P, Nargotra A, Baba AM, Nandi U, Wazir P, Singh G, Vishwakarma RA, Syed SH, Sawant SD. Design, synthesis and biological evaluation of pyrazolopyrimidinone based potent and selective PDE5 inhibitors for treatment of erectile dysfunction. Bioorg Chem 2019; 89:103022. [PMID: 31181491 DOI: 10.1016/j.bioorg.2019.103022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023]
Abstract
Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.
Collapse
Affiliation(s)
- G Lakshma Reddy
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Mohd Ishaq Dar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Abhinandan D Hudwekar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Priya Mahajan
- Discovery Informatics, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Amit Nargotra
- Discovery Informatics, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Adil Manzoor Baba
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India
| | - Utpal Nandi
- PK-PD-Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Priya Wazir
- PK-PD-Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Gurdarshan Singh
- PK-PD-Tox Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Sajad Hussain Syed
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India.
| | - Sanghapal D Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India; Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India.
| |
Collapse
|
24
|
Abstract
INTRODUCTION In men, lower urinary tract symptoms (LUTS) are primarily attributed to benign prostatic hyperplasia (BPH). Therapeutic options are targeted to relax prostate smooth muscle and/or reduce prostate enlargement. Areas covered: This article reviews the major preclinical and clinical data on PDE5 inhibitors with a specific focus on tadalafil. It includes details of the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) - PDE5 pathway in the LUT organs (bladder and prostate) in addition to the available data on tadalafil in patients with LUTS secondary to BPH with or without erectile dysfunction (ED). Expert opinion: Preclinical and clinical data have clearly demonstrated that PDE5 inhibitors induce bladder and prostate relaxation, which contributes to the improvement seen in storage symptoms in both animal models of bladder and prostate hypercontractility. Tadalafil is effective both as a monotherapy and add-on therapy in patients with LUTS secondary to BPH. Furthermore, as LUTS-BPH and ED are urological disorders that commonly coexist in aging men, tadalafil is more advantageous than α1-adrenoceptors and should be used as the first option. Tadalafil is a safe and tolerable therapy and unlike α1- adrenoceptors and 5-alpha reductase inhibitors, which can cause sexual dysfunctions, tadalafil improves sexual function.
Collapse
Affiliation(s)
- Fabiola Zakia Mónica
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| | - Gilberto De Nucci
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| |
Collapse
|
25
|
Abstract
IMPACT STATEMENT Sickle cell disease (SCD) is one of the most common inherited diseases and is associated with a reduced life expectancy and acute and chronic complications, including frequent painful vaso-occlusive episodes that often require hospitalization. At present, treatment of SCD is limited to hematopoietic stem cell transplant, transfusion, and limited options for pharmacotherapy, based principally on hydroxyurea therapy. This review highlights the importance of intracellular cGMP-dependent signaling pathways in SCD pathophysiology; modulation of these pathways with soluble guanylate cyclase (sGC) stimulators or phosphodiesterase (PDE) inhibitors could potentially provide vasorelaxation and anti-inflammatory effects, as well as elevate levels of anti-sickling fetal hemoglobin.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| | - Lidiane Torres
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| |
Collapse
|
26
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
27
|
Scharrenbroich J, Kaever V, Dove S, Seifert R, Schneider EH. Hydrolysis of the non-canonical cyclic nucleotide cUMP by PDE9A: kinetics and binding mode. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:199-208. [PMID: 30443663 DOI: 10.1007/s00210-018-1582-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Abstract
The non-canonical cyclic nucleotide cUMP and the phosphodiesterase PDE9A both occur in neuronal cells. Using HPLC-coupled tandem mass spectrometry, we characterized the kinetics of PDE9A-mediated cUMP hydrolysis. PDE9A is a low-affinity and high-velocity enzyme for cUMP (Vmax = ~ 6 μmol/min/mg; Km = ~ 401 μM). The PDE9 inhibitor BAY 73-6691 inhibited PDE9A-catalyzed cUMP hydrolysis (Ki = 590 nM). Docking studies indicate two H-bonds between the cUMP uridine moiety and Gln453/Asn405 of PDE9A. By contrast, the guanosine moiety of cGMP forms three H-bonds with Gln453. cCMP is not hydrolyzed at a concentration of 3 μM, but inhibits the PDE9A-catalyzed cUMP hydrolysis at concentrations of 100 μM or more. The probable main reason is that the cytosine moiety cannot act as H-bond acceptor for Gln453. A comparison of PDE9A with PDE7A suggests that the preference of the former for cGMP and cUMP and of the latter for cAMP and cCMP is due to stabilized alternative conformations of the side chain amide of Gln453 and Gln413, respectively. This so-called glutamine switch is known to be involved in the regulation of cAMP/cGMP selectivity of some PDEs.
Collapse
Affiliation(s)
- Jessica Scharrenbroich
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Dove
- Department of Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Roland Seifert
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Erich H Schneider
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
28
|
Lai B, Li M, Hu WL, Li W, Gan WB. The Phosphodiesterase 9 Inhibitor PF-04449613 Promotes Dendritic Spine Formation and Performance Improvement after Motor Learning. Dev Neurobiol 2018; 78:859-872. [PMID: 30022611 PMCID: PMC6158093 DOI: 10.1002/dneu.22623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two-photon microscopy to investigate the effect of a selective PDE9 inhibitor PF-04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF-04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF-04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF-04449613 treatment over 1-7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF-04449613 increases synaptic calcium activity and learning-dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Baoling Lai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Miao Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wan-Ling Hu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wei Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wen-Biao Gan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
29
|
Discovery and development of next generation sGC stimulators with diverse multidimensional pharmacology and broad therapeutic potential. Nitric Oxide 2018; 78:72-80. [PMID: 29859918 DOI: 10.1016/j.niox.2018.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC), an enzyme that catalyzes the conversion of guanosine-5'-triphosphate (GTP) to cyclic guanosine-3',5'-monophophate (cGMP), transduces many of the physiological effects of the gasotransmitter NO. Upon binding of NO to the prosthetic heme group of sGC, a conformational change occurs, resulting in enzymatic activation and increased production of cGMP. cGMP modulates several downstream cellular and physiological responses, including but not limited to vasodilation. Impairment of this signaling system and altered NO-cGMP homeostasis have been implicated in cardiovascular, pulmonary, renal, gastrointestinal, central nervous system, and hepatic pathologies. sGC stimulators, small molecule drugs that synergistically increase sGC enzyme activity with NO, have shown great potential to treat a variety of diseases via modulation of NO-sGC-cGMP signaling. Here, we give an overview of novel, orally available sGC stimulators that Ironwood Pharmaceuticals is developing. We outline the non-clinical and clinical studies, highlighting pharmacological and pharmacokinetic (PK) profiles, including pharmacodynamic (PD) effects, and efficacy in a variety of disease models.
Collapse
|
30
|
Wu Y, Li Z, Huang YY, Wu D, Luo HB. Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer's Disease. J Med Chem 2018; 61:5467-5483. [PMID: 29363967 DOI: 10.1021/acs.jmedchem.7b01370] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is one of the greatest public health challenges. Phosphodiesterases (PDEs) are a superenzyme family responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Since several PDE subfamilies are highly expressed in the human brain, the inhibition of PDEs is involved in neurodegenerative processes by regulating the concentration of cAMP and/or cGMP. Currently, PDEs are considered as promising targets for the treatment of AD since many PDE inhibitors have exhibited remarkable cognitive improvement effects in preclinical studies and over 15 of them have been subjected to clinical trials. The aim of this review is to summarize the outstanding progress that has been made by PDE inhibitors as anti-AD agents with encouraging results in preclinical studies and clinical trials. The binding affinity, pharmacokinetics, underlying mechanisms, and limitations of these PDE inhibitors in the treatment of AD are also reviewed and discussed.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Yi-You Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| |
Collapse
|
31
|
Wen RT, Liang JH, Zhang HT. Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence. ADVANCES IN NEUROBIOLOGY 2018; 17:413-444. [PMID: 28956341 DOI: 10.1007/978-3-319-58811-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substance dependence is a chronic relapsing brain disorder associated with adaptational changes in synaptic plasticity and neuronal functions. The high levels of substance consumption and relapse rate suggest more reliable medications are in need to better address the underlying causes of this disease. It has been well established that the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) and their signaling systems play an important role in the molecular mechanisms of substance taking behaviors. On this basis, the phosphodiesterase (PDE) superfamily, which crucially controls cyclic nucleotide levels by catalyzing their hydrolysis, has been proposed as a novel class of therapeutic targets for substance use disorders. This chapter reviews the expression patterns of PDEs in the brain with regard to neural structures underlying the dependent process and highlights available evidence for a modulatory role of PDEs in substance dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
32
|
Zhang C, Zhou Q, Wu XN, Huang YD, Zhou J, Lai Z, Wu Y, Luo HB. Discovery of novel PDE9A inhibitors with antioxidant activities for treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 33:260-270. [PMID: 29271265 PMCID: PMC7011943 DOI: 10.1080/14756366.2017.1412315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Phosphodiesterase-9 (PDE9) is a promising target for treatment of Alzheimer’s disease (AD). To discover multifunctional anti-AD agents with capability of PDE9 inhibition and antioxidant activity, a series of novel pyrazolopyrimidinone derivatives, coupling with the pharmacophore of antioxidants such as ferulic and lipolic acids have been designed with the assistance of molecular docking and dynamics simulations. Twelve out of 14 synthesised compounds inhibited PDE9A with IC50 below 200 nM, and showed good antioxidant capacities in the ORAC assay. Compound 1h, the most promising multifunctional anti-AD agent, had IC50 of 56 nM against PDE9A and good antioxidant ability (ORAC (trolox) = 3.3). The selectivity of 1h over other PDEs was acceptable. In addition, 1h showed no cytotoxicity to human neuroblastoma SH-SY5Y cells. The analysis on structure-activity relationship (SAR) and binding modes of the compounds may provide insight into further modification.
Collapse
Affiliation(s)
- Chen Zhang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Qian Zhou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Xu-Nian Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Ya-Dan Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Jie Zhou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Zengwei Lai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China.,b State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , PR China
| | - Yinuo Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China
| | - Hai-Bin Luo
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , PR China.,c Collaborative Innovation Center of High Performance Computing , National University of Defence Technology , Changsha , PR China
| |
Collapse
|
33
|
Yu YF, Huang YD, Zhang C, Wu XN, Zhou Q, Wu D, Wu Y, Luo HB. Discovery of Novel Pyrazolopyrimidinone Derivatives as Phosphodiesterase 9A Inhibitors Capable of Inhibiting Butyrylcholinesterase for Treatment of Alzheimer's Disease. ACS Chem Neurosci 2017; 8:2522-2534. [PMID: 28783948 DOI: 10.1021/acschemneuro.7b00268] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Discovery of multitarget-directed ligands (MTDLs), targeting different factors simultaneously to control the complicated pathogenesis of Alzheimer's disease (AD), has become an important research area in recent years. Both phosphodiesterase 9A (PDE9A) and butyrylcholinesterase (BuChE) inhibitors could participate in different processes of AD to attenuate neuronal injuries and improve cognitive impairments. However, research on MTDLs combining the inhibition of PDE9A and BuChE simultaneously has not been reported yet. In this study, a series of novel pyrazolopyrimidinone-rivastigmine hybrids were designed, synthesized, and evaluated in vitro. Most compounds exhibited remarkable inhibitory activities against both PDE9A and BuChE. Compounds 6c and 6f showed the best IC50 values against PDE9A (6c, 14 nM; 6f, 17 nM) together with the considerable inhibition against BuChE (IC50, 6c, 3.3 μM; 6f, 0.97 μM). Their inhibitory potencies against BuChE were even higher than the anti-AD drug rivastigmine. It is worthy mentioning that both showed moderate selectivity for BuChE over acetylcholinesterase (AChE). Molecular docking studies revealed their binding patterns and explained the influence of configuration and substitutions on the inhibition of PDE9A and BuChE. Furthermore, compounds 6c and 6f exhibited negligible toxicity, which made them suitable for the further study of AD in vivo.
Collapse
Affiliation(s)
- Yan-Fa Yu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Ya-Dan Huang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chen Zhang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Xu-Nian Wu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Qian Zhou
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Deyan Wu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yinuo Wu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Hai-Bin Luo
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
- Collaborative Innovation Center of High
Performance Computing, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
34
|
A Unique Sub-Pocket for Improvement of Selectivity of Phosphodiesterase Inhibitors in CNS. ADVANCES IN NEUROBIOLOGY 2017. [PMID: 28956343 DOI: 10.1007/978-3-319-58811-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
This chapter describes crystal structures of phosphodiesterases (PDEs) that are involved in CNS diseases and their interactions with family selective inhibitors. The structural comparison identifies a small hydrophobic pocket next to the active site, which may be valuable for improvement of selectivity of PDE inhibitors.
Collapse
|
35
|
Höllerhage M, Moebius C, Melms J, Chiu WH, Goebel JN, Chakroun T, Koeglsperger T, Oertel WH, Rösler TW, Bickle M, Höglinger GU. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci Rep 2017; 7:11469. [PMID: 28904388 PMCID: PMC5597612 DOI: 10.1038/s41598-017-11664-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/25/2017] [Indexed: 01/09/2023] Open
Abstract
α-synuclein-induced neurotoxicity is a core pathogenic event in neurodegenerative synucleinopathies such as Parkinson’s disease, dementia with Lewy bodies, or multiple system atrophy. There is currently no disease-modifying therapy available for these diseases. We screened 1,600 FDA-approved drugs for their efficacy to protect LUHMES cells from degeneration induced by wild-type α-synuclein and identified dipyridamole, a non-selective phosphodiesterase inhibitor, as top hit. Systematic analysis of other phosphodiesterase inhibitors identified a specific phosphodiesterase 1 inhibitor as most potent to rescue from α-synuclein toxicity. Protection was mediated by an increase of cGMP and associated with the reduction of a specific α-synuclein oligomeric species. RNA interference experiments confirmed PDE1A and to a smaller extent PDE1C as molecular targets accounting for the protective efficacy. PDE1 inhibition also rescued dopaminergic neurons from wild-type α-synuclein induced degeneration in the substantia nigra of mice. In conclusion, this work identifies inhibition of PDE1A in particular as promising target for neuroprotective treatment of synucleinopathies.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Department of Neurology, Technical University of Munich, D-81675, Munich, Germany
| | - Claudia Moebius
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307, Dresden, Germany
| | - Johannes Melms
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Department of Neurology, Technical University of Munich, D-81675, Munich, Germany
| | - Wei-Hua Chiu
- Department of Neurology, University of Marburg, D-35043, Marburg, Germany
| | - Joachim N Goebel
- Department of Neurology, University of Marburg, D-35043, Marburg, Germany
| | - Tasnim Chakroun
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), D-81337, Munich, Germany
| | - Thomas Koeglsperger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, D-81377, Munich, Germany
| | - Wolfgang H Oertel
- Department of Neurology, University of Marburg, D-35043, Marburg, Germany.,Institute of Neurogenomics, Helmholtz Center Munich, D-85764, Neuherberg, Germany
| | - Thomas W Rösler
- Department of Neurology, Technical University of Munich, D-81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), D-81337, Munich, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307, Dresden, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany. .,Department of Neurology, Technical University of Munich, D-81675, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), D-81337, Munich, Germany.
| |
Collapse
|
36
|
Shafiee-Nick R, Afshari AR, Mousavi SH, Rafighdoust A, Askari VR, Mollazadeh H, Fanoudi S, Mohtashami E, Rahimi VB, Mohebbi M, Vahedi MM. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed Pharmacother 2017; 94:541-556. [PMID: 28779712 DOI: 10.1016/j.biopha.2017.07.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/02/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterases are a group of enzymes that hydrolyze cyclic nucleotides, which assume a key role in directing intracellular levels of the second messengers' cAMP and cGMP, and consequently cell function. The disclosure of 11 isoenzyme families and our expanded knowledge of their functions at the cell and molecular level stimulate the improvement of isoenzyme selective inhibitors for the treatment of various diseases, particularly cardiovascular diseases. Hence, future and new mechanistic investigations and carefully designed clinical trials could help reap additional benefits of natural/synthetic PDE inhibitors for cardiovascular disease in patients. This review has concentrated on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbasali Rafighdoust
- Department of Cardiology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Mohtashami
- Department of Pharmacodynamic and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Mohebbi
- Department of Internal Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
37
|
Sirvent JA, Lücking U. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates. ChemMedChem 2017; 12:487-501. [PMID: 28221724 PMCID: PMC5485063 DOI: 10.1002/cmdc.201700044] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 01/17/2023]
Abstract
Sulfoximines have gained considerable recognition as an important structural motif in drug discovery of late. In particular, the clinical kinase inhibitors for the treatment of cancer, roniciclib (pan-CDK inhibitor), BAY 1143572 (P-TEFb inhibitor), and AZD 6738 (ATR inhibitor), have recently drawn considerable attention. Whilst the interest in this underrepresented functional group in drug discovery is clearly on the rise, there remains an incomplete understanding of the medicinal-chemistry-relevant properties of sulfoximines. Herein we report the synthesis and in vitro characterization of a variety of sulfoximine analogues of marketed drugs and advanced clinical candidates to gain a better understanding of this neglected functional group and its potential in drug discovery.
Collapse
|
38
|
Saravani R, Galavi HR, Shahraki A. Inhibition of Phosphodiesterase 5 and Increasing the Level of Cyclic Guanosine 3',5' Monophosphate by Hydroalcoholic Achillea wilhelmsii C. Koch Extract in Human Breast Cancer Cell Lines MCF-7 and MDA-Mb-468. Breast Cancer (Auckl) 2017; 11:1178223417690178. [PMID: 28469435 PMCID: PMC5391053 DOI: 10.1177/1178223417690178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the effect of hydroalcoholic Achillea wilhelmsii C. Koch extract (HAWE) on phosphodiesterase 5 (PDE5) gene expression and cyclic guanosine 3',5' monophosphate (cGMP) signaling in the MCF-7 and MDA-Mb-468 cell lines. The effective dose (ED50) of HAWE was examined in both cell lines using a 3-(4,5-dimethylhiazol-2-yl)-2,5-diphenyltetrazolium bromide viability test, and the type of cell death was detected by flow cytometry. The expression of PDE5 and the concentration of cGMP were measured in a time-dependent manner in the ED50 by real-time polymerase chain reaction and a colorimetric assay, respectively. Treatment with HAWE showed 25 µg/mL to be the ED50 for both cell lines, and HAWE led to a reduction in the PDE5 messenger RNA expression. The intracellular cGMP increased in a time-dependent manner. The results showed that HAWE has an antiproliferative property in MCF-7 and MDA-Mb-468 cell lines through the cGMP pathway. Therefore, HAWE is a potential source to effectively isolate inhibitory PDE5.
Collapse
Affiliation(s)
- Ramin Saravani
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamid Reza Galavi
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Shahraki
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
39
|
Can Cyclic Nucleotide Phosphodiesterase Inhibitors Be Drugs for Parkinson's Disease? Mol Neurobiol 2017; 55:822-834. [PMID: 28062949 DOI: 10.1007/s12035-016-0355-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) has no known cure; available therapies are only capable of offering temporary, symptomatic relief to the patients. Varied therapeutic strategies that are clinically used for PD are pharmacological therapies including dopamine replacement therapies (with or without adjuvant), postsynaptic dopamine receptor stimulation, dopamine catabolism inhibitors and also anticholinergics. Surgical therapies like deep brain stimulation and ablative surgical techniques are also employed. Phosphodiesterases (PDEs) are enzymes that degrade the phosphodiester bond in the second messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). A number of PDE families are highly expressed in the striatum including PDE1-4, PDE7, PDE9 and PDE10. There are growing evidences to suggest that these enzymes play a critical role in modulating cAMP-mediated dopamine signalling at the postsynaptic region. Therefore, it is clear that PDEs, given the broad range of subtypes and their varied tissue- and region-specific distributions, will be able to provide a range of possibilities as drug targets. There is no phosphodiesterase inhibitor currently approved for use against PD. The development of small molecule inhibitors against cyclic nucleotide PDE is a particularly hot area of investigation, and a lot of research and development is geared in this direction with major players in the pharmaceutical industry investing heavily in developing such potential drug entities. This review, while critically assessing the existing body of literature on brain PDEs with particular interest in the striatum in the context of motor function regulation, indicates it is certainly likely that PDE inhibitors could be developed as therapeutic agents against PD.
Collapse
|
40
|
Dorner-Ciossek C, Kroker KS, Rosenbrock H. Role of PDE9 in Cognition. ADVANCES IN NEUROBIOLOGY 2017; 17:231-254. [DOI: 10.1007/978-3-319-58811-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Kim J, Jung J, Koo J, Cho W, Lee WS, Kim C, Park W, Park SB. Diversity-oriented synthetic strategy for developing a chemical modulator of protein-protein interaction. Nat Commun 2016; 7:13196. [PMID: 27774980 PMCID: PMC5078997 DOI: 10.1038/ncomms13196] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
Diversity-oriented synthesis (DOS) can provide a collection of diverse and complex drug-like small molecules, which is critical in the development of new chemical probes for biological research of undruggable targets. However, the design and synthesis of small-molecule libraries with improved biological relevance as well as maximized molecular diversity represent a key challenge. Herein, we employ functional group-pairing strategy for the DOS of a chemical library containing privileged substructures, pyrimidodiazepine or pyrimidine moieties, as chemical navigators towards unexplored bioactive chemical space. To validate the utility of this DOS library, we identify a new small-molecule inhibitor of leucyl-tRNA synthetase-RagD protein-protein interaction, which regulates the amino acid-dependent activation of mechanistic target of rapamycin complex 1 signalling pathway. This work highlights that privileged substructure-based DOS strategy can be a powerful research tool for the construction of drug-like compounds to address challenging biological targets.
Collapse
Affiliation(s)
- Jonghoon Kim
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Jinjoo Jung
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Jaeyoung Koo
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Wansang Cho
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Won Seok Lee
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Chanwoo Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Wonwoo Park
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
42
|
Prysyazhna O, Burgoyne JR, Scotcher J, Grover S, Kass D, Eaton P. Phosphodiesterase 5 Inhibition Limits Doxorubicin-induced Heart Failure by Attenuating Protein Kinase G Iα Oxidation. J Biol Chem 2016; 291:17427-36. [PMID: 27342776 DOI: 10.1074/jbc.m116.724070] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/25/2023] Open
Abstract
Phosphodiesterase 5 (PDE5) inhibitors limit myocardial injury caused by stresses, including doxorubicin chemotherapy. cGMP binding to PKG Iα attenuates oxidant-induced disulfide formation. Because PDE5 inhibition elevates cGMP and protects from doxorubicin-induced injury, we reasoned that this may be because it limits PKG Iα disulfide formation. To investigate the role of PKG Iα disulfide dimerization in the development of apoptosis, doxorubicin-induced cardiomyopathy was compared in male wild type (WT) or disulfide-resistant C42S PKG Iα knock-in (KI) mice. Echocardiography showed that doxorubicin treatment caused loss of myocardial tissue and depressed left ventricular function in WT mice. Doxorubicin also reduced pro-survival signaling and increased apoptosis in WT hearts. In contrast, KI mice were markedly resistant to the dysfunction induced by doxorubicin in WTs. In follow-on experiments the influence of the PDE5 inhibitor tadalafil on the development of doxorubicin-induced cardiomyopathy in WT and KI mice was investigated. In WT mice, co-administration of tadalafil with doxorubicin reduced PKG Iα oxidation caused by doxorubicin and also protected against cardiac injury and loss of function. KI mice were again innately resistant to doxorubicin-induced cardiotoxicity, and therefore tadalafil afforded no additional protection. Doxorubicin decreased phosphorylation of RhoA (Ser-188), stimulating its GTPase activity to activate Rho-associated protein kinase (ROCK) in WTs. These pro-apoptotic events were absent in KI mice and were attenuated in WTs co-administered tadalafil. PKG Iα disulfide formation triggers cardiac injury, and this initiation of maladaptive signaling can be blocked by pharmacological therapies that elevate cGMP, which binds kinase to limit its oxidation.
Collapse
Affiliation(s)
| | | | | | - Steven Grover
- the Academic Department of Surgery, King's College London, Cardiovascular Division, British Heart Foundation Centre of Excellence, St. Thomas' Hospital, London, SE1 7EH, United Kingdom and
| | - David Kass
- the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205
| | | |
Collapse
|
43
|
An emerging role of cGMP in the treatment of schizophrenia: A review. Schizophr Res 2016; 170:226-31. [PMID: 26706197 DOI: 10.1016/j.schres.2015.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a progressive psychotic disorder with devastating effects on the broad aspects of human emotion, perception, thought, and psychosocial interactions. Although treatment with antipsychotic drugs, the mainstay in the treatment of schizophrenia, the large number of patients with schizophrenia respond poorly to the pharmacological and, the large number of patients with schizophrenia poorly respond to the pharmacological treatment. Although a variety of novel therapeutics have long been tested, to date, no drugs clinically efficacious for schizophrenia are available. The multiple lines of evidence strongly suggest that the modulation of cyclic guanosine monophosphate (cGMP) is a promising target in promoting the novel therapeutic strategies of schizophrenia beyond the "receptor-dependent" psychopharmacology. cGMP is modulated via regulating its synthesis by N-methyl-d-aspartate receptor (NMDAR) and nitric oxide (NO), which regulate guannylyl cyclase (GC), the enzyme producing cGMP. cGMP is also regulated by phosphodiesterase (PDE), the enzyme hydrolyzing cGMP. In this review, we critically evaluate the therapeutic potential of agents modulating cGMP activity by regulating cGMP synthesis including NMDAR enhancers, NO enhancers, NO inhibitors including minocycline with anti-inflammatory properties and PDE inhibitors in improving the negative, cognitive and positive symptoms of schizophrenia. We also discuss the possible mechanisms by which these agents produce therapeutic effects on schizophrenia including cGMP signaling pathways, oxidative stress, and neuroinflammation.
Collapse
|
44
|
Eskandari N, Mirmosayyeb O, Bordbari G, Bastan R, Yousefi Z, Andalib A. A short review on structure and role of cyclic-3',5'-adenosine monophosphate-specific phosphodiesterase 4 as a treatment tool. J Res Pharm Pract 2015; 4:175-81. [PMID: 26645022 PMCID: PMC4645128 DOI: 10.4103/2279-042x.167043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are known as a super-family of enzymes which catalyze the metabolism of the intracellular cyclic nucleotides, cyclic-3',5'-adenosine monophosphate (cAMP), and cyclic-3',5'-guanosine monophosphate that are expressed in a variety of cell types that can exert various functions based on their cells distribution. The PDE4 family has been the focus of vast research efforts over recent years because this family is considered as a prime target for therapeutic intervention in a number of inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, and it should be used and researched by pharmacists. This is because the major isoform of PDE that regulates inflammatory cell activity is the cAMP-specific PDE, PDE4. This review discusses the relationship between PDE4 and its inhibitor drugs based on structures, cells distribution, and pharmacological properties of PDE4 which can be informative for all pharmacy specialists.
Collapse
Affiliation(s)
- Nahid Eskandari
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran ; Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gazaleh Bordbari
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Bastan
- Department of Human Vaccines, Razi Serum and Vaccine Research Institute, Karaj, Alborz, Iran
| | - Zahra Yousefi
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
|
46
|
Impact on monoclonal antibody production in murine hybridoma cell cultures of adenosine receptor antagonists and phosphodiesterase inhibitors. Bioorg Med Chem Lett 2015; 26:540-544. [PMID: 26646217 DOI: 10.1016/j.bmcl.2015.11.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/20/2015] [Indexed: 11/21/2022]
Abstract
The effects of different adenosine receptor antagonists and cyclic nucleotide phosphodiesterase (PDE) inhibitors on monoclonal antibody (mAb) titer and cell viability of murine hybridoma cells in culture were measured as part of our investigations to discover additives that enhance mAb production. Specific adenosine receptor antagonists and PDE inhibitors were found to enhance or decrease the titer of immunoglobulin G1 (IgG1) mAbs relative to negative controls, depending on the specific compound and cell line employed. The observed enhancements or decreases in IgG1 mAb titer appeared to be mainly due to an increase or decrease in specific productivity rates (ngmAb/cell), respectively. The different effects of the selective adenosine antagonists suggest that antagonism at the level of the adenosine A2A and A1 or the adenosine A3 receptors result in either enhancement or suppression of IgG1 mAb production by hybridoma cells. Overall, these studies have identified hitherto unknown activities of specific adenosine antagonists and PDE inhibitors which indicate they may have valuable roles as cell culture additives in industrial biomanufacturing processes designed to enhance the yields of mAbs or other recombinant proteins produced by mammalian cell culture procedures.
Collapse
|
47
|
Yang SH, Bi XJ, Xie Y, Li C, Zhang SL, Zhang Q, Sun DX. Validation of PDE9A Gene Identified in GWAS Showing Strong Association with Milk Production Traits in Chinese Holstein. Int J Mol Sci 2015; 16:26530-42. [PMID: 26556348 PMCID: PMC4661835 DOI: 10.3390/ijms161125976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022] Open
Abstract
Phosphodiesterase9A (PDE9A) is a cyclic guanosine monophosphate (cGMP)-specific enzyme widely expressed among the tissues, which is important in activating cGMP-dependent signaling pathways. In our previous genome-wide association study, a single nucleotide polymorphism (SNP) (BTA-55340-no-rs(b)) located in the intron 14 of PDE9A, was found to be significantly associated with protein yield. In addition, we found that PDE9A was highly expressed in mammary gland by analyzing its mRNA expression in different tissues. The objectives of this study were to identify genetic polymorphisms of PDE9A and to determine the effects of these variants on milk production traits in dairy cattle. DNA sequencing identified 11 single nucleotide polymorphisms (SNPs) and six SNPs in 5' regulatory region were genotyped to test for the subsequent association analyses. After Bonferroni correction for multiple testing, all these identified SNPs were statistically significant for one or more milk production traits (p < 0.0001~0.0077). Interestingly, haplotype-based association analysis revealed similar effects on milk production traits (p < 0.01). In follow-up RNA expression analyses, two SNPs (c.-1376 G>A, c.-724 A>G) were involved in the regulation of gene expression. Consequently, our findings provide confirmatory evidences for associations of PDE9A variants with milk production traits and these identified SNPs may serve as genetic markers to accelerate Chinese Holstein breeding program.
Collapse
Affiliation(s)
- Shao-Hua Yang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jun Bi
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yan Xie
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Cong Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Sheng-Li Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Qin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Dong-Xiao Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Huang M, Shao Y, Hou J, Cui W, Liang B, Huang Y, Li Z, Wu Y, Zhu X, Liu P, Wan Y, Ke H, Luo HB. Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric Inhibitor. Mol Pharmacol 2015; 88:836-45. [PMID: 26316540 PMCID: PMC4613944 DOI: 10.1124/mol.115.099747] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/24/2015] [Indexed: 01/21/2023] Open
Abstract
Phosphodiesterase-9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of central nervous system diseases and diabetes. Here, we report the discovery of a new category of PDE9 inhibitors by rational design on the basis of the crystal structures. The best compound, (S)-6-((1-(4-chlorophenyl)ethyl)amino)-1-cyclopentyl-1,5,6,7-tetrahydro-4H-pyrazolo[3,4-day]pyrimidin-4-one [(S)-C33], has an IC50 value of 11 nM against PDE9 and the racemic C33 has bioavailability of 56.5% in the rat pharmacokinetic model. The crystal structures of PDE9 in the complex with racemic C33, (R)-C33, and (S)-C33 reveal subtle conformational asymmetry of two M-loops in the PDE9 dimer and different conformations of two C33 enantiomers. The structures also identified a small hydrophobic pocket that interacts with the tyrosyl tail of (S)-C33 but not with (R)-C33, and is thus possibly useful for improvement of selectivity of PDE9 inhibitors. The asymmetry of the M-loop and the different interactions of the C33 enantiomers imply the necessity to consider the whole PDE9 dimer in the design of inhibitors.
Collapse
Affiliation(s)
- Manna Huang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yongxian Shao
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Jianying Hou
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Wenjun Cui
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Beibei Liang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yingchun Huang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Zhe Li
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yinuo Wu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Xinhai Zhu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Peiqing Liu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yiqian Wan
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Hengming Ke
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Hai-Bin Luo
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| |
Collapse
|
49
|
Fernández-Fernández D, Rosenbrock H, Kroker KS. Inhibition of PDE2A, but not PDE9A, modulates presynaptic short-term plasticity measured by paired-pulse facilitation in the CA1 region of the hippocampus. Synapse 2015; 69:484-96. [DOI: 10.1002/syn.21840] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/28/2015] [Accepted: 05/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Diego Fernández-Fernández
- Department of CNS Diseases Research; Boehringer Ingelheim Pharma GmbH & Co KG; Biberach (Riss) 88397 Germany
| | - Holger Rosenbrock
- Department of CNS Diseases Research; Boehringer Ingelheim Pharma GmbH & Co KG; Biberach (Riss) 88397 Germany
| | - Katja S. Kroker
- Department of Drug Discovery Support; Boehringer Ingelheim Pharma GmbH & Co KG; Biberach (Riss) 88397 Germany
| |
Collapse
|
50
|
Kim T, Folcher M, Charpin-El Hamri G, Fussenegger M. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice. Metab Eng 2015; 29:169-179. [PMID: 25843350 DOI: 10.1016/j.ymben.2015.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies.
Collapse
Affiliation(s)
- Taeuk Kim
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|