1
|
Zhou W, Ryan A, Janosko CP, Shoger KE, Haugh JM, Gottschalk RA, Deiters A. Isoform-specific optical activation of kinase function reveals p38-ERK signaling crosstalk. RSC Chem Biol 2023; 4:765-773. [PMID: 37799579 PMCID: PMC10549237 DOI: 10.1039/d2cb00157h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Evolution has diversified the mammalian proteome by the generation of protein isoforms that originate from identical genes, e.g., through alternative gene splicing or post-translational modifications, or very similar genes found in gene families. Protein isoforms can have either overlapping or unique functions and traditional chemical, biochemical, and genetic techniques are often limited in their ability to differentiate between isoforms due to their high similarity. This is particularly true in the context of highly dynamic cell signaling cascades, which often require acute spatiotemporal perturbation to assess mechanistic details. To that end, we describe a method for the selective perturbation of the individual protein isoforms of the mitogen-activated protein kinase (MAPK) p38. The genetic installation of a photocaging group at a conserved active site lysine enables the precise light-controlled initiation of kinase signaling, followed by investigation of downstream events. Through optical control, we have identified a novel point of crosstalk between two major signaling cascades: the p38/MAPK pathway and the extracellular signal-regulated kinase (ERK)/MAPK pathway. Specifically, using the photoactivated p38 isoforms, we have found the p38γ and p38δ variants to be positive regulators of the ERK signaling cascade, while confirming the p38α and p38β variants as negative regulators.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Karsen E Shoger
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh NC 27606 USA
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
2
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J, Solano JD, Ibarra-Rubio ME. Redox-sensitive signaling pathways in renal cell carcinoma. Biofactors 2022; 48:342-358. [PMID: 34590744 DOI: 10.1002/biof.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal urological cancers, highly resistant to chemo and radiotherapy. Obesity and smoking are the best-known risk factors of RCC, both related to oxidative stress presence, suggesting a significant role in RCC development and maintenance. Surgical resection is the treatment of choice for localized RCC; however, this neoplasia is hardly diagnosable at its initial stages, occurring commonly in late phases and even when metastasis is already present. Systemic therapies are the option against RCC in these more advanced stages, such as cytokine therapy or a combination of tyrosine kinase inhibitors with immunotherapies; nevertheless, these strategies are still insufficient. A field poorly analyzed in this neoplasia is the status of cell signaling pathways sensible to the redox state, which have been associated with the development and maintenance of RCC. This review focuses on alterations reported in the following redox-sensitive molecules and signaling pathways in RCC: mitogen-activated protein kinases, protein kinase B (AKT)/tuberous sclerosis complex 2/mammalian target of rapamycin C1, AKT/glycogen synthase kinase 3/β-catenin, nuclear factor κB/inhibitor of κB/epidermal growth factor receptor, and protein kinase Cζ/cut-like homeodomain protein/factor inhibiting hypoxia-inducible factor (HIF)/HIF as potential targets for redox therapy.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José D Solano
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Elena Ibarra-Rubio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Chae IG, Song NY, Kim DH, Lee MY, Park JM, Chun KS. Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem Toxicol 2020; 139:111253. [PMID: 32165235 DOI: 10.1016/j.fct.2020.111253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
Currently, there are limited effective treatment options for renal cell carcinoma (RCC), due to its poor responses to conventional therapies. Instead of using extrinsic anti-cancer drugs, cancer cell-intrinsic reactive oxygen species (ROS) can be a weapon of RCC treatment. In the present study, we found that the phytochemical thymoquinone (TQ), a bioactive natural product obtained from the black cumin seeds of Nigella sativa, generates intracellular ROS in human renal cancer Caki-1 cells. Treatment of Caki-1 cells with high concentration of TQ up-regulated pro-apoptotic p53 and Bax expression, while downregulated anti-apoptotic Bcl-2 and Bcl-xl expression. Simultaneously, TQ suppressed the pro-oncogenic JAK2/STAT3 pathway, resulting in decreased expression of Bcl-2, Bcl-xl, cyclin D1, cyclin D2, and survivin. Thus, TQ can integrate between apoptosis and the pro-survival JAK2/STAT3 pathway through the Bcl family members, collectively magnifying Caki-1 cell apoptosis. However, treatment with the ROS scavenger N-acetyl cysteine significantly blocked TQ-induced apoptosis as well as incorporated signaling pathways, supporting that its pro-oxidant property is crucial for Caki-1 cell apoptosis. Moreover, TQ reduced the tumor xenograft growth of Caki-1 cells in nude mice. Taken together, these data suggest that TQ is a prominent anti-cancer drug to treat human RCC by enhancing apoptosis through its pro-oxidant nature.
Collapse
Affiliation(s)
- In Gyeong Chae
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do, 16227, South Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do, 410-820, South Korea
| | - Jung-Min Park
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do, 410-820, South Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
4
|
Shahraki S, Mohebbati R, Shafei MN, Mahmoudi M, Hosseinian S, Parhizgar S, Yazd ZNE, Heravi NE, Abadi RNS, Khajavirad A. Induction of Apoptosis and Growth-Inhibition by Thymoquinone in ACHN and GP-293 Cell Lines in Comparable with Cis-Platinum. J Pharmacopuncture 2019; 22:176-183. [PMID: 31673449 PMCID: PMC6820476 DOI: 10.3831/kpi.2019.22.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022] Open
Abstract
Objective In the current work, we investigated the cytotoxic and apoptotic effects of Thymoquinone (TQ), an active compound of Nigella sativa (N. sativa) and Cis-platinum, on normal renal epithelial (GP-293) and human renal adenocarcinoma cell lines (ACHN). Methods GP-293 and ACHN cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% Fetal bovine serum (FBS) and 1% penicillin plus streptomycin antibiotic. The MTT assay was used for cellular viability assessment. Viability of cells was observed using inverted light microscope 24, 48 and 72 h after exposure of the cells to various concentrations of TQ (1, 2.5, 5, 10, 50 and 100 μg/ml) and Cis-platinum (0.5, 1, 1.5, 2, 3, 6 and 12.5 μg/ml). Moreover, apoptosis was analyzed with a flow-cytometry method. The untreated cells were considered as control group. Results Morphological changes such as reduced cell number and increased intercellular distance and reduced cell viability in ACHN and GP-293cell lines were observed in both TQ and Cis-platinum groups; however, Cis-platinum had greater effect on ACHN cell line than GP-293 cell line. In addition, GP-293 cell line was more sensitive to TQ compared to ACHN cell line. Furthermore, TQ and Cis-platinum had apoptotic effects on both ACHN and GP-293 cell lines. Conclusion Our findings demonstrated that TQ and Cis-platinum had cytotoxic and apoptotic effects on both cell lines, However, GP-293 cell line was more sensitive to TQ. Additionally, Cis-platinum was more effective on ACHN cell line than on GP-293 cell line.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Bu-Ali Research Institute, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Parhizgar
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Naji Ebrahimi Yazd
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Entezari Heravi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abolfazl Khajavirad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
p38δ MAPK phenotype: an indicator of chemotherapeutic response in oesophageal squamous cell carcinoma. Anticancer Drugs 2016; 26:46-55. [PMID: 25099621 PMCID: PMC4243785 DOI: 10.1097/cad.0000000000000156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We recently documented p38δ differential expression and function in oesophageal squamous cell carcinoma (OESCC). This study expands upon these findings and investigates whether p38δ status in OESCC can influence response(s) to cytotoxic drugs. The antiproliferative effect of conventional cisplatin and 5-fluorouracil (CF) treatment was compared with the recently reviewed triple regime of cisplatin, 5-fluorouracil and doxorubicin (ACF). p38δ-positive and p38δ-negative cell lines were employed using cell-growth and clonogenic assays. Key regulators of intrinsic and extrinsic apoptotic pathways were measured. Wound-healing assays and a Boyden chamber were used to investigate the effect of drug treatments on cell migration. Functional networks were analysed in terms of changes in MAPK expression. p38δ-negative OESCC is less sensitive to standard CF chemotherapy compared with p38δ-positive cells. However, following ACF treatment p38δ-negative cells showed markedly decreased proliferation and cell migration, and increased apoptosis. ACF induced apoptosis through the extrinsic pathway involving Fas activation, caspase-8 and caspase-3 cleavage and degradation of PARP. Loss of mitochondrial membrane potential (ΔΨm) was observed but downregulation of multidomain proapoptotic proteins, as well as BH3-only proteins, suggests involvement of pathways other than the mitochondrial pathway. Interestingly, induction of p38 and ERK1/2, but not JNK1/2, was observed following ACF treatment. p38δ-negative OESCC is more resistant to traditional CF treatment compared with p38δ-positive OESCC. In light of these results, p38δ phenotyping of tumour tissue may be of considerable value in deciding on an optimal therapeutic strategy for patients with p38δ-negative OESCC.
Collapse
|
6
|
Aguilar-Alonso FA, Solano JD, Vargas-Olvera CY, Pacheco-Bernal I, Pariente-Pérez TO, Ibarra-Rubio ME. MAPKs’ status at early stages of renal carcinogenesis and tumors induced by ferric nitrilotriacetate. Mol Cell Biochem 2015; 404:161-70. [PMID: 25724684 DOI: 10.1007/s11010-015-2375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
|
7
|
Hu W, Yuan Q, Liu XH, Zhu HC, Lv SQ, Wang XH. Cyclophilin D-mediated apoptosis attributes to sorafenib-induced cytotoxicity in clear cell-renal cell carcinoma. Eur J Pharmacol 2015; 749:142-50. [PMID: 25614335 DOI: 10.1016/j.ejphar.2014.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 01/16/2023]
Abstract
Cyclophilin D (CypD) is an essential regulatory component of the mitochondrial permeability transition pore (MPTP) and mediates cell necrosis. The aim of this study was to assess the effects of the multi-target drug, sorafenib, on clear cell-renal cell carcinoma (ccRCC) necrosis by regulating CypD expression and to explore whether this effect was related to the phosphorylation of extracellular signal-regulated kinases (ERKs). We used immunohistochemical analysis to compare CypD and p-ERK expression in human ccRCC tissues (n=53) and adjacent non-cancerous tissues (ANCT, n=34). CypD expression was localized to the cytoplasm of renal tubular epithelial cells and was lower in ccRCC samples while p-ERK expression was higher in ccRCC samples. In the in vitro assay, CypD was downregulated in ccRCC cell lines 786-O and A498 as compared with HK-2 which is a normal human renal tubular epithelial cell line. Overexpression of CypD induced the apoptosis of 786-O and A498 cells. Sorafenib induced the apoptosis of 786-O cells, which was coupled with the upregulation of CypD. Cyclosporin A (CsA, the inhibitor of CypD) and CypD siRNA inhibited the effect of sorafenib on apoptosis-induced 786-O and mitochondrial membrane potential depolarization. Epidermal growth factor (EGF, the activator of ERK) and ERK overexpression inhibited the effect of sorafenib on CypD expression, apoptosis-induced 786-O and mitochondrial membrane potential depolarization. In conclusion, our results suggested that CypD may represent a new therapeutic target for the treatment of ccRCC. Sorafenib induced apoptosis in ccRCC through CypD upregulation and this effect was related to the inhibition of p-ERK.
Collapse
Affiliation(s)
- Wei Hu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Qiong Yuan
- Department of Pharmacology, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Heng-Cheng Zhu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Sheng-Qi Lv
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Zhang GM, Zhu Y, Ye DW. Metabolic syndrome and renal cell carcinoma. World J Surg Oncol 2014; 12:236. [PMID: 25069390 PMCID: PMC4118156 DOI: 10.1186/1477-7819-12-236] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 07/20/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MS) is a cluster of metabolic abnormalities, which has been regarded as a pivotal risk factor for cardiovascular diseases. Recent studies focusing on the relationship between MS and cancer have recognized the significant role of MS on carcinogenesis. Likewise, growing evidence suggests that MS has a strong association with increased renal cell carcinoma (RCC) risk. This review outlines the link between MS and RCC, and some underlying mechanisms responsible for MS-associated RCC. MATERIALS AND METHODS A National Center for Biotechnology Information PubMed search (http://www.pubmed.gov) was conducted using medical subject headings 'metabolic syndrome', 'obesity', 'hypertension', 'diabetes', 'dyslipidemia', and 'renal cell carcinoma'. RESULTS This revealed that a variety of molecular mechanisms secondary to MS are involved in RCC formation, progression, and metastasis. A deeper understanding of these molecular mechanisms may provide some strategies for the prevention and treatment of RCC. CONCLUSIONS In summary, there is a large body of evidence regarding the link between MS and RCC, within which each component of MS is considered to have a close causal association with RCC.
Collapse
Affiliation(s)
| | | | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, No, 270, Dongan Rd, Shanghai 200032, China.
| |
Collapse
|
9
|
Dunne C. From biocontrol to cancer, probiotics and beyond. Bioengineered 2013; 4:185-90. [PMID: 23247300 PMCID: PMC3728187 DOI: 10.4161/bioe.23251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
This invited commentary covers the period 1997-2012 and has seen changes in terminology that progressed from "basic" and "applied" to "translational" research. In the context of Bioengineered, these changes map readily onto the processes of identifying microbial characteristics appropriate for specific applications, isolation of suitable cultures, strain or genome manipulation and exploitation of these or their metabolomes across a range of settings. To a great degree, this commentary and my career reflect an engagement with molecular microbiology and the trialling of bacteria and derived constructs in applications ranging from intensive-scale crop protection to amelioration of gastrointestinal disease. This engagement began with laboratory and field evaluations of biocontrol, specifically use of pseudomonads effective against nematode and fungal plant pathogens, characterization of mechanisms mediating beneficial effects of probiotic lactobacilli and bifidobacteria and assessment of functional foods in multinational clinical trials relating to inflammatory bowel disease. Subsequent work focused on (1) intellectual property (IP)-based medical devices for localized delivery of systemically toxic and gene cancer therapies; (2) growth of the science base supporting expansion of a multinational business including company acquisitions; (3) complementing existing inter-institutional research capabilities through development of a national industry-led collaboration; and, most recently, (4) strategic research programs at Ireland's newest medical school. My activities as outlined above parallel two distinct aspects of translational research: (1) involvement in knowledge-driven (commercial and research) organizations that brought together necessary resources and infrastructure and (2) availability of scale research funding from European Framework and Irish national programs.
Collapse
Affiliation(s)
- Colum Dunne
- Centre for Interventions in Infection, Inflammation and Immunity (4i), Graduate Entry Medical School, University of Limerick, Limerick, Ireland.
| |
Collapse
|
10
|
O'Callaghan C, Fanning LJ, Houston A, Barry OP. Loss of p38δ mitogen-activated protein kinase expression promotes oesophageal squamous cell carcinoma proliferation, migration and anchorage-independent growth. Int J Oncol 2013; 43:405-15. [PMID: 23722928 PMCID: PMC3775579 DOI: 10.3892/ijo.2013.1968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/03/2013] [Indexed: 11/23/2022] Open
Abstract
Oesophageal cancer is an aggressive tumour which responds poorly to both chemotherapy and radiation therapy and has a poor prognosis. Thus, a greater understanding of the biology of oesophageal cancer is needed in order to identify novel therapeutic targets. Among these targets p38 MAPK isoforms are becoming increasingly important for a variety of cellular functions. The physiological functions of p38α and -β are now well documented in contrast to -γ and -δ which are comparatively under-studied and ill-defined. A major obstacle to deciphering the role(s) of the latter two p38 isoforms is the lack of specific chemical activators and inhibitors. In this study, we analysed p38 MAPK isoform expression in oesophageal cancer cell lines as well as human normal and tumour tissue. We observed specifically differential p38δ expression. The role(s) of p38δ and active (phosphorylated) p38δ (p-p38δ) in oesophageal squamous cell carcinoma (OESCC) was delineated using wild-type p38δ as well as active p-p38δ, generated by fusing p38δ to its upstream activator MKK6b(E) via a decapeptide (Gly-Glu)5 linker. OESCC cell lines which are p38δ-negative (KE-3 and -8) grew more quickly than cell lines (KE-6 and -10) which express endogenous p38δ. Re-introduction of p38δ resulted in a time-dependent decrease in OESCC cell proliferation which was exacerbated with p-p38δ. In addition, we observed that p38δ and p-p38δ negatively regulated OESCC cell migration in vitro. Finally both p38δ and p-p38δ altered OESCC anchorage-independent growth. Our results suggest that p38δ and p-p38δ have a role in the suppression of OESCC. Our research may provide a new potential target for the treatment of oesophageal cancer.
Collapse
Affiliation(s)
- Carol O'Callaghan
- Department of Pharmacology and Therapeutics, University College Cork, Ireland
| | | | | | | |
Collapse
|
11
|
Lin CC, Lin WN, Cheng SE, Tung WH, Wang HH, Yang CM. Transactivation of EGFR/PI3K/Akt involved in ATP-induced inflammatory protein expression and cell motility. J Cell Physiol 2012; 227:1628-38. [PMID: 21678415 DOI: 10.1002/jcp.22880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phenotype transition of vascular smooth muscle cells (VSMCs) is important in vascular diseases, such as atherosclerosis and restenosis. Once released, ATP may promote activation of VSMCs by stimulating cyclooxygenase-2 (COX-2), cytosolic phospholipase A(2) (cPLA(2)) expression and prostaglandin (PG)E(2) synthesis via activation of MAPKs and NF-κB. However, whether alternative signaling pathways participated in regulating COX-2 and cPLA(2) expression associated with cell migration were investigated in rat VSMCs. Western blot analysis, RT-PCR, promoter assay and PGE(2) ELISA were used to determine expression of COX-2, cPLA(2) and PGE(2). Specific inhibitors and siRNAs against various protein kinases or transcription factors were used to investigate the related signaling components in inflammatory protein induction by ATPγS. We found that ATPγS-induced COX-2 and cPLA(2) expression and PGE(2) release was attenuated by the pharmacological inhibitors or transfection with siRNA against PKCδ, c-Src, EGFR, PI3-K, Akt, p44/p42 MAPK or Elk-1. Moreover, ATPγS-stimulated phosphorylation of PKCδ, c-Src, EGFR, Akt, p42/p44 MAPK and Elk-1, suggesting the participation of PKCδ/c-Src/EGFR/PI3-K/Akt/p42/p44 MAPK cascade in mediating Elk-1 activities in VSMCs. In addition, migration assay revealed that ATPγS promoted cell mobility through up-regulation of COX-2 and cPLA(2) expression and PGE(2) release, which was attenuated by pretreatment with PGE(2) receptor antagonists. Taken together, these data showed that ATPγS up-regulated the expression of COX-2 and cPLA(2) through transactivation of PKCδ/c-Src/EGFR/PI3K/Akt/Elk-1 pathway. Newly synthesized PGE(2) acted on its receptors to promote cell motility of ATPγS-stimulated VSMCs.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Walczak K, Zurawska M, Kiś J, Starownik R, Zgrajka W, Bar K, Turski WA, Rzeski W. Kynurenic acid in human renal cell carcinoma: its antiproliferative and antimigrative action on Caki-2 cells. Amino Acids 2012; 43:1663-70. [PMID: 22349835 DOI: 10.1007/s00726-012-1247-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/07/2012] [Indexed: 11/29/2022]
Abstract
Kidneys possess a complex enzyme system which plays a major role in tryptophan metabolism. Taking into account a considerably high concentration of one of the tryptophan metabolites, kynurenic acid (KYNA) in this organ and previously reported antiproliferative activity against colon cancer cells in vitro, we measured its content in human normal and tumour kidney tissue. KYNA concentration was considerably higher in normal renal tissue (379.7 ± 39.7 pmol/g wet weight) than in renal cell carcinomas (115.5 ± 20.8 pmol/g wet weight). In in vitro experiments, KYNA in higher micro- and millimolar concentrations significantly inhibited proliferation, DNA synthesis and migration of renal cancer Caki-2 cells. Our results suggest that KYNA may affect cell cycle regulators and signalling pathways through overexpression of p21 Waf1/Cip1 and inhibition of phosphorylation of Rb protein and p38 MAPK. In conclusion, KYNA may be suggested as an endogenous agent, controlling the growth of tumour, or a chemopreventive agent.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE Although oxidative stress is implicated in renal cell carcinoma pathogenesis, to our knowledge changes in oxidative stress parameters in patients who undergo surgery for renal cell carcinoma have not been studied previously. We investigated the status of oxidative stress in patients with renal cell carcinoma. MATERIALS AND METHODS Reactive oxygen species, nitric oxide and glutathione were measured in the blood of 68 patients with renal tumor and in 30 age matched normal controls. Levels were measured again 1 week, and 1 and 2 months postoperatively in patients who underwent surgery for renal cell carcinoma. Levels of superoxide dismutase, catalase and lipid peroxidation were measured in tumor tissue and in normal renal parenchyma in 51 patients with renal tumor. RESULTS Significantly increased reactive oxygen species and nitric oxide, and decreased glutathione were observed in patients with renal cell carcinoma compared to normal subjects and in patients with benign tumors. Superoxide dismutase and lipid peroxidation were increased and catalase was decreased in tumor tissue compared to normal renal tissue. Oxidative stress correlated with renal cell carcinoma grade and stage but decreased after curative resection. Patients with metastatic disease had persistently increased oxidative stress parameters. Antioxidant enzyme levels in benign tumor tissue were significantly higher than in renal cell carcinoma. CONCLUSIONS Patients with renal cell carcinoma have increased oxidative stress, which is effectively alleviated by curative resection. In patients with benign tumors antioxidant defense mechanisms maintain normal redox status.
Collapse
|
14
|
Zhang X, Bull RJ, Fisher J, Cotruvo JA, Cummings BS. The synergistic effect of sodium chlorite and bromochloroacetic acid on BrO3(-)-induced renal cell death. Toxicology 2011; 289:151-9. [PMID: 21864635 DOI: 10.1016/j.tox.2011.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/27/2011] [Accepted: 08/08/2011] [Indexed: 11/19/2022]
Abstract
Bromate (BrO(3)(-)) is a drinking water disinfection by-product (DBP) that induces renal cell death via DNA damage-dependent and -independent mechanisms. Drinking water contains other DBPs in addition to BrO(3)(-). We tested the effect of two of these, sodium chlorite (NaClO(2)) and bromochloroacetic acid (BCAA), on BrO(3)(-) cytotoxicity in normal rat kidney (NRK) cells. NaClO(2) and BCAA alone induced cytotoxicity at concentrations of over 20ppm, while BrO(3)(-) was only moderately cytotoxic at concentrations of 200ppm. Combining BrO(3)(-) with NaClO(2) or BCAA alone enhanced cytotoxicity 1.5-4 fold. Exposing cells to all three compounds induced synergistic-like increases in cytotoxicity. This effect did not correlate to increases in reactive oxygen species (ROS), even though all three compounds induced ROS formation alone. NaClO(2), but not BCAA, increased BrO(3)(-)-mediated DNA damage as measured by 8-hydroxydeoxyguanosine (8-OHdG) staining. In addition, NaClO(2), but not BCAA, decreased BrO(3)(-)-induced G2/M cell cycle arrest. Both compounds increased apoptosis in the presence of BrO(3)(-) as assessed by annexin V, PI, and DAPI staining. This is in contrast to BrO(3)(-) treatment alone, which induced necrosis. Immunoblot analysis showed that both NaClO(2) and BCAA increased p38 activation; however, consistent with 8-OHdG staining, only NaClO(2) increased BrO(3)(-)-induced histone H2AX phosphorylation, a marker of DNA damage. In contrast, BCAA, but not NaClO(2), increased BrO(3)(-)-induced phosphorylation of p53. These data support the novel finding that mixtures of DBPs increase BrO(3)(-)-induced renal cell death by DNA-dependent and -independent mechanisms, and could alter how the risk of these DBPs towards humans is assessed.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | | | | | | | | |
Collapse
|
15
|
Millan A, Huerta S. Apoptosis-Inducing Factor and Colon Cancer. J Surg Res 2009; 151:163-70. [DOI: 10.1016/j.jss.2007.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/23/2007] [Accepted: 05/01/2007] [Indexed: 12/31/2022]
|
16
|
In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: Involvement of AIF. Nitric Oxide 2008; 20:182-94. [PMID: 19105980 DOI: 10.1016/j.niox.2008.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/21/2008] [Accepted: 11/26/2008] [Indexed: 01/08/2023]
Abstract
Tumor cells develop mechanisms that dysregulate apoptotic pathways resulting in resistance to cytotoxic stimuli. Primary SW480 and metastatic SW620 colon cancer cells are resistant to CDDP-induced apoptosis. Apoptosis-inducing factor (AIF) was significantly downregulated in SW620 compared to SW480 cells; while apoptotic mediators such as Bax, Bcl-2, and Bcl(XL) were not altered in these cell lines. Examination of tumor tissues from patients with colon cancer demonstrated a significant downregulation of AIF in patients with advanced disease. The role of AIF expression in resistance was examined. Several lines of evidence suggest the involvement of AIF expression level in the sensitivity of SW620 to CDDP-induced apoptosis: (1) sensitization of SW620 by the NO donor DETANONOate to CDDP-induced apoptosis correlated with the induction of AIF as assessed by RT-PCR and Western blot analysis, (2) treatment of SW620 cells with siRNA AIF, but not with control siRNAs, inhibited DETANONOate-induced sensitization to CDDP apoptosis, (3) sensitization by DETANONOate observed in vitro was corroborated in vivo in nude mice bearing SW620 tumor xenografts and treated with the combination of DETANONOate and CDDP, and (4) tumor tissues derived from the SW620 xenografts revealed significant upregulation of AIF and increased apoptosis by DETANONOate and CDDP combination treatment. Altogether, these findings underscore the potential therapeutic application of NO donors and subtoxic chemotherapeutic drugs in the treatment of advanced colon cancer resistant to conventional chemotherapeutic agents.
Collapse
|
17
|
Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway. Anticancer Drugs 2008; 19:553-63. [PMID: 18525314 DOI: 10.1097/cad.0b013e3282ffd68d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.
Collapse
|
18
|
Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 2008; 18:343-58. [PMID: 18256243 DOI: 10.1101/gr.5558208] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) have shared an exceptionally long coexistence with their host organisms and have come to occupy a significant fraction of eukaryotic genomes. The bulk of the expansion occurring within mammalian genomes has arisen from the activity of type I retrotransposons, which amplify in a "copy-and-paste" fashion through an RNA intermediate. For better or worse, the sequences of these retrotransposons are now wedded to the genomes of their mammalian hosts. Although there are several reported instances of the positive contribution of mobile elements to their host genomes, these discoveries have occurred alongside growing evidence of the role of TEs in human disease and genetic instability. Here we examine, with a particular emphasis on human retrotransposon activity, several newly discovered aspects of mammalian retrotransposon biology. We consider their potential impact on host biology as well as their ultimate implications for the nature of the TE-host relationship.
Collapse
Affiliation(s)
- Victoria P Belancio
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
19
|
O'Sullivan GC, Tangney M, Casey G, Ambrose M, Houston A, Barry OP. Modulation of p21-activated kinase 1 alters the behavior of renal cell carcinoma. Int J Cancer 2007; 121:1930-1940. [PMID: 17621631 DOI: 10.1002/ijc.22893] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The p21-activated kinase 1 (Pak1) is a serine/threonine kinase whose activity is regulated by both Rho GTPases and AGC kinase family members. It plays a role in cytoskeletal remodeling and cell motility as well as cell proliferation, angiogenesis, tumorigenesis and metastasis. An involvement of Pak1 in renal cell carcinoma (RCC), which remains highly refractory to chemotherapy and radiotherapy, remains to be investigated. Pak1 expression, phosphorylation and kinase activity were examined in RCC cell lines and human tissue from normal and renal carcinoma. We report increased Pak1 expression and constitutive activity in the membrane and nucleus but not the cytoplasm of resected human RCC. To study a role for Pak1 in RCC, we developed 786-0 clones that expressed either a kinase-active Pak1L83,L86 2 different Pak1 dominant negative mutants, Pak1R299 and Pak1L83,L86,R299 or Pak1 siRNA. The expression of Pak1L83,L86 increased 786-0 proliferation, motility and anchorage independent growth, while the dominant negative mutants and Pak1 siRNA abrogated these effects. In addition, Pak1L83,L86 conferred resistance to 5-fluorouracil with a 40%+/-10% increase in cell viability. Conversely, Pak1L83,L86,R299, Pak1R299 and Pak1 siRNA conferred sensitivity with a 65.2%+/-5.5%, 69.2%+/-3.3% and 73.0%+/-8.4% loss in viability, respectively. Finally, Pak1 plays a role in renal tumor growth in vivo. Only 33% of mice developed tumors in the Pak1L83,L86,R299 group and no tumors developed from Pak1R299 cell challenge. Together these findings point to Pak1 as an exciting target for therapy of renal cancer, which remains highly refractory to existing treatments.
Collapse
Affiliation(s)
- Gerald C O'Sullivan
- Cork Cancer Research Center, Leslie C. Quick Jnr. Cancer Laboratories, Bioscience Institute and Mercy University Hospital, Cork, Ireland
| | - Mark Tangney
- Cork Cancer Research Center, Leslie C. Quick Jnr. Cancer Laboratories, Bioscience Institute and Mercy University Hospital, Cork, Ireland
| | - Garret Casey
- Cork Cancer Research Center, Leslie C. Quick Jnr. Cancer Laboratories, Bioscience Institute and Mercy University Hospital, Cork, Ireland
| | - Monica Ambrose
- Department of Pharmacology and Therapeutics, Cork University Hospital and National University of Ireland, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, Cork University Hospital and National University of Ireland, Cork, Ireland
| | - Orla P Barry
- Cork Cancer Research Center, Leslie C. Quick Jnr. Cancer Laboratories, Bioscience Institute and Mercy University Hospital, Cork, Ireland
- Department of Pharmacology and Therapeutics, Cork University Hospital and National University of Ireland, Cork, Ireland
| |
Collapse
|