1
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
2
|
Dallavalle S, Musso L, Cincinelli R, Darwiche N, Gervasoni S, Vistoli G, Guglielmi MB, La Porta I, Pizzulo M, Modica E, Prosperi F, Signorino G, Colelli F, Cardile F, Fucci A, D'Andrea EL, Riccio A, Pisano C. Antitumor activity of novel POLA1-HDAC11 dual inhibitors. Eur J Med Chem 2021; 228:113971. [PMID: 34772529 DOI: 10.1016/j.ejmech.2021.113971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022]
Abstract
Hybrid molecules targeting simultaneously DNA polymerase α (POLA1) and histone deacetylases (HDACs) were designed and synthesized to exploit a potential synergy of action. Among a library of screened molecules, MIR002 and GEM144 showed antiproliferative activity at nanomolar concentrations on a panel of human solid and haematological cancer cell lines. In vitro functional assays confirmed that these molecules inhibited POLA1 primer extension activity, as well as HDAC11. Molecular docking studies also supported these findings. Mechanistically, MIR002 and GEM144 induced acetylation of p53, activation of p21, G1/S cell cycle arrest, and apoptosis. Oral administration of these inhibitors confirmed their antitumor activity in in vivo models. In human non-small cancer cell (H460) xenografted in nude mice MIR002 at 50 mg/kg, Bid (qd × 5 × 3w) inhibited tumor growth (TGI = 61%). More interestingly, in POLA1 inhibitor resistant cells (H460-R9A), the in vivo combination of MIR002 with cisplatin showed an additive antitumor effect with complete disappearance of tumor masses in two animals at the end of the treatment. Moreover, in two human orthotopic malignant pleural mesothelioma xenografts (MM473 and MM487), oral treatments with MIR002 and GEM144 confirmed their significant antitumor activity (TGI = 72-77%). Consistently with recent results that have shown an inverse correlation between POLA1 expression and type I interferon levels, MIR002 significantly upregulated interferon-α in immunocompetent mice.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Mario B Guglielmi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Ilaria La Porta
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Maddalena Pizzulo
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Elisa Modica
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Federica Prosperi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Giacomo Signorino
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Fabiana Colelli
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Francesco Cardile
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Alessandra Fucci
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Egildo Luca D'Andrea
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Assunta Riccio
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy.
| |
Collapse
|
3
|
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Although targeted therapy in combination with chemotherapy in CRC prolongs the overall survival of patients with metastatic disease, acquired resistance and relapse hinder their clinical benefits. Moreover, patients with some specific genetic profile are unlikely to benefit from targeted therapy, suggesting the need for safe and effective treatment strategies. Retinoids, comprising of natural and synthetic analogs, are a class of chemical compounds that regulate cellular proliferation, differentiation, and cell death. Retinoids have been used in the clinic for several leukemias and solid tumors, either as single agents or in combination therapy. Furthermore, retinoids have shown potent chemotherapeutic and chemopreventive properties in different cancer models, including CRC. In this review, we summarize the major preclinical findings in CRC in which natural and synthetic retinoids showed promising antitumor activities and stress on the proposed mechanisms of action. Understanding of the retinoids' antitumor mechanisms would provide insights to support and warrant their development in the management of CRC.
Collapse
|
4
|
Cincinelli R, Musso L, Guglielmi MB, La Porta I, Fucci A, Luca D'Andrea E, Cardile F, Colelli F, Signorino G, Darwiche N, Gervasoni S, Vistoli G, Pisano C, Dallavalle S. Novel adamantyl retinoid-related molecules with POLA1 inhibitory activity. Bioorg Chem 2020; 104:104253. [PMID: 32920362 DOI: 10.1016/j.bioorg.2020.104253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023]
Abstract
Atypical retinoids (AR) or retinoid-related molecules (RRMs) represent a promising class of antitumor compounds. Among AR, E-3-(3'-adamantan-1-yl-4'-hydroxybiphenyl-4-yl)acrylic acid (adarotene), has been extensively investigated. In the present work we report the results of our efforts to develop new adarotene-related atypical retinoids endowed also with POLA1 inhibitory activity. The effects of the synthesized compounds on cell growth were determined on a panel of human and hematological cancer cell lines. The most promising compounds showed antitumor activity against several tumor histotypes and increased cytotoxic activity against an adarotene-resistant cell line, compared to the parent molecule. The antitumor activity of a selected compound was evaluated on HT-29 human colon carcinoma and human mesothelioma (MM487) xenografts. Particularly significant was the in vivo activity of the compound as a single agent compared to adarotene and cisplatin, against pleural mesothelioma MM487. No reduction of mice body weight was observed, thus suggesting a higher tolerability with respect to the parent compound adarotene.
Collapse
Affiliation(s)
- Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano 20133, Italy
| | - Claudio Pisano
- Biogem, Research Institute, Ariano Irpino, Avellino, Italy.
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
5
|
Antitumor activities of the synthetic retinoid ST1926 in two-dimensional and three-dimensional human breast cancer models. Anticancer Drugs 2017; 28:757-770. [DOI: 10.1097/cad.0000000000000511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
El-Houjeiri L, Saad W, Hayar B, Aouad P, Tawil N, Abdel-Samad R, Hleihel R, Hamie M, Mancinelli A, Pisano C, El Hajj H, Darwiche N. Antitumor Effect of the Atypical Retinoid ST1926 in Acute Myeloid Leukemia and Nanoparticle Formulation Prolongs Lifespan and Reduces Tumor Burden of Xenograft Mice. Mol Cancer Ther 2017; 16:2047-2057. [DOI: 10.1158/1535-7163.mct-16-0785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
|
7
|
The antitumor toxin CD437 is a direct inhibitor of DNA polymerase α. Nat Chem Biol 2016; 12:511-5. [PMID: 27182663 PMCID: PMC4912453 DOI: 10.1038/nchembio.2082] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 11/08/2022]
Abstract
CD437 is a retinoid-like small molecule that selectively induces apoptosis in cancer cells, but not in normal cells, through an unknown mechanism. We used a forward-genetic strategy to discover mutations in POLA1 that coincide with CD437 resistance (POLA1(R)). Introduction of one of these mutations into cancer cells by CRISPR-Cas9 genome editing conferred CD437 resistance, demonstrating causality. POLA1 encodes DNA polymerase α, the enzyme responsible for initiating DNA synthesis during the S phase of the cell cycle. CD437 inhibits DNA replication in cells and recombinant POLA1 activity in vitro. Both effects are abrogated by the identified POLA1 mutations, supporting POLA1 as the direct antitumor target of CD437. In addition, we detected an increase in the total fluorescence intensity and anisotropy of CD437 in the presence of increasing concentrations of POLA1 that is consistent with a direct binding interaction. The discovery of POLA1 as the direct anticancer target for CD437 has the potential to catalyze the development of CD437 into an anticancer therapeutic.
Collapse
|
8
|
Safe S, Jin UH, Morpurgo B, Abudayyeh A, Singh M, Tjalkens RB. Nuclear receptor 4A (NR4A) family - orphans no more. J Steroid Biochem Mol Biol 2016; 157:48-60. [PMID: 25917081 PMCID: PMC4618773 DOI: 10.1016/j.jsbmb.2015.04.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 01/17/2023]
Abstract
The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer.
Collapse
MESH Headings
- Arthritis/metabolism
- Cardiovascular Diseases/metabolism
- DNA-Binding Proteins/metabolism
- Homeostasis
- Humans
- Immunity, Cellular
- Inflammation/metabolism
- Ligands
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Neoplasms/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Benjamin Morpurgo
- Texas A&M Institute for Genomic Medicine, Texas A&M University, 670 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | - Ala Abudayyeh
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandip Singh
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ronald B Tjalkens
- Department of Toxicology and Neuroscience, Colorado State University, 1680Campus Delivery, Fort Collins, CO 80523-1680, USA
| |
Collapse
|
9
|
Zhao J, Cheng F, Wang Y, Arteaga CL, Zhao Z. Systematic Prioritization of Druggable Mutations in ∼5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach. Mol Cell Proteomics 2015; 15:642-56. [PMID: 26657081 DOI: 10.1074/mcp.m115.053199] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
A massive amount of somatic mutations has been cataloged in large-scale projects such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium projects. The majority of the somatic mutations found in tumor genomes are neutral 'passenger' rather than damaging "driver" mutations. Now, understanding their biological consequences and prioritizing them for druggable targets are urgently needed. Thanks to the rapid advances in structural genomics technologies (e.g. X-ray), large-scale protein structural data has now been made available, providing critical information for deciphering functional roles of mutations in cancer and prioritizing those alterations that may mediate drug binding at the atom resolution and, as such, be druggable targets. We hypothesized that mutations at protein-ligand binding-site residues are likely to be druggable targets. Thus, to prioritize druggable mutations, we developed SGDriver, a structural genomics-based method incorporating the somatic missense mutations into protein-ligand binding-site residues using a Bayes inference statistical framework. We applied SGDriver to 746,631 missense mutations observed in 4997 tumor-normal pairs across 16 cancer types from The Cancer Genome Atlas. SGDriver detected 14,471 potential druggable mutations in 2091 proteins (including 1,516 recurrently mutated proteins) across 3558 cancer genomes (71.2%), and further identified 298 proteins harboring mutations that were significantly enriched at protein-ligand binding-site residues (adjusted p value < 0.05). The identified proteins are significantly enriched in both oncoproteins and tumor suppressors. The follow-up drug-target network analysis suggested 98 known and 126 repurposed druggable anticancer targets (e.g. SPOP and NR3C1). Furthermore, our integrative analysis indicated that 13% of patients might benefit from current targeted therapy, and this -proportion would increase to 31% when considering drug repositioning. This study provides a testable strategy for prioritizing druggable mutations in precision cancer medicine.
Collapse
Affiliation(s)
- Junfei Zhao
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203
| | - Feixiong Cheng
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203
| | - Yuanyuan Wang
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203
| | - Carlos L Arteaga
- §Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; ¶Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; ‖Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zhongming Zhao
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203; ‖Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; **Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; ¶¶School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
10
|
Bernasconi E, Gaudio E, Kwee I, Rinaldi A, Cascione L, Tarantelli C, Mensah AA, Stathis A, Zucca E, Vesci L, Giannini G, Bertoni F. The novel atypical retinoid ST5589 down-regulates Aurora Kinase A and has anti-tumour activity in lymphoma pre-clinical models. Br J Haematol 2015; 171:378-86. [DOI: 10.1111/bjh.13595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Bernasconi
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
| | - Eugenio Gaudio
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
| | - Ivo Kwee
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA); Manno Switzerland
- SIB Swiss Institute of Bioinformatics; Lausanne Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
- IOSI Oncology Institute of Southern Switzerland; Bellinzona Switzerland
| | - Chiara Tarantelli
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
| | - Afua Adjeiwaa Mensah
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
| | | | - Emanuele Zucca
- IOSI Oncology Institute of Southern Switzerland; Bellinzona Switzerland
| | | | | | - Francesco Bertoni
- Lymphoma and Genomics Research Program; IOR Institute of Oncology Research; Bellinzona Switzerland
- IOSI Oncology Institute of Southern Switzerland; Bellinzona Switzerland
| |
Collapse
|
11
|
Nasr RR, Hmadi RA, El-Eit RM, Iskandarani AN, Jabbour MN, Zaatari GS, Mahon FX, Pisano CC, Darwiche ND. ST1926, an orally active synthetic retinoid, induces apoptosis in chronic myeloid leukemia cells and prolongs survival in a murine model. Int J Cancer 2015; 137:698-709. [DOI: 10.1002/ijc.29407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Rihab R. Nasr
- Department of Anatomy, Cell Biology, and Physiological Sciences; American University of Beirut; Beirut Lebanon
| | - Raed A. Hmadi
- Department of Biochemistry and Molecular Genetics; American University of Beirut; Beirut Lebanon
| | - Rabab M. El-Eit
- Department of Anatomy, Cell Biology, and Physiological Sciences; American University of Beirut; Beirut Lebanon
| | - Ahmad N. Iskandarani
- Department of Anatomy, Cell Biology, and Physiological Sciences; American University of Beirut; Beirut Lebanon
| | - Mark N. Jabbour
- Department of Pathology and Laboratory Medicine; American University of Beirut; Beirut Lebanon
| | - Ghazi S. Zaatari
- Department of Pathology and Laboratory Medicine; American University of Beirut; Beirut Lebanon
| | - Francois-Xavier Mahon
- Laboratoire D'hématologie Et Service Des Maladies Du Sang; CHU De Bordeaux, Université Victor Ségalen Bordeaux 2, INSERM U876; Bordeaux France
| | | | - Nadine D. Darwiche
- Department of Biochemistry and Molecular Genetics; American University of Beirut; Beirut Lebanon
| |
Collapse
|
12
|
Preclinical efficacy of the synthetic retinoid ST1926 for treating adult T-cell leukemia/lymphoma. Blood 2014; 124:2072-80. [PMID: 25035162 DOI: 10.1182/blood-2014-03-560060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). The HTLV-1 oncoprotein Tax plays an important role in ATL pathogenesis. ATL carries a poor prognosis due to chemotherapy resistance, stressing the need for alternative therapies. Here, we investigate the preclinical efficacy of the synthetic retinoid ST1926 in ATL and peripheral T-cell lymphomas. Clinically achievable concentrations of ST1926 induced a dramatic inhibition of cell proliferation in malignant T-cell lines and primary ATL cells with minimal effect on resting or activated normal lymphocytes. ST1926 induced apoptosis, DNA damage, and upregulation of p53 proteins in malignant T cells, whereas it caused an early downregulation of Tax proteins in HTLV-1-positive cells. In murine ATL, oral treatment with ST1926 prolonged survival and reduced leukemia cell infiltration, white blood cell counts, and spleen mass. In spleens of ST1926-treated animals, p53 and p21 proteins were upregulated, poly (ADP-ribose) polymerase was cleaved, and Tax transcripts were reduced. These results highlight the promising use of ST1926 as a targeted therapy for ATL.
Collapse
|
13
|
Safe S, Jin UH, Hedrick E, Reeder A, Lee SO. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol Endocrinol 2014; 28:157-172. [PMID: 24295738 PMCID: PMC3896638 DOI: 10.1210/me.2013-1291] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/21/2013] [Indexed: 01/03/2023] Open
Abstract
The nuclear orphan receptors for which endogenous ligands have not been identified include nuclear receptor (NR)0B1 (adrenal hypoplasia congenita critical region on chromosome X gene), NR0B2 (small heterodimer partner), NR1D1/2 (Rev-Erbα/β), NR2C1 (testicular receptor 2), NR2C2 (testicular receptor 4), NR2E1 (tailless), NR2E3 (photoreceptor-specific NR [PNR]), NR2F1 chicken ovalbumin upstream promoter transcription factor 1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 (v-erbA-related protein), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1), and NR6A1 (GCNF). These receptors play essential roles in development, cellular homeostasis, and disease including cancer where over- or underexpression of some receptors has prognostic significance for patient survival. Results of receptor knockdown or overexpression in vivo and in cancer cell lines demonstrate that orphan receptors exhibit tumor-specific pro-oncogenic or tumor suppressor-like activity. For example, COUP-TFII expression is both a positive (ovarian) and negative (prostate and breast) prognostic factor for cancer patients; in contrast, the prognostic activity of adrenal hypoplasia congenita critical region on chromosome X gene for the same tumors is the inverse of COUP-TFII. Functional studies show that Nur77 is tumor suppressor like in acute leukemia, whereas silencing Nur77 in pancreatic, colon, lung, lymphoma, melanoma, cervical, ovarian, gastric, and some breast cancer cell lines induces one or more of several responses including growth inhibition and decreased survival, migration, and invasion. Although endogenous ligands for the orphan receptors have not been identified, there is increasing evidence that different structural classes of compounds activate, inactivate, and directly bind several orphan receptors. Thus, the screening and development of selective orphan receptor modulators will have important clinical applications as novel mechanism-based agents for treating cancer patients overexpressing one or more orphan receptors and also for combined drug therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology (S.S., E.H., A.R.), Texas A&M University, College Station, Texas 77808; and Institute of Biosciences and Technology (S.S., U.-H.J., S.-O.L.), Texas A&M Health Science Center, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
14
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
15
|
New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: The role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome. Eur J Cancer 2013; 49:1491-500. [DOI: 10.1016/j.ejca.2012.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 01/14/2023]
|
16
|
Magnussen GI, Ree Rosnes AK, Shahzidi S, Dong HP, Emilsen E, Engesæter B, Flørenes VA. Synthetic retinoid CD437 induces apoptosis and acts synergistically with TRAIL receptor-2 agonist in malignant melanoma. Biochem Biophys Res Commun 2012; 420:516-22. [PMID: 22446330 DOI: 10.1016/j.bbrc.2012.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/09/2022]
Abstract
The novel synthetic retinoid, CD437, shows potent anti-tumor activity in a range of different cancer cell lines and now serves as a prototype for development of new retinoid related molecules (RRMs). The purpose of this study was to examine the effect and cellular targets of CD437 in the human metastatic melanoma cell lines FEMX-1 and WM239. We showed that treatment with CD437 led to cell cycle arrest and induced apoptosis through both the extrinsic- and intrinsic pathways (caspase 8, -9 and PARP cleavage) in both cell lines. Interestingly, apoptosis was induced independently of DNA-fragmentation in FEMX-1 cells, and appeared partially caspase-independent in the WM239 cells. Additionally, up-regulation of CHOP mRNA and cathepsin D protein expression, following retinoid treatment, suggests involvement of the endoplasmatic reticulum (ER) and lysosomes, respectively. Combination of suboptimal concentrations of CD437 and lexatumumab, a TRAIL death receptor-2 agonist, resulted in synergistic reduction of viable cells, along with increased PARP cleavage. These results indicate that CD437 has a strong anti-neoplastic effect alone and in combination with lexatumumab in melanoma cell lines.
Collapse
Affiliation(s)
- Gry Irene Magnussen
- Department of Pathology, Institute for Cancer Research, The Norwegian Radium Hospital, 0424 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
17
|
Giannini G, Brunetti T, Battistuzzi G, Alloatti D, Quattrociocchi G, Cima MG, Merlini L, Dallavalle S, Cincinelli R, Nannei R, Vesci L, Bucci F, Foderà R, Guglielmi MB, Pisano C, Cabri W. New retinoid derivatives as back-ups of Adarotene. Bioorg Med Chem 2012; 20:2405-15. [DOI: 10.1016/j.bmc.2012.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
|
18
|
Terao M, Fratelli M, Kurosaki M, Zanetti A, Guarnaccia V, Paroni G, Tsykin A, Lupi M, Gianni M, Goodall GJ, Garattini E. Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells: biological correlates and molecular targets. J Biol Chem 2010; 286:4027-42. [PMID: 21131358 DOI: 10.1074/jbc.m110.184994] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinoids are promising agents for the treatment/prevention of breast carcinoma. We examined the role of microRNAs in mediating the effects of all-trans-retinoic acid (ATRA), which suppresses the proliferation of estrogen receptor-positive (ERα(+)) breast carcinoma cells, such as MCF-7, but not estrogen receptor-negative cells, such as MDA-MB-231. We found that pro-oncogenic miR-21 is selectively induced by ATRA in ERα(+) cells. Induction of miR-21 counteracts the anti-proliferative action of ATRA but has the potentially beneficial effect of reducing cell motility. In ERα(+) cells, retinoid-dependent induction of miR-21 is due to increased transcription of the MIR21 gene via ligand-dependent activation of the nuclear retinoid receptor, RARα. RARα is part of the transcription complex present in the 5'-flanking region of the MIR21 gene. The receptor binds to two functional retinoic acid-responsive elements mapping upstream of the transcription initiation site. Silencing of miR-21 enhances ATRA-dependent growth inhibition and senescence while reverting suppression of cell motility afforded by the retinoid. Up-regulation of miR-21 results in retinoid-dependent inhibition of the established target, maspin. Knockdown and overexpression of maspin in MCF-7 cells indicates that the protein is involved in ATRA-induced growth inhibition and contributes to the ATRA-dependent anti-motility responses. Integration between whole genome analysis of genes differentially regulated by ATRA in MCF-7 and MDA-MB-231 cells, prediction of miR-21 regulated genes, and functional studies led to the identification of three novel direct miR-21 targets: the pro-inflammatory cytokine IL1B, the adhesion molecule ICAM-1 and PLAT, the tissue-type plasminogen activator. Evidence for ICAM-1 involvement in retinoid-dependent inhibition of MCF-7 cell motility is provided.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Farhana L, Dawson MI, Xia Z, Aboukameel A, Xu L, Liu G, Das JK, Hatfield J, Levi E, Mohammad R, Fontana JA. Adamantyl-substituted retinoid-related molecules induce apoptosis in human acute myelogenous leukemia cells. Mol Cancer Ther 2010; 9:2903-13. [PMID: 21062916 DOI: 10.1158/1535-7163.mct-10-0546] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The adamantyl-substituted retinoid-related (ARR) compounds 3-Cl-AHPC and AHP3 induce apoptosis in vitro and in vivo in a newly established human acute myelogenous leukemia (AML) cell line, FFMA-AML, and in the established TF(v-SRC) AML cell line. FFMA-AML and TF(v-SRC) cells displayed resistance to apoptosis mediated by the standard retinoids (including trans-retinoic acid, 9-cis-retinoic acid, and the synthetic retinoid TTNPB) but showed sensitivity to apoptosis mediated by 3-Cl-AHPC- and AHP3 in vitro and in vivo as documented by poly(ADP-ribose) polymerase (PARP) cleavage and apoptosis terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay. 3-Cl-AHPC or AHP3 exposure in vitro resulted in decreased expression of the antiapoptotic proteins (cellular inhibitor of apoptosis 1, X-linked inhibitor of apoptosis protein) and phospho-Bad and activated the NF-κB canonical pathway. A significant prolongation of survival was observed both in nonobese diabetic severe combined immunodeficient mice carrying FFMA-AML cells and treated with either 3-Cl-AHPC or AHP3 and in severe combined immunodeficient mice carrying TF(v-SRC) cells and treated with AHP3. We have previously shown that ARRs bind to the orphan nuclear receptor small heterodimer partner (SHP) and that the expression of SHP is required for ARR-mediated apoptosis. Induced loss of SHP in these AML cells blocked 3-Cl-AHPC- and AHP3-mediated induction of apoptosis. These results support the further development of 3-Cl-AHPC and AHP3 as potential therapeutic agents in the treatment of AML patients.
Collapse
Affiliation(s)
- Lulu Farhana
- John D. Dingell VA Medical Center, Wayne State University, Karmanos Cancer Institute, Oncology 11M-HO, Room C3540, 4646 John R. Street, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Mitochondria are the cells' powerhouse, but also their suicidal weapon store. Dozens of lethal signal transduction pathways converge on mitochondria to cause the permeabilization of the mitochondrial outer membrane, leading to the cytosolic release of pro-apoptotic proteins and to the impairment of the bioenergetic functions of mitochondria. The mitochondrial metabolism of cancer cells is deregulated owing to the use of glycolytic intermediates, which are normally destined for oxidative phosphorylation, in anabolic reactions. Activation of the cell death machinery in cancer cells by inhibiting tumour-specific alterations of the mitochondrial metabolism or by stimulating mitochondrial membrane permeabilization could therefore be promising therapeutic approaches.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Ulm University, Eythstrasse 24, D-89075 Ulm, Germany.
| | | | | |
Collapse
|
21
|
Hashiguchi K, Tsuchiya H, Tomita A, Ueda C, Akechi Y, Sakabe T, Kurimasa A, Nozaki M, Yamada T, Tsuchida S, Shiota G. Involvement of ETS1 in thioredoxin-binding protein 2 transcription induced by a synthetic retinoid CD437 in human osteosarcoma cells. Biochem Biophys Res Commun 2009; 391:621-6. [PMID: 19932085 DOI: 10.1016/j.bbrc.2009.11.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 02/09/2023]
Abstract
CD437, a synthetic retinoid, has a potent antitumor activity, in which an RAR-independent mechanism may be involved. Our previous study showed that CD437 transcriptionally upregulates the expression of thioredoxin-binding protein 2 (TBP2), leading to c-Jun N-terminal kinase 1 (JNK1)-mediated apoptosis. In the present study, we addressed the mechanism, by which CD437 induces TBP2 mRNA expression. CD437 efficiently caused the cell death of human osteosarcoma cells via apoptosis. CD437 also induced JNK1 activation through the upregulation of TBP2 mRNA, in consistent with our previous observation. A luciferase reporter assay for TBP2 promoter activation suggested that CD437-regulated TBP2 mRNA transcription requires the region between -400 and -300, which contains multiple possible ETS-binding sites. Finally, we demonstrated CD437-dependent recruitment of ETS1 transcription factor to this region by chromatin immunoprecipitation assay. These data suggest that ETS1 is involved in CD437-induced TBP2 mRNA expression in human osteosarcoma MG-63 cells.
Collapse
Affiliation(s)
- Koichi Hashiguchi
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Nishi-cho 86, Yonago 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G. Mitochondrial gateways to cancer. Mol Aspects Med 2009; 31:1-20. [PMID: 19698742 DOI: 10.1016/j.mam.2009.08.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/29/2022]
Abstract
Mitochondria are required for cellular survival, yet can also orchestrate cell death. The peculiar biochemical properties of these organelles, which are intimately linked to their compartmentalized ultrastructure, provide an optimal microenvironment for multiple biosynthetic and bioenergetic pathways. Most intracellular ATP is generated by mitochondrial respiration, which also represents the most relevant source of intracellular reactive oxygen species. Mitochondria participate in a plethora of anabolic pathways, including cholesterol, cardiolipin, heme and nucleotide biosynthesis. Moreover, mitochondria integrate numerous pro-survival and pro-death signals, thereby exerting a decisive control over several biochemical cascades leading to cell death, in particular the intrinsic pathway of apoptosis. Therefore, it is not surprising that cancer cells often manifest the deregulation of one or several mitochondrial functions. The six classical hallmarks of cancer (i.e., limitless replication, self-provision of proliferative stimuli, insensitivity to antiproliferative signals, disabled apoptosis, sustained angiogenesis, invasiveness/metastatic potential), as well as other common features of tumors (i.e., avoidance of the immune response, enhanced anabolic metabolism, disabled autophagy) may directly or indirectly implicate deregulated mitochondria. In this review, we discuss several mechanisms by which mitochondria can contribute to malignant transformation and tumor progression.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM, U848, Institut Gustave Roussy, PR1, 39 Rue Camille Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Farhana L, Dawson MI, Dannenberg JH, Xu L, Fontana JA. SHP and Sin3A expression are essential for adamantyl-substituted retinoid-related molecule-mediated nuclear factor-kappaB activation, c-Fos/c-Jun expression, and cellular apoptosis. Mol Cancer Ther 2009; 8:1625-35. [PMID: 19509248 DOI: 10.1158/1535-7163.mct-08-0964] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously found that the adamantyl-substituted retinoid-related molecules bind to the small heterodimer partner (SHP) as well as the Sin3A complex. In this report, we delineated the role of SHP and the Sin3A complex in 4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC)-mediated inhibition of cell growth and apoptosis. We examined the effect of loss of SHP and Sin3A expression in a number of cell types on 3-Cl-AHPC-mediated growth inhibition and apoptosis induction, 3-Cl-AHPC-mediated nuclear factor-kappaB (NF-kappaB) activation, and 3-Cl-AHPC-mediated increase in c-Fos and c-Jun expression. We found that loss of SHP or Sin3A expression, while blocking 3-Cl-AHPC-mediated apoptosis, had little effect on 3-Cl-AHPC inhibition of cellular proliferation. We have previously shown that 3-Cl-AHPC-mediated NF-kappaB activation is necessary for apoptosis induction. We have now shown that 3-Cl-AHPC-enhanced c-Fos and c-Jun expression is also essential for maximal 3-Cl-AHPC-mediated apoptosis. 3-Cl-AHPC induction of c-Fos and c-Jun expression as well as NF-kappaB activation was dependent on SHP protein levels. In turn, SHP levels are regulated by Sin3A because ablation of Sin3A resulted in a decrease in SHP expression. Thus, SHP and Sin3A play an important role in adamantyl-substituted retinoid-related induction of cellular apoptosis.
Collapse
Affiliation(s)
- Lulu Farhana
- John D. Dingell VA Medical Center, Oncology 11M-HO, 4646 John R. Street, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
24
|
Matsuoka S, Tsuchiya H, Sakabe T, Watanabe Y, Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N, Masutani H, Yodoi J, Shiota G. Involvement of thioredoxin-binding protein 2 in the antitumor activity of CD437. Cancer Sci 2008; 99:2485-90. [PMID: 19018770 PMCID: PMC11159347 DOI: 10.1111/j.1349-7006.2008.00979.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present authors previously reported that a synthetic retinoid, CD437, induces endoplasmic reticulum stress-mediated apoptosis in ovarian adenocarcinoma cells in spite of no response to natural retinoids. However, the precise mechanism of its proapoptotic action has not been fully determined. The present study herein demonstrates that apoptosis induction of ovarian adenocarcinoma SKOV3 cells by CD437 involves the upregulation of thioredoxin-binding protein 2 (TBP2) by a mechanism that is dependent on the intracellular calcium concentration. TBP2 is known to bind to and suppress thioredoxin (TRX) activity whereas TRX has an anti-apoptotic effect by inhibiting apoptosis signal-regulating kinase 1 (ASK1). The activation of ASK1 and its downstream molecule, c-Jun N-terminal kinase, was observed after induction of TBP2 by CD437. Interestingly, CD437 induced the association of TBP2 with TRX and, in turn, facilitated the dissociation of ASK1 from TRX. Moreover, blockade of TBP2 induction by small interfering RNA (siRNA) significantly attenuated the cytotoxic effect of CD437. These results suggest that TBP2 plays a critical role in the mechanism by which CD437 exerts proapoptotic action against SKOV3 cells.
Collapse
Affiliation(s)
- Saori Matsuoka
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Nishi-cho 86, Yonago, Tottori 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Valli C, Paroni G, Di Francesco AM, Riccardi R, Tavecchio M, Erba E, Boldetti A, Gianni' M, Fratelli M, Pisano C, Merlini L, Antoccia A, Cenciarelli C, Terao M, Garattini E. Atypical retinoids ST1926 and CD437 are S-phase-specific agents causing DNA double-strand breaks: significance for the cytotoxic and antiproliferative activity. Mol Cancer Ther 2008; 7:2941-54. [DOI: 10.1158/1535-7163.mct-08-0419] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Dawson MI, Xia Z, Jiang T, Ye M, Fontana JA, Farhana L, Patel B, Xue LP, Bhuiyan M, Pellicciari R, Macchiarulo A, Nuti R, Zhang XK, Han YH, Tautz L, Hobbs PD, Jong L, Waleh N, Chao WR, Feng GS, Pang Y, Su Y. Adamantyl-substituted retinoid-derived molecules that interact with the orphan nuclear receptor small heterodimer partner: effects of replacing the 1-adamantyl or hydroxyl group on inhibition of cancer cell growth, induction of cancer cell apoptosis, and inhibition of SRC homology 2 domain-containing protein tyrosine phosphatase-2 activity. J Med Chem 2008; 51:5650-62. [PMID: 18759424 DOI: 10.1021/jm800456k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(E)-4-[3-(1-Adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces the cell-cycle arrest and apoptosis of leukemia and cancer cells. Studies demonstrated that 3-Cl-AHPC bound to the atypical orphan nuclear receptor small heterodimer partner (SHP). Although missing a DNA-binding domain, SHP heterodimerizes with the ligand-binding domains of other nuclear receptors to repress their abilities to induce or inhibit gene expression. 3-Cl-AHPC analogues having the 1-adamantyl and phenolic hydroxyl pharmacophoric elements replaced with isosteric groups were designed, synthesized, and evaluated for their inhibition of proliferation and induction of human cancer cell apoptosis. Structure-anticancer activity relationship studies indicated the importance of both groups to apoptotic activity. Docking of 3-Cl-AHPC and its analogues to an SHP computational model that was based on the crystal structure of ultraspiracle complexed with 1-stearoyl-2-palmitoylglycero-3-phosphoethanolamine suggested why these 3-Cl-AHPC groups could influence SHP activity. Inhibitory activity against Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp-2) was also assessed. The most active Shp-2 inhibitor was found to be the 3'-(3,3-dimethylbutynyl) analogue of 3-Cl-AHPC.
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center and Inflammatory and Infectious Disease Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gonda K, Tsuchiya H, Sakabe T, Akechi Y, Ikeda R, Nishio R, Terabayashi K, Ishii K, Matsumi Y, Ashla AA, Okamoto H, Takubo K, Matsuoka S, Watanabe Y, Hoshikawa Y, Kurimasa A, Shiota G. Synthetic retinoid CD437 induces mitochondria-mediated apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2008; 370:629-33. [PMID: 18406343 DOI: 10.1016/j.bbrc.2008.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Retinoids play an important role in the regulation of cell growth and death. Synthetic retinoid CD437 reportedly induces apoptosis in various cancer cell lines. However, the mechanism of inducing apoptosis in hepatocellular carcinoma (HCC) cells by this agent remains to be clarified. In this study, we investigated the signaling pathway by which CD437 induces apoptosis in HCC cell lines. Apoptosis of six human HCC cell lines was induced by treatment with CD437. Caspase-3 and -9 were activated by CD437, suggesting that the apoptosis is mediated by mitochondrial pathways. Consistent with these findings, the treatment with CD437 upregulated Bax protein, downregulated Bcl-2 protein and released cytochrome c into the cytoplasm. Moreover, rhodamine123 staining revealed mitochondrial depolarization in the cells treated with CD437. These data of the present study suggest that CD437 induces apoptosis in HCC cells via mitochondrial pathways.
Collapse
Affiliation(s)
- Kazue Gonda
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and regenerative Therapeutics, Graduate School of Medicine, Tottori University, Nishi-cho 86, Yonago 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Su D, Gudas LJ. Gene expression profiling elucidates a specific role for RARgamma in the retinoic acid-induced differentiation of F9 teratocarcinoma stem cells. Biochem Pharmacol 2008; 75:1129-60. [PMID: 18164278 PMCID: PMC2988767 DOI: 10.1016/j.bcp.2007.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 12/27/2022]
Abstract
The biological effects of all-trans-retinoic acid (RA), a major active metabolite of retinol, are mainly mediated through its interactions with retinoic acid receptor (RARs alpha, beta, gamma) and retinoid X receptor (RXRs alpha, beta, gamma) heterodimers. RAR/RXR heterodimers activate transcription by binding to RA-response elements (RAREs or RXREs) in the promoters of primary target genes. Murine F9 teratocarcinoma stem cells have been widely used as a model for cellular differentiation and RA signaling during embryonic development. We identified and characterized genes that are differentially expressed in F9 wild type (Wt) and F9 RARgamma-/- cells, with and without RA treatment, through the use of oligonucleotide-based microarrays. Our data indicate that RARgamma, in the absence of exogenous RA, modulates gene expression. Genes such as Sfrp2, Tie1, Fbp2, Emp1, and Emp3 exhibited higher transcript levels in RA-treated Wt, RARalpha-/- and RARbeta2-/- lines than in RA-treated RARgamma-/- cells, and represent specific RARgamma targets. Other genes, such as Runx1, were expressed at lower levels in both F9 RARbeta2-/- and RARgamma-/- cell lines than in F9 Wt and RARalpha-/-. Genes specifically induced by RA at 6h with the protein synthesis inhibitor cycloheximide in F9 Wt, but not in RARgamma-/- cells, included Hoxa3, Hoxa5, Gas1, Cyp26a1, Sfrp2, Fbp2, and Emp1. These genes represent specific primary RARgamma targets in F9 cells. Several genes in the Wnt signaling pathway were regulated by RARgamma. Delineation of the receptor-specific actions of RA with respect to cell proliferation and differentiation should result in more effective therapies with this drug.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmacology, Weill Cornell Medical College, and Weill Graduate School of Biomedical Sciences of Cornell University
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, and Weill Graduate School of Biomedical Sciences of Cornell University
| |
Collapse
|
29
|
Watanabe Y, Tsuchiya H, Sakabe T, Matsuoka S, Akechi Y, Fujimoto Y, Yamane K, Ikeda R, Nishio R, Terabayashi K, Ishii K, Gonda K, Matsumi Y, Ashla AA, Okamoto H, Takubo K, Tomita A, Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N, Shiota G. CD437 induces apoptosis in ovarian adenocarcinoma cells via ER stress signaling. Biochem Biophys Res Commun 2008; 366:840-7. [DOI: 10.1016/j.bbrc.2007.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/16/2022]
|
30
|
Pisano C, Vesci L, Foderà R, Ferrara FF, Rossi C, De Cesare M, Zuco V, Pratesi G, Supino R, Zunino F. Antitumor activity of the combination of synthetic retinoid ST1926 and cisplatin in ovarian carcinoma models. Ann Oncol 2007; 18:1500-5. [PMID: 17698835 DOI: 10.1093/annonc/mdm195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The novel adamantyl retinoid ST1926 is a potent inducer of apoptosis in ovarian carcinoma cells. Since the pro-apoptotic effect is associated with activation of p53, in this study we have investigated the efficacy of combination of ST1926 with cisplatin, a DNA-damaging agent that is known to induce p53-dependent apoptosis. MATERIALS AND METHODS The efficacy of ST1926 and its combination with cisplatin was evaluated in human ovarian carcinoma models, including resistant tumors. RESULTS Oral treatment with ST1926 alone caused a marginal tumor growth inhibition (<50%), but the combination with cisplatin resulted in an improved efficacy, most evident in terms of tumor growth delay without a substantial increase of toxicity. The combination therapy achieved the best effects against the HOC18 ovarian carcinoma tumor, resulting in an appreciable number of animals without evidence of disease at the end of the experiment. In contrast to the marginal effect of ST1926 alone against the subcutaneous-growing tumors, loco-regional (intraperitoneal) treatment achieved a marked increase of survival of animals with ascitic IGROV-1 tumor. CONCLUSIONS The present results document the efficacy of the combination of cisplatin with ST1926 and provide a rational basis for the design of novel, well-tolerated platinum-based treatment approaches in human ovarian carcinoma.
Collapse
Affiliation(s)
- C Pisano
- Research and Development, Sigma-Tau, Pomezia (Rome), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dawson MI, Xia Z, Liu G, Ye M, Fontana JA, Farhana L, Patel BB, Arumugarajah S, Bhuiyan M, Zhang XK, Han YH, Stallcup WB, Fukushi JI, Mustelin T, Tautz L, Su Y, Harris DL, Waleh N, Hobbs PD, Jong L, Chao WR, Schiff LJ, Sani BP. An adamantyl-substituted retinoid-derived molecule that inhibits cancer cell growth and angiogenesis by inducing apoptosis and binds to small heterodimer partner nuclear receptor: effects of modifying its carboxylate group on apoptosis, proliferation, and protein-tyrosine phosphatase activity. J Med Chem 2007; 50:2622-39. [PMID: 17489579 PMCID: PMC2528874 DOI: 10.1021/jm0613323] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptotic and antiproliferative activities of small heterodimer partner (SHP) nuclear receptor ligand (E)-4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC), which was derived from 6-[3'-(1-adamantyl)-4'-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN), and several carboxyl isosteric or hydrogen bond-accepting analogues were examined. 3-Cl-AHPC continued to be the most effective apoptotic agent, whereas tetrazole, thiazolidine-2,4-dione, methyldinitrile, hydroxamic acid, boronic acid, 2-oxoaldehyde, and ethyl phosphonic acid hydrogen bond-acceptor analogues were inactive or less efficient inducers of KG-1 acute myeloid leukemia and MDA-MB-231 breast, H292 lung, and DU-145 prostate cancer cell apoptosis. Similarly, 3-Cl-AHPC was the most potent inhibitor of cell proliferation. 4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorophenyltetrazole, (2E)-5-{2-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]ethenyl}-1H-tetrazole, 5-{4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorobenzylidene}thiazolidine-2,4-dione, and (3E)-4-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]-2-oxobut-3-enal were very modest inhibitors of KG-1 proliferation. The other analogues were minimal inhibitors. Fragment-based QSAR analyses relating the polar termini with cancer cell growth inhibition revealed that length and van der Waals electrostatic surface potential were the most influential features on activity. 3-Cl-AHPC and the 3-chlorophenyltetrazole and 3-chlorobenzylidenethiazolidine-2,4-dione analogues were also able to inhibit SHP-2 protein-tyrosine phosphatase, which is elevated in some leukemias. 3-Cl-AHPC at 1.0 microM induced human microvascular endothelial cell apoptosis but did not inhibit cell migration or tube formation.
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|