1
|
Jiang XC, Hu K, Bai X, Li XR, Yan BC, Chen SP, Li XN, Sun HD, Puno PT. Structurally diverse ent-clerodanoids from the aerial parts of Isodon scoparius. PHYTOCHEMISTRY 2024; 228:114229. [PMID: 39127395 DOI: 10.1016/j.phytochem.2024.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Scoparodane C (1), a diterpenoid with a rare 3,4-seco-3-nor-2,11-epoxy-ent-clerodane scaffold, was obtained from the aerial parts of Isodon scoparius, along with isocopariusines A-E (2-6), five ent-clerodanoids featuring a 5/6-fused ring system, and isocopariusines F-H (7-9), three common ent-clerodanoids. The structures of these previously undescribed compounds were established by a combination of spectroscopic analysis, X-ray diffraction, chemical derivatization, and quantum chemical calculation. Remarkably, isocopariusine B (3) showed strong resistance reversal activity against fluconazole-resistant Candida albicans.
Collapse
Affiliation(s)
- Xue-Chun Jiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Kun Hu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Xue Bai
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Xing-Ren Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Bing-Chao Yan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Su-Ping Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 10039, PR China
| | - Xiao-Nian Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Han-Dong Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Pema-Tenzin Puno
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Yue G, Liu B. Recent Developments in the Syntheses of C-20-Oxygenated ent-Kaurane Diterpenoids. Chempluschem 2024; 89:e202300676. [PMID: 38414152 DOI: 10.1002/cplu.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Ent-kaurane diterpenes are a large group of natural products, with more than 1,000 compounds since their discovery. Due to their excellent biological activities and complex polycyclic structures, these compounds have attracted organic synthesis chemists around the world to be devoted to achieve their total synthesis. At present, the isolated C-20-oxygenated ent-kaurane diterpenes are the most abundant of these natural products, reaching more than 350 in number. However, only total syntheses of 3,20-epoxy, 7,20-epoxy and 19,20-lactone ent-kaurane diterpenes have been reported. In this review, we elaborate the synthesis of these three types of C-20 oxygenated ent-kaurane natural products, discuss these synthetic strategies in detail, and provide good guidance and reference for the synthesis of other C-20 oxygenated compounds.
Collapse
Affiliation(s)
- Guizhou Yue
- College of Science, Sichuan Agricultural University, 46 Xinkang Rd., Ya'an, Sichuan, 625014, China
| | - Bo Liu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
3
|
Chen Y, Zhang C, Zhao L, Chen R, Zhang P, Li J, Zhang X, Zhang X. Eriocalyxin B alleviated ischemic cerebral injury by limiting microglia-mediated excessive neuroinflammation in mice. Exp Anim 2024; 73:124-135. [PMID: 37839867 PMCID: PMC10877152 DOI: 10.1538/expanim.23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Excessive neuroinflammation mediated by microglia has a detrimental effect on the progression of ischemic stroke. Eriocalyxin B (EriB) was found with a neuroprotective effect in mice with Parkinson's disease via the suppression of microglial overactivation. This study aimed to investigate the roles of EriB in permanent middle cerebral artery occlusion (pMCAO) mice. The pMCAO was induced in the internal carotid artery of the mice by the intraluminal filament method, and EriB (10 mg/kg) was administered immediately after surgery by intraperitoneal injection. The behavior score, 2,3,5-triphenyltetrazole chloride staining, Nissl staining, TUNEL, immunohistochemistry, immunofluorescence, PCR, ELISA, and immunoblotting revealed that EriB administration reduced brain infarct and neuron death and ameliorated neuroinflammation and microglia overactivation in pMCAO mice, manifested by alterations of TUNEL-positive cell numbers, ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell numbers, and expression of tumor necrosis factor-α, interleukin 6, IL-1β, inducible nitric oxide synthase, and arginase 1. In addition, EriB suppressed ischemia-induced activation of nuclear factor kappa B (NF-κB) signaling in the brain penumbra, suggesting the involvement of NF-κB in EriB function. In conclusion, EriB exerted anti-inflammatory effects in ischemia stroke by regulating the NF-κB signaling pathway, and this may provide insights into the neuroprotective effect of EriB in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yanqiang Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Liming Zhao
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Junxia Li
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xueping Zhang
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| |
Collapse
|
4
|
Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:3752. [PMID: 37960108 PMCID: PMC10648697 DOI: 10.3390/plants12213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
| | - Martha Juana Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emmanuel Martínez-Ambriz
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico;
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
5
|
Zhao WS, Chen KF, Liu M, Jia XL, Huang YQ, Hao BB, Hu H, Shen XY, Yu Q, Tan MJ. Investigation of targets and anticancer mechanisms of covalently acting natural products by functional proteomics. Acta Pharmacol Sin 2023; 44:1701-1711. [PMID: 36932232 PMCID: PMC10374574 DOI: 10.1038/s41401-023-01072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
Eriocalyxin B (EB), 17-hydroxy-jolkinolide B (HJB), parthenolide (PN), xanthatin (XT) and andrographolide (AG) are terpenoid natural products with a variety of promising antitumor activities, which commonly bear electrophilic groups (α,β-unsaturated carbonyl groups and/or epoxides) capable of covalently modifying protein cysteine residues. However, their direct targets and underlying molecular mechanisms are still largely unclear, which limits the development of these compounds. In this study, we integrated activity-based protein profiling (ABPP) and quantitative proteomics approach to systematically characterize the covalent targets of these natural products and their involved cellular pathways. We first demonstrated the anti-proliferation activities of these five compounds in triple-negative breast cancer cell MDA-MB-231. Tandem mass tag (TMT)-based quantitative proteomics showed all five compounds commonly affected the ubiquitin mediated proteolysis pathways. ABPP platform identified the preferentially modified targets of EB and PN, two natural products with high anti-proliferation activity. Biochemical experiments showed that PN inhibited the cell proliferation through targeting ubiquitin carboxyl-terminal hydrolase 10 (USP10). Together, this study uncovered the covalently modified targets of these natural products and potential molecular mechanisms of their antitumor activities.
Collapse
Affiliation(s)
- Wen-Si Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Man Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Long Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Qi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiang Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Cheng Y, Li J, Wang L, Wu X, Li Y, Xu M, Li Q, Huang J, Zhao T, Yang Z, Zhang H, Zuo L, Zhang X, Geng Z, Wang Y, Song X, Jun Z. Eriocalyxin B ameliorated Crohn's disease-like colitis by restricting M1 macrophage polarization through JAK2/STAT1 signalling. Eur J Pharmacol 2023:175876. [PMID: 37391008 DOI: 10.1016/j.ejphar.2023.175876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND AND AIMS M1 polarization of macrophages in the intestine is an important maintenance factor of the inflammatory response in Crohn's disease (CD). Eriocalyxin B (EriB) is a natural medicine that antagonizes inflammation. Our study aimed to determine the effects of EriB on CD-like colitis in mice, as well as the possible mechanism. METHODS 2,4,6-trinitrobenzene sulfonic acid (TNBS) mice and Il-10-/- mice were used as CD animal models, and the therapeutic effect of EriB on CD-like colitis in mice was addressed by the disease activity index (DAI) score, weight change, histological analysis and flow cytometry assay. To assess the direct role of EriB in regulating macrophage polarization, bone marrow-derived macrophages (BMDMs) were induced to M1 or M2 polarization separately. Molecular docking simulations and blocking experiments were performed to explore the potential mechanisms by which EriB regulates the macrophage polarization. RESULTS EriB treatment reduced body weight loss, DAI score and histological score, demonstrating the improvement of colitis symptoms in mice. In vivo and in vitro experiments both showed that EriB decreased the M1 polarization of macrophages, and suppressed the release of proinflammatory cytokines (IL-1β, TNF-α and IL-6) in mouse colons and BMDMs. The activation of Janus kinase 2/signal transducer and activator of transcription 1 (JAK2/STAT1) signals could be inhibited by EriB, which may be related to the regulation of EriB on M1 polarization. CONCLUSIONS EriB inhibits the M1 polarization of macrophages by attenuating the JAK2/STAT1 pathway, which partially explains the potential mechanism by which EriB ameliorates colitis in mice, and provides a new regimen for the clinical treatment of CD.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Blood Transfusion, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaopei Wu
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuetong Li
- Bengbu Medical College, Bengbu, Anhui, China
| | - Mengyu Xu
- Bengbu Medical College, Bengbu, Anhui, China
| | - Qingqing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ju Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianhao Zhao
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lugen Zuo
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| | - Zhang Jun
- Department of Blood Transfusion, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
7
|
Mijares MR, Martínez GP, De Sanctis JB. Kauranes as Anti-inflammatory and Immunomodulatory Agents: An Overview of In Vitro and In Vivo Effects. PLANT SECONDARY METABOLITES 2022:191-239. [DOI: 10.1007/978-981-16-4779-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Zhang LG, Yu ZQ, Yang C, Chen J, Zhan CS, Chen XG, Zhang L, Hao ZY, Liang CZ. Effect of Eriocalyxin B on prostatic inflammation and pelvic pain in a mouse model of experimental autoimmune prostatitis. Prostate 2020; 80:1394-1404. [PMID: 32965686 DOI: 10.1002/pros.24065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common disease in males. Eriocalyxin B (EriB), a natural diterpenoid purified from Isodon eriocalyx var. laxiflora, was previously reported to have antitumor effects via multiple immune-related pathways. In this study, we investigated the effect of EriB on CP/CPPS using a mouse model of experimental autoimmune prostatitis (EAP) and explored its potential mechanisms. METHODS The EAP model was established in nonobese diabetic mice by intradermal injecting a mixture of prostate antigens and Complete Freund's Adjuvant on days 0 and 28. Then, EAP mice received daily intraperitoneal injections of EriB (5 or 10 mg/kg/d) for 14 days, from days 28 to 42 (EAP+EriB5 or EAP+EriB10 groups). The histopathological appearance of the prostate tissues was evaluated. Chronic pelvic pain development was assessed by cutaneous allodynia. Inflammatory cytokines were measured by enzyme-linked immunosorbent assay tests. We then explored anti-inflammatory potential mechanisms of EriB by studying the effects of PI3K inhibitor wortmannin (EAP+EriB10+Wort group) and NF-κB inhibitor SC75741 (EAP+EriB10+SC group) on prostate inflammation and pelvic pain using this model. RESULTS Histological analyses revealed significant prostate inflammation in EAP mice compared with control mice. Significantly increased pelvic pain was detected in EAP mice (P < .05). Compared with the EAP+Veh group, chronic pain development, histological appearance, and cytokine levels demonstrated that EriB could alleviate the severity of EAP in a dose-dependent manner though upregulation of the PI3K/Akt/mTOR pathway and downregulation of the NF-κB pathway. Further mechanism research demonstrated that the PI3K/AKT/mTOR pathway could be blocked by wortmannin, but was not affected by SC75741. In addition, the NF-κB pathway could be further inhibited by SC75741 compared with the EAP+EriB10+Veh group. However, wortmannin could reactivate the NF-κB pathway, indicating that the PI3K/AKT/mTOR pathway negatively regulates the NF-κB pathway during EriB treatment. CONCLUSIONS The results of the present study suggested that EriB could alleviate the severity of prostatic inflammation and pelvic pain in an EAP mouse model. These findings may broaden the value of EriB as a promising candidate for the treatment of CP/CPPS.
Collapse
Affiliation(s)
- Li-Gang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Zi-Qiang Yu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chang-Sheng Zhan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Zong-Yao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Riaz A, Saleem B, Hussain G, Sarfraz I, Nageen B, Zara R, Manzoor M, Rasul A. Eriocalyxin B Biological Activity: A Review on Its Mechanism of Action. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19868598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural products, a rich source of bioactive chemical compounds, have served humans as a safer drug of choice since times. Eriocalyxin B, an ent-Kaurene diterpenoid, has been extracted from a traditional Chinese herb Isodon eriocalyx. Experimental data support the anticancer and anti-inflammatory activities of EriB. This natural entity exhibits anticancer effects against breast, pancreatic, leukemia, ovarian, lung, bladder, and colorectal cancer. EriB has capability to inhibit the proliferation of cancer cells by prompting apoptosis, arresting cell cycle, and modulating cell signaling pathways. The regulation of signaling pathways in cancerous cells by EriB involves the modulation of various apoptosis-related factors (Bak, Bax, caspases, XIAP, survivin, and Beclin-1), transcriptional factors (nuclear factor kappa B [NF-κB], STAT3, Janus-activated kinase 2, Notch, AP-1, and lκBα), enzymes (cyclooxygenase 2, matrix metalloproteinase 2 [MMP-2], MMP-9, and poly (ADP-ribose) polymerase), cytokines, and protein kinases (mitogen-activated protein kinase and ERK1/2). This review proposes that EriB supplies a novel opportunity for the cure of cancer but supplementary investigations along with preclinical trials are obligatory to effectively figure out its biological and pharmacological applications.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Bisma Saleem
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Rabia Zara
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Maleeha Manzoor
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
10
|
Zhang M, Lee MML, Ye W, Wong WY, Chan BD, Chen S, Zhu L, Tai WCS, Lee CS. Total Synthesis-Enabled Systematic Structure-Activity Relationship Study for Development of a Bioactive Alkyne-Tagged Derivative of Neolaxiflorin L. J Org Chem 2019; 84:7007-7016. [PMID: 31083909 DOI: 10.1021/acs.joc.9b00748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neolaxiflorin L (NL) is a low-abundant Isodon 7,20-epoxy- ent-kuarenoid and was found to be a promising anticancer drug candidate in our previous study. In order to study its structure-activity relationship (SAR), a diversity-oriented synthetic route toward two libraries of (±)-NL analogs, including analogs containing different functionalities in the same 7,20-epoxy- ent-kuarene skeleton and analogs with skeletal changes, has been developed. The results of this total synthesis-enabled SAR successfully led to a bioactive alkyne-tagged NL derivative, which could be a useful probe for proteomics studies.
Collapse
Affiliation(s)
- Mengxun Zhang
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China
| | - Magnolia Muk-Lan Lee
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Weijian Ye
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China
| | - Wing-Yan Wong
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Brandon Dow Chan
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , Shenzhen Research Institute of The Hong Kong Polytechnic University , Shenzhen 518057 , China
| | - Lizhi Zhu
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China.,Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Centre , Shenzhen 518035 , China
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , Shenzhen Research Institute of The Hong Kong Polytechnic University , Shenzhen 518057 , China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China.,Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong
| |
Collapse
|
11
|
Chen L, Yang Q, Hu K, Li XN, Sun HD, Puno PT. Isoforrethins A–D, four ent-abietane diterpenoids from Isodon forrestii var. forrestii. Fitoterapia 2019; 134:158-164. [DOI: 10.1016/j.fitote.2019.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/25/2022]
|
12
|
Dou F, Chu X, Zhang B, Liang L, Lu G, Ding J, Chen S. EriB targeted inhibition of microglia activity attenuates MPP + induced DA neuron injury through the NF-κB signaling pathway. Mol Brain 2018; 11:75. [PMID: 30563578 PMCID: PMC6299497 DOI: 10.1186/s13041-018-0418-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence indicates that microglia activation is associated with an increased risk for developing Parkinson’s disease (PD). With the progressive and selective degeneration of dopaminergic (DA) neurons, proinflammatory cytokines are elevated in the substantia nigra (SN) of PD patients. Thus, anti-inflammation has become one of the therapeutic strategies of PD. Eriocalyxin B (EriB), a diterpenoid isolated from Isodoneriocalyx, was previously reported to have anti-inflammatory effects. MPTP mouse model and MPP+ cell model were prepared to detect the role of EriB in regulating microglia activation and neuron protection. Midbrain tissue and primary cultured microglia and neuron were used to examine microglia activation and neuron damage by immunofluorescence, real-time PCR, western-blot and Elisa assay. Open field activity test was to evaluate the changes of behavioral activity in MPTP-induced PD mouse model. EriB was efficacious in protecting DA neurons by inhibiting microglia activation in PD mice model. Treatment with EriB led to amelioration of disordered sports of PD mice model, which correlated with reduced microglia-associated inflammation and damaged DA neurons. EriB treatment abolished MPP+ induced microglia activation damages to DA neurons in a microglia and DA neurons co-culture system. The underlying mechanism of EriB-induced protective effects involved inhibition of microglia associated proinflammatory cytokines production through the phenotypic shift of microglial cells as well as activator of transcription and nuclear factor-κB (NF-κB) signaling pathways. These findings demonstrate that EriB exerts potent anti-inflammatory effects through selective modulation of microglia activation by targeting NF-κB signaling pathways, thus exerting the protective effect against on MPP+-induced DA neurons injury. This study may provide insights into the promising therapeutic role of EriB for PD.
Collapse
Affiliation(s)
- Fangfang Dou
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinkun Chu
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bei Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Liang
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoqiang Lu
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
Li L, Zhao SL, Yue GGL, Wong TP, Pu JX, Sun HD, Fung KP, Leung PC, Han QB, Lau CBS, Leung PS. Isodon eriocalyx and its bioactive component Eriocalyxin B enhance cytotoxic and apoptotic effects of gemcitabine in pancreatic cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:56-64. [PMID: 29895493 DOI: 10.1016/j.phymed.2018.03.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pancreatic cancer, associated with poor prognosis and low survival rate, has been the fourth leading cause of cancer-related death in the US. Although gemcitabine (Gem) is the first-line chemotherapeutic drug in the management of pancreatic cancer, the median survival extension is only 1.5 months, indicating unsatisfactory clinical results. Therefore, exploring agents that can enhance the anti-cancer activity of Gem would be an attractive strategy. PURPOSE Our previous studies have demonstrated that eriocalyxin b (EriB), an ent‑kaurane diterpenoid isolated from Isodon eriocalyx (Dunn.) Hara, possesses anti-pancreatic cancer effects, thus acting as a potential therapeutic agent. In this study, we further investigated whether EriB or the ethanol extract of I. eriocalyx (Isodon) could potentiate the cytotoxic activity of Gem in human pancreatic adenocarcinoma cells. In addition, the mechanism associated with their effects was also studied. METHODS The anti-proliferation effect was assessed by MTT assay and Ki-67 immunostaining. The combination effect (addition, synergism and antagonism) of various agents was calculated by the Calcusyn software (Biosoft), utilizing the T.C. Chou Method. Apoptosis was detected using Annexin V and PI double staining followed by quantitative flow cytometry. Protein expression regulated by various treatments was analyzed by western blotting. RESULTS The combination index revealed that Gem and EriB (or Isodon extract) had synergistic anti-proliferative effect. Both cellular apoptotic and anti-proliferative effects of Gem were significantly increased after combination with EriB (or Isodon extract). The underlying mechanisms involved in the combination effects were elucidated, which include: (1) increased activation of the caspase cascade; (2) reduction of PDK1 and AKT phosphorylation; (3) induction of JNK phosphorylation by Isodon and Gem combination. CONCLUSION Gem and EriB (or Isodon extract) taken together in combination regulated PDK1/AKT1/caspase and JNK signaling and promoted apoptosis synergistically, which may contribute to the much increased anti-proliferative activity compared to either agent alone.
Collapse
Affiliation(s)
- L Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - S L Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - G G L Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - T P Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - J X Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan, China
| | - H D Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan, China
| | - K P Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - P C Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Q B Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - C B S Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - P S Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Abstract
Covering: December 2005 to June 2016. Previous review: Nat. Prod. Rep., 2006, 23, 673-698Over the last decade, great efforts have been made to conduct phytochemistry research on the genus Isodon, which have led to the isolation and identification of a number of diterpenoids. At the same time, these newly reported diterpenoids with diverse structures have led to new findings on their biological functions and chemical synthesis research. In this update, we review more than 600 new diterpenoids, including their structures, classifications, biogenetic pathways, bioactivities, and chemical synthesis.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China.
| | | | | | | |
Collapse
|
15
|
Jackson PA, Widen JC, Harki DA, Brummond KM. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. J Med Chem 2017; 60:839-885. [PMID: 27996267 PMCID: PMC5308545 DOI: 10.1021/acs.jmedchem.6b00788] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although Michael acceptors display a potent and broad spectrum of bioactivity, they have largely been ignored in drug discovery because of their presumed indiscriminate reactivity. As such, a dearth of information exists relevant to the thiol reactivity of natural products and their analogues possessing this moiety. In the midst of recently approved acrylamide-containing drugs, it is clear that a good understanding of the hetero-Michael addition reaction and the relative reactivities of biological thiols with Michael acceptors under physiological conditions is needed for the design and use of these compounds as biological tools and potential therapeutics. This Perspective provides information that will contribute to this understanding, such as kinetics of thiol addition reactions, bioactivities, as well as steric and electronic factors that influence the electrophilicity and reversibility of Michael acceptors. This Perspective is focused on α,β-unsaturated carbonyls given their preponderance in bioactive natural products.
Collapse
Affiliation(s)
- Paul A. Jackson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John C. Widen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kay M. Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
A rhodium(III)-based inhibitor of autotaxin with antiproliferative activity. Biochim Biophys Acta Gen Subj 2017; 1861:256-263. [DOI: 10.1016/j.bbagen.2016.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/09/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
|
17
|
|
18
|
Wu G, Gao XJ, Jang J, Gao X. Fullerenes and their derivatives as inhibitors of tumor necrosis factor-α with highly promoted affinities. J Mol Model 2016; 22:161. [PMID: 27316702 DOI: 10.1007/s00894-016-3019-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/26/2016] [Indexed: 01/04/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a cell signalling protein involved in systemic inflammation in infectious and other malignant diseases. Physiologically, it plays an important role in regulating host defence, but its overexpression can lead to serious illnesses including cancer, autoimmune disease and inflammatory disease. Gadolinium-based metallofullerenols, e.g., Gd@C82(OH) x (x ≈ 22), are well known for their abundant biological activities with low toxicity experimentally and theoretically; however, their activity in direct TNF-α inhibition has not been explored. In this work, we investigated the inhibiting effects of four types of fullerene-based ligands: fullerenes, fullerenols, metallofullerenes, and metallofullerenols. We reported previously that fullerenes, metallofullerenes and their hydroxylated derivatives (fullerenols) can reside in the same pocket of the TNF-α dimer as that of SPD304-a known inhibitor of TNF-α [He et al. (2005) Science 310:1022, 18]. Ligand docking and binding free energy calculations suggest that, with a similar nonpolar interaction dominated binding pattern, the fullerene-based ligands, C60, C60(OH)12, Gd@C60, C82, C82(OH)12, Gd@C82, Gd@C82(OH)13 and Gd@C82(OH)21, have larger affinity than currently known inhibitors, and could be used to design novel inhibitors of TNF-α in the future. Graphical Abstract Fullerene-material/TNF-α.
Collapse
Affiliation(s)
- Gaoyin Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao J Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Pusan, 46241, Korea
| | - Xingfa Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Lu YM, Chen W, Zhu JS, Chen WX, Chen NW. Eriocalyxin B blocks human SW1116 colon cancer cell proliferation, migration, invasion, cell cycle progression and angiogenesis via the JAK2/STAT3 signaling pathway. Mol Med Rep 2016; 13:2235-40. [PMID: 26795301 DOI: 10.3892/mmr.2016.4800] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 09/16/2015] [Indexed: 11/06/2022] Open
Abstract
Eriocalyxin B, a natural ent-kaurene diterpene compound, has been shown to prevent carcinogenesis and tumor development. However, little is known regarding the mechanism underlying the antitumor activity of Eriocalyxin B in human colon cancer. The aim of the present study was to examine the role of Eriocalyxin B in SW1116 cells, and to verify the hypothesis that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway may serve as a therapeutic target in human colon cancer treatment. Cell proliferation was measured with a Cell Counting kit‑8 assay, and the cell cycle was assessed by flow cytometry. Cell migration and invasion were measured by Transwell analysis. In addition, western blot analysis was performed to detect the protein expression levels in SW1116 cells treated with various concentrations of Eriocalyxin B. The results demonstrated that 1 µmol/l Eriocalyxin B was effective at inhibiting JAK2 and STAT3 phosphorylation, followed by the downregulation of JAK2 and STAT3 downstream target expression, which resulted in the inhibition of cell proliferation, migration, invasion and angiogenesis. Eriocalyxin B also suppressed the expression of proliferation‑associated protein (proliferating cell nuclear antigen) and angiogenesis‑associated proteins (vascular endothelial growth factor and vascular endothelial growth factor receptor 2), as well as that of migration- and invasion‑associated proteins (matrix metalloproteinase 2 and 9). These results suggested that Eriocalyxin B may suppress JAK2/STAT3 signaling, and thus act as a therapeutic or preventive agent in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yun-Min Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei-Xiong Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ni-Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
20
|
ent-Kauranoids isolated from Isodon eriocalyx var. laxiflora and their structure activity relationship analyses. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.09.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Affiliation(s)
- Guang-Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, P.R. China
- Molecular Medicine Research Center, Yanbian University, Yanji, P.R. China
| | - Xing-Fu Cai
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, P.R. China
- Molecular Medicine Research Center, Yanbian University, Yanji, P.R. China
| | - Jung Joon Lee
- Molecular Medicine Research Center, Yanbian University, Yanji, P.R. China
| |
Collapse
|
22
|
Riehl PS, DePorre YC, Armaly AM, Groso EJ, Schindler CS. New avenues for the synthesis of ent-kaurene diterpenoids. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol (Dordr) 2015; 38:327-39. [PMID: 26318853 DOI: 10.1007/s13402-015-0236-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are regulated by several signaling pathways that ultimately control their maintenance and expansion. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) forms a protein complex that controls DNA transcription and, as such, plays an important role in proliferation, inflammation, angiogenesis, invasion and metastasis. The NF-κB signaling pathway, which has been found to be constitutively activated in CSCs from a variety of cancers, participates in the maintenance, expansion, proliferation and survival of CSCs. Targeted disruption of this pathway may profoundly impair the adverse phenotype of CSCs and may provide a therapeutic opportunity to remove the CSC fraction. In particular, it may be attractive to use specific NF-κB inhibitors in chronic therapeutic schemes to reduce disease progression. Exceptional low toxicity profiles of these inhibitors are a prerequisite for use in combined treatment regimens and to avoid resistance. CONCLUSION Although still preliminary, recent evidence shows that such targeted strategies may be useful in adjuvant chemo-preventive settings.
Collapse
|
24
|
Kong LM, Deng X, Zuo ZL, Sun HD, Zhao QS, Li Y. Identification and validation of p50 as the cellular target of eriocalyxin B. Oncotarget 2015; 5:11354-64. [PMID: 25404639 PMCID: PMC4294364 DOI: 10.18632/oncotarget.2461] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/12/2014] [Indexed: 12/27/2022] Open
Abstract
As an ent-kaurene diterpenoid isolated from Isodon eriocalyx var. Laxiflora, Eriocalyxin B (EriB) possesses potent bioactivity of antitumor and anti-autoimmune inflammation, which has been suggested to work through inhibition of NF-kappaB (NF-κB) signaling. However, the direct target of EriB remains elusive. In this study, we showed that EriB induced apoptosis is associated with the inhibition of NF-κB signaling in SMMC-7721 hepatocellular carcinoma cells. With activity-based probe profiling, we identified p50 protein as the direct target of EriB. We showed that cysteine 62 is the critical residue of p50 for EriB binding through the α, β-unsaturated ketones. As the result, EriB selectively blocks the binding between p50 and the response elements, whereas having no effect on the dimerization or the nuclear translocation of p50 and p65. SiRNA mediated knockdown of p50 attenuated the apoptosis induced by EriB in SMMC-7721 cells. Taken together, our studies illustrated that EriB induces cancer cell apoptosis through interfering with the binding between NF-κB and the response elements by targeting the cysteine 62 of p50, which highlights its potential for the development of p50 targeted cancer therapeutic agents.
Collapse
Affiliation(s)
- Ling-Mei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
25
|
Zhang WB, Shao WB, Li FZ, Gong JX, Yang Z. Asymmetric Total Synthesis of (−)-Maoecrystal V. Chem Asian J 2015; 10:1874-80. [DOI: 10.1002/asia.201500564] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Wei-bin Zhang
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Wen-bin Shao
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Fu-zhuo Li
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Jian-xian Gong
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zhen Yang
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and; Beijing National Laboratory for Molecular Science (BNLMS); Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- Key Laboratory of Marine Drugs; Chinese Ministry of Education; School of Medicine and Pharmacy; Ocean University of China; 5 Yushan Road Qingdao China
| |
Collapse
|
26
|
Susanti D, Liu LJ, Rao W, Lin S, Ma DL, Leung CH, Chan PWH. Gold-Catalyzed Cycloisomerization and Diels-Alder Reaction of 1,4,9-Dienyne Esters to 3 a,6-Methanoisoindole Esters with Pro-Inflammatory Cytokine Antagonist Activity. Chemistry 2015; 21:9111-8. [DOI: 10.1002/chem.201500795] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 11/10/2022]
|
27
|
Papaneophytou C, Alexiou P, Papakyriakou A, Ntougkos E, Tsiliouka K, Maranti A, Liepouri F, Strongilos A, Mettou A, Couladouros E, Eliopoulos E, Douni E, Kollias G, Kontopidis G. Synthesis and biological evaluation of potential small moleculeinhibitors of tumor necrosis factor. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00023h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of 39 novel SPD-304 analogs were designed synthesized and evaluated as inhibitors of TNF.
Collapse
Affiliation(s)
| | - Polyxeni Alexiou
- Laboratory of General Chemistry
- Department of Science
- Agricultural University of Athens
- Athens 11855
- Greece
| | - Athanasios Papakyriakou
- Laboratory of Genetics
- Department of Biotechnology
- Agricultural University of Athens
- Athens 11855
- Greece
| | | | | | | | | | | | - Anthi Mettou
- Department of Biochemistry
- Veterinary School
- University of Thessaly
- Karditsa 43100
- Greece
| | - Elias Couladouros
- Laboratory of General Chemistry
- Department of Science
- Agricultural University of Athens
- Athens 11855
- Greece
| | - Elias Eliopoulos
- Laboratory of Genetics
- Department of Biotechnology
- Agricultural University of Athens
- Athens 11855
- Greece
| | - Eleni Douni
- Laboratory of Genetics
- Department of Biotechnology
- Agricultural University of Athens
- Athens 11855
- Greece
| | - George Kollias
- Biomedical Sciences Research Center “Alexander Fleming”
- Vari
- Greece
| | - George Kontopidis
- Department of Biochemistry
- Veterinary School
- University of Thessaly
- Karditsa 43100
- Greece
| |
Collapse
|
28
|
Ma YC, Ke Y, Zi X, Zhao W, Shi XJ, Liu HM. Jaridonin, a novel ent-kaurene diterpenoid from Isodon rubescens, inducing apoptosis via production of reactive oxygen species in esophageal cancer cells. Curr Cancer Drug Targets 2014; 13:611-24. [PMID: 23597192 DOI: 10.2174/15680096113139990030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 06/02/2012] [Indexed: 12/26/2022]
Abstract
Isodon rubescens, a Chinese herb, has been used as a folk, botanical medicine in China for inflammatory diseases and cancer treatment for many years. Recently, we isolated a new ent-kaurene diterpenoid, named Jaridonin, from Isodon rubescens. The chemical structure of Jaridonin was verified by infrared (IR), nuclear magnetic resonance (NMR), and mass spectrum (MS) data as well as X-ray spectra. Jaridonin potently reduced viabilities of several esophageal cancer cell lines, including EC109, EC9706 and EC1. Jaridonin treatment resulted in typical apoptotic morphological characteristics, increased the number of annexin V-positive staining cells, as well as caused a G2/M arrest in cell cycle progression. Furthermore, Jaridonin resulted in a significant loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, and then activation of Caspase-9 and -3, leading to activation of the mitochondria mediated apoptosis. Furthermore, these effects of Jaridonin were accompanied by marked reactive oxygen species (ROS) production and increased expression of p53, p21(waf1/Cip1) and Bax, whereas two ROS scavengers, N-acetyl-L-cysteine (LNAC) and Vitamin C, significantly attenuated the effects of Jaridonin on the mitochondrial membrane potential, DNA damage, expression of p53 and p21(waf1/Cip1) and reduction of cell viabilities. Taken together, our results suggest that a natural ent-kaurenoid diterpenoid, Jaridonin, is a novel apoptosis inducer and deserves further investigation as a new chemotherapeutic strategy for patients with esophageal cancer.
Collapse
Affiliation(s)
- Yong-Cheng Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Su J, Zhao P, Kong L, Li X, Yan J, Zeng Y, Li Y. Trichothecin induces cell death in NF-κB constitutively activated human cancer cells via inhibition of IKKβ phosphorylation. PLoS One 2013; 8:e71333. [PMID: 23936501 PMCID: PMC3731298 DOI: 10.1371/journal.pone.0071333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
Constitutive activation of the transcription factor nuclear factor-κB (NF-κB) is involved in tumorigenesis and chemo-resistance. As the key regulator of NF-κB, IKKβ is a major therapeutic target for various cancers. Trichothecin (TCN) is a metabolite isolated from an endophytic fungus of the herbal plant Maytenus hookeri Loes. In this study, we evaluated the anti-tumor activity of TCN and found that TCN markedly inhibits the growth of cancer cells with constitutively activated NF-κB. TCN induces G0/G1 cell cycle arrest and apoptosis in cancer cells, activating pro-apoptotic proteins, including caspase-3, -8 and PARP-1, and decreasing the expression of anti-apoptotic proteins Bcl-2, Bcl-xL, and survivin. Reporter activity assay and target genes expression analysis illustrated that TCN works as a potent inhibitor of the NF-κB signaling pathway. TCN inhibits the phosphorylation and degradation of IκBα and blocks the nuclear translocation of p65, and thus inhibits the expression of NF-κB target genes XIAP, cyclin D1, and Bcl-xL. Though TCN does not directly interfere with IKKβ kinase, it suppresses the phosphorylation of IKKβ. Overexpression of constitutively activated IKKβ aborted TCN induced cancer cell apoptosis, whereas knockdown of endogenous IKKβ with siRNA sensitized cancer cells toward apoptosis induced by TCN. Moreover, TCN showed a markedly weaker effect on normal cells. These findings suggest that TCN may be a potential therapeutic candidate for cancer treatment, targeting NF-κB signaling.
Collapse
Affiliation(s)
- Jia Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Peiji Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xingyao Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Juming Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- * E-mail:
| |
Collapse
|
30
|
Li X, Pu J, Jiang S, Su J, Kong L, Mao B, Sun H, Li Y. Henryin, an ent-kaurane diterpenoid, inhibits Wnt signaling through interference with β-catenin/TCF4 interaction in colorectal cancer cells. PLoS One 2013; 8:e68525. [PMID: 23844215 PMCID: PMC3699517 DOI: 10.1371/journal.pone.0068525] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022] Open
Abstract
Aberrant Wnt/β-catenin signaling has been strongly associated with the tumorigenesis of human colorectal cancer. Inhibitors of this pathway may then offer therapeutic strategies as well as chemoprevention for this malignant disease. Henryin is an ent-kaurane diterpenoid isolated from Isodonrubescens var. lushanensis, a plant long been used in folk medicine to prevent inflammation and gastrointestinal disease. In the present study, we report that henryin selectively inhibits the proliferation of human colorectal cancer cells with a GI50 value in the nano-molar range. Microarray analysis and reporter assays showed that henryin worked as a novel antagonist of Wnt signaling pathway. Henryin reduced the expression of Cyclin D1 and C-myc, and induced G1/S phase arrest in HCT116 cells. Concurrently, henryin did not affect the cytosol-nuclear distribution of soluble β-catenin, but impaired the association of β-catenin/TCF4 transcriptional complex likely through directly blocking the binding of β-catenin to TCF4. We also then analyzed the structure-activity relationship among the ent-kaurane type diterpenoids. Our data suggests that henryin, as a novel inhibitor of Wnt signaling, could be a potential candidate for further preclinical evaluation for colon cancer treatment, and as such warrants further exploration.
Collapse
Affiliation(s)
- Xingyao Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianxin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shiyou Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jia Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- * E-mail: (YL); (HS)
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- * E-mail: (YL); (HS)
| |
Collapse
|
31
|
Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Proc Natl Acad Sci U S A 2013; 110:2258-63. [PMID: 23345445 DOI: 10.1073/pnas.1222426110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eriocalyxin B (EriB), a diterpenoid isolated from Isodon eriocalyx, was previously reported to have antitumor effects via multiple pathways, and these pathways are related to immune responses. In this study, we demonstrated that EriB was efficacious in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Treatment with EriB led to amelioration of EAE, which correlated with reduced spinal cord inflammation and demyelination. EriB treatment abolished encephalitogenic T-cell responses to myelin oligodendrocyte glycoprotein in an adoptive transfer EAE model. The underlying mechanism of EriB-induced effects involved inhibition of T helper (Th) 1 and Th17 cell differentiation through Janus Kinase/Signal Transducer and Activator Of Transcription and Nuclear factor-κB signaling pathways as well as elevation of reactive oxygen species. These findings indicate that EriB exerts potent antiinflammatory effects through selective modulation of pathogenic Th1 and Th17 cells by targeting critical signaling pathways. The study provides insights into the role of EriB as a unique therapeutic agent for the treatment of autoimmune diseases.
Collapse
|
32
|
A novel small molecule, HK-156, inhibits lipopolysaccharide-induced activation of NF-κB signaling and improves survival in mouse models of sepsis. Acta Pharmacol Sin 2012; 33:1204-16. [PMID: 22684031 DOI: 10.1038/aps.2012.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To characterize a small molecule compound HK-156 as a novel inhibitor of the nuclear factor κB (NF-κB) signaling pathway. METHODS THP-1 monocytes and HEK293/hTLR4A-MD2-CD14 cells were tested. HK-156 and compound 809, an HK-156 analogue, were synthesized. A luciferase assay was used to evaluate the transcriptional activity of NF-κB. The levels of cytokines were measured with cytokine arrays, ELISA and quantitative PCR. An electrophoretic mobility shift assay (EMSA), immunofluorescence, Western blot and mass spectrometry were used to investigate the molecular mechanisms underlying the actions of the agent. BALB/c mice challenged with lipopolysaccharide (LPS, 15 mg/kg, ip) were used as a mouse experimental endotoxemia model. RESULTS In HEK293hTLR4/NF-κB-luc cells treated with LPS (1000 ng/mL), HK-156 inhibited the transcriptional activity of NF-κB in a concentration-dependent manner (IC₅₀=6.54 ± 0.37 μmol/L). Pretreatment of THP-1 monocytes with HK-156 (5, 10 and 20 μmol/L) significantly inhibited LPS-induced release and production of TNF-α and IL-1β, attenuated LPS-induced translocation of NF-κB into the nucleus and its binding to DNA, and suppressed LPS-induced phosphorylation and degradation of IκBα, and phosphorylation of IKKβ and TGFβ-activated kinase (TAK1). Meanwhile, HK-156 (5, 10 and 20 μmol/L) slightly suppressed LPS-induced activation of p38. The effect of HK-156 on LPS-induced activation of NF-κB signaling was dependent on thiol groups of cysteines in upstream proteins. In mouse models of sepsis, pre-injection of HK-156 (50 mg/kg, iv) significantly inhibited TNFα production and reduced the mortality caused by the lethal dose of LPS. CONCLUSION HK-156 inhibits LPS-induced activation of NF-κB signaling by suppressing the phosphorylation of TAK1 in vitro, and exerts beneficial effects in a mouse sepsis model. HK-156 may therefore be a useful therapeutic agent for treating sepsis.
Collapse
|
33
|
Leung CH, Zhong HJ, Yang H, Cheng Z, Chan DSH, Ma VPY, Abagyan R, Wong CY, Ma DL. A metal-based inhibitor of tumor necrosis factor-α. Angew Chem Int Ed Engl 2012; 51:9010-4. [PMID: 22807261 DOI: 10.1002/anie.201202937] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/08/2012] [Indexed: 01/01/2023]
Abstract
Staying in the pocket: A cyclometalated iridium(III) biquinoline complex targets the protein-protein interface (see picture; C yellow, N blue, Ir dark green) of the tumor necrosis factor-α (TNF-α) trimer. Molecular-modeling studies confirm the nature of this interaction. Both enantiomers of the iridium complex display comparable in vitro potency to the strongest small-molecule inhibitor of TNF-α.
Collapse
Affiliation(s)
- Chung-Hang Leung
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Leung CH, Zhong HJ, Yang H, Cheng Z, Chan DSH, Ma VPY, Abagyan R, Wong CY, Ma DL. A Metal-Based Inhibitor of Tumor Necrosis Factor-α. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202937] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Liu JP, Zhang HB, Huang SX, Pu JX, Xiao WL, Zhang XP, Xiao WD, Lei C, Sun HD. Synthesis and Biological Evaluation of Laxiflorin J Derivatives as Potential Antitumor Agents. J Heterocycl Chem 2012. [DOI: 10.1002/jhet.816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 People's Republic of China
- Department of Chemistry; Yunnan Normal University; Kunming 650092 People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 People's Republic of China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 People's Republic of China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 People's Republic of China
| | - Jian-Xin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 People's Republic of China
| | - Wei-Lie Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 People's Republic of China
| | - Xue-Ping Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 People's Republic of China
| | - Wen-Ding Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 People's Republic of China
| | - Chun Lei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 People's Republic of China
| |
Collapse
|
36
|
Liu J, Sun RWY, Leung CH, Lok CN, Che CM. Inhibition of TNF-α stimulated nuclear factor-kappa B (NF-κB) activation by cyclometalated platinum(ii) complexes. Chem Commun (Camb) 2012; 48:230-2. [DOI: 10.1039/c1cc15317j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Lo KKW, Zhang KY. Iridium(iii) complexes as therapeutic and bioimaging reagents for cellular applications. RSC Adv 2012; 2:12069. [DOI: 10.1039/c2ra20967e] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
38
|
Wang WG, Du X, Li XN, Wu HY, Liu X, Shang SZ, Zhan R, Liang CQ, Kong LM, Li Y, Pu JX, Sun HD. New bicyclo[3.1.0]hexane unit ent-kaurane diterpene and its seco-derivative from Isodon eriocalyx var. laxiflora. Org Lett 2011; 14:302-5. [PMID: 22181015 DOI: 10.1021/ol203061z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neolaxiflorin A (1), an unprecedented ent-kaurane diterpenoid with a bicyclo[3.1.0]hexane unit, and its seco-derivative, neolaxiflorin B (2), along with two known compounds 3 and 4 were isolated from the leaves of Isodon eriocalyx var. laxiflora. The absolute configuration of 1 was determined by spectral methods and single crystal X-ray diffraction analysis. Compound 4 and the synthesized compound 5 exhibited significant cytotoxicity.
Collapse
Affiliation(s)
- Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Direct Rel/NF-κB inhibitors: structural basis for mechanism of action. Future Med Chem 2011; 1:1683-707. [PMID: 21425986 DOI: 10.4155/fmc.09.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Rel/NF-κB transcription factors have emerged as novel therapeutic targets for a variety of human diseases and pathological conditions, including inflammation, autoimmune diseases, cancer, ischemic injury, osteoporosis, transplant rejection and neurodegeneration. Several US FDA-approved drugs may, in part, attribute their therapeutic effects to the inhibition of the Rel/NF-κB pathway. Strategies for blocking the Rel/NF-κB signaling pathway have inspired the pharmaceutical industry to develop inhibitors for I-κB kinase, however, this article focuses instead on identifying natural compounds that directly target and inhibit DNA binding and transcription activity of Rel/NF-κB. These include compounds containing a quinone core, an α,β unsaturated carbonyl and a benzene diamine. By investigating the mechanisms of action of existing natural inhibitors, novel strategies and synthetic approaches can be devised that will facilitate the development of novel and selective Rel/NF-κB inhibitors with better safety profiles.
Collapse
|
40
|
Ma DL, Xu T, Chan DSH, Man BYW, Fong WF, Leung CH. A highly selective, label-free, homogenous luminescent switch-on probe for the detection of nanomolar transcription factor NF-kappaB. Nucleic Acids Res 2011; 39:e67. [PMID: 21398636 PMCID: PMC3105395 DOI: 10.1093/nar/gkr106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factors are involved in a number of important cellular processes. The transcription factor NF-κB has been linked with a number of cancers, autoimmune and inflammatory diseases. As a result, monitoring transcription factors potentially represents a means for the early detection and prevention of diseases. Most methods for transcription factor detection tend to be tedious and laborious and involve complicated sample preparation, and are not practical for routine detection. We describe herein the first label-free luminescence switch-on detection method for transcription factor activity using Exonuclease III and a luminescent ruthenium complex, [Ru(phen)2(dppz)]2+. As a proof of concept for this novel assay, we have designed a double-stranded DNA sequence bearing two NF-κB binding sites. The results show that the luminescence response was proportional to the concentration of the NF-κB subunit p50 present in the sample within a wide concentration range, with a nanomolar detection limit. In the presence of a known NF-κB inhibitor, oridonin, a reduction in the luminescence response of the ruthenium complex was observed. The reduced luminescence response of the ruthenium complex in the presence of small molecule inhibitors allows the assay to be applied to the high-throughput screening of chemical libraries to identify new antagonists of transcription factor DNA binding activity. This will allow the rapid and low cost identification and development of novel scaffolds for the treatment of diseases caused by the deregulation of transcription factor activity.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
41
|
Leung CH, Chan DSH, Kwan MHT, Cheng Z, Wong CY, Zhu GY, Fong WF, Ma DL. Structure-Based Repurposing of FDA-Approved Drugs as TNF-α Inhibitors. ChemMedChem 2011; 6:765-8. [DOI: 10.1002/cmdc.201100016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Indexed: 01/15/2023]
|
42
|
Li Y, Liu J, Yu S, Proksch P, Gu J, Lin W. TNF-α inhibitory diterpenoids from the Chinese mangrove plant Excoecaria agallocha L. PHYTOCHEMISTRY 2010; 71:2124-2131. [PMID: 20822783 DOI: 10.1016/j.phytochem.2010.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/06/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Chemical examination of the stems and twigs of the mangrove plant Excoecaria agallocha L. resulted in the isolation of six ent-kaurane diterpenoids named agallochaols K-P (1-6), an atisane-type diterpenoid agallochaol Q (7), along with eight known diterpenoids (8-15). Their structures were elucidated on the basis of extensive spectroscopic analysis and by comparison of their NMR spectroscopic data with those reported in literature, in association with the biogenetic relationship with the X-ray structure of 9. Compounds 1, 5-7, 9-10, and 13 showed anti-inflammatory potency to suppress expression of NF-κB and AP-1 targeted genes including TNF-α and IL-6 induced by lipopolysaccharide (LPS) in mouse macrophages Raw 264.7 cells. In addition, compounds 1, 5-7, 9-10, and 13 block NF-κB activation, while compounds 1 and 7 block AP-1 activation dramatically, indicating these compounds possess an anti-inflammatory potential in vitro.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Diterpenes/chemistry
- Diterpenes/isolation & purification
- Diterpenes/pharmacology
- Diterpenes, Kaurane/chemistry
- Diterpenes, Kaurane/isolation & purification
- Diterpenes, Kaurane/pharmacology
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Euphorbiaceae/chemistry
- Interleukin-6/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Mice
- NF-kappa B/antagonists & inhibitors
- Nuclear Magnetic Resonance, Biomolecular
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Li XN, Pu JX, Du X, Lou LG, Li LM, Huang SX, Zhao B, Zhang M, He F, Luo X, Xiao WL, Sun HD. Structure and cytotoxicity of diterpenoids from Isodon eriocalyx. JOURNAL OF NATURAL PRODUCTS 2010; 73:1803-1809. [PMID: 20949916 DOI: 10.1021/np1004328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new ent-atisanoid, eriocatisin A (1), six new ent-abietanoids, eriocasins B-E (2-4, 7), 3-acetyleriocasin C (5), and 3β-acetoxyeriocasin D (6), and seven new ent-kauranoids, maoesins A-F (8, 10-14) and 3α-acetoxy-maoesin A (9), together with 21 known compounds, were isolated from the aerial parts of Isodon eriocalyx. The structures of 1-14 were determined by spectroscopic data interpretation. All compounds isolated were evaluated for their in vitro growth inhibitory activity against the HT-29, BEL-7402, and SK-OV-3 human cancer cell lines. Compounds 17, 18, and 20 showed inhibitory effects for all three tumor cell lines used, with IC(50) values in the range 2.1-7.3 μM.
Collapse
Affiliation(s)
- Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
DCB-3503, a tylophorine analog, inhibits protein synthesis through a novel mechanism. PLoS One 2010; 5:e11607. [PMID: 20657652 PMCID: PMC2904705 DOI: 10.1371/journal.pone.0011607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 06/22/2010] [Indexed: 12/11/2022] Open
Abstract
Background DCB-3503, a tylophorine analog, inhibits the growth of PANC-1 (human pancreatic ductal cancer cell line) and HepG2 (human hepatocellular cancer cell line) tumor xenografts in nude mice. The inhibition of growth leads to cancer cell differentiation instead of cell death. However, the mechanisms of action of tylophorine analogs is unknown. Methodology/Principal Findings In this study, we show that DCB-3503 suppresses the expression of pro-oncogenic or pro-survival proteins with short half-lives, including cyclin D1, survivin, β-catenin, p53, and p21, without decreasing their mRNA levels. Proteasome inhibitor reversed the inhibitory effect of DCB-3503 on expression of these proteins. DCB-3503 inhibited the incorporation of radiolabeled amino acid and thymidine, and to a much lesser degree of uridine, in a panel of cell lines. The mechanism of inhibition of protein synthesis is different from that of cycloheximide (CHX) as assayed in cell culture and HeLa in vitro translation system. Furthermore, in contrast to rapamycin, DCB-3503 does not affect protein synthesis through the mTOR pathway. DCB-3503 treatment shifts the sedimentation profiles of ribosomes and mRNAs towards the polysomal fractions while diminishing monosome abundance, indicative of the inhibition of the elongation step of protein synthesis. Preferential down regulation of several studied proteins under these conditions is likely due to the relative short half-lives of these proteins. Conclusion/Significance The inhibitory effect of DCB-3503 on translation is apparently distinct from any of the current anticancer compounds targeting protein synthesis. Translation inhibitors with novel mechanism could complement current chemotherapeutic agents for the treatment of human cancers and suppress the occurrence of drug resistance.
Collapse
|
45
|
Chan DH, Lee HM, Yang F, Che CM, Wong C, Abagyan R, Leung CH, Ma DL. Structure-Based Discovery of Natural-Product-like TNF-α Inhibitors. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Chan DSH, Lee HM, Yang F, Che CM, Wong CCL, Abagyan R, Leung CH, Ma DL. Structure-based discovery of natural-product-like TNF-α inhibitors. Angew Chem Int Ed Engl 2010; 49:2860-4. [PMID: 20235259 DOI: 10.1002/anie.200907360] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Indexed: 11/10/2022]
Abstract
Small but effective: two natural-product-like inhibitors of tumor necrosis factor α (TNF-α; represented in green in the picture) have been identified using structure-based virtual screening. These compounds represent only the third and fourth examples of direct targeting of TNF-α by a small molecule, and display potency comparable to that of the strongest TNF-α inhibitor reported to date.
Collapse
|
47
|
Eriocalyxin B induces apoptosis in lymphoma cells through multiple cellular signaling pathways. Exp Hematol 2010; 38:191-201. [DOI: 10.1016/j.exphem.2009.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/07/2009] [Accepted: 12/22/2009] [Indexed: 11/22/2022]
|
48
|
Chen J, Sun Z, Zhang Y, Zeng X, Qing C, Liu J, Li L, Zhang H. Synthesis of gibberellin derivatives with anti-tumor bioactivities. Bioorg Med Chem Lett 2009; 19:5496-9. [DOI: 10.1016/j.bmcl.2009.07.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/26/2009] [Accepted: 07/14/2009] [Indexed: 11/27/2022]
|
49
|
Aquila S, Weng ZY, Zeng YQ, Sun HD, Ríos JL. Inhibition of NF-kappaB activation and iNOS induction by ent-kaurane diterpenoids in LPS-stimulated RAW264.7 murine macrophages. JOURNAL OF NATURAL PRODUCTS 2009; 72:1269-1272. [PMID: 19719246 DOI: 10.1021/np9001465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Xerophilusin A (1), xerophilusin B (2), longikaurin B (3), and xerophilusin F (4) from Isodon xerophylus inhibit LPS-induced NO production in RAW 264.7 macrophages, with IC(50) values of 0.60, 0.23, 0.44, and 0.67 muM, respectively, and they all inhibited mRNA production in these same cells. They decreased the luciferase activity in RAW 264.7 cells transiently transfected with the NF-kappaB-dependent luciferase reporter, with IC(50) values of 1.8, 0.7, 1.2, and 1.6 muM, respectively. Compounds 1-3 reduced NF-kappaB activation, with compound 4 showing no effect, but p65 translocation from the cytoplasm to the nucleus and the LPS-induced degradation of IkappaB were inhibited by all four test compounds. These findings indicate that ent-kauranes are potential anti-inflammatory agents, with a specific mechanism in which both the inhibition of NF-kappaB translocation and the consequent decrease of pro-inflammatory mediators are implicated.
Collapse
Affiliation(s)
- Silvia Aquila
- Departament de Farmacologia, Universitat de Valencia, Avenida Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
50
|
Koga K, Cardenas I, Aldo P, Abrahams VM, Peng B, Fill S, Romero R, Mor G. Activation of TLR3 in the trophoblast is associated with preterm delivery. Am J Reprod Immunol 2009; 61:196-212. [PMID: 19239422 DOI: 10.1111/j.1600-0897.2008.00682.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PROBLEM Toll-like receptors (TLRs) recognize conserved sequences on the surface of pathogens and trigger effector cell functions. Previously, we described the expression of TLR3 by human trophoblast and their ability to respond to (Poly[I:C]). Here we evaluate the effect of Poly[I:C] on mouse pregnancy and characterize the local and systemic response. METHOD OF STUDY C57B/6 wild type (wt) and TLR3 knockout (TLR3KO) mice were treated with Poly[I:C] at 16.5 dpc and pregnancy outcome recorded. Morphologic changes, cytokines and chemokines levels in blood and utero-placental tissue were determined. NF-kappaB pathway was evaluated in vivo and in vitro. RESULTS Poly[I:C] in C57B/6 wt mice caused preterm delivery within 24 hr (4.5 mg/kg). No effect was observed in TLR3KO mice. In addition, we observed local (placenta) and systemic (serum) response characterized by increased production of proinflammatory cytokines and chemokines. The NF-kappaB pathway was activated by Poly[I:C] in human and mice trophoblast cells. CONCLUSION We report that Poly[I:C] induces preterm delivery via TLR3-dependent manner. Furthermore, we demonstrate that the trophoblast is able to recognize Poly[I:C] through TLR3 and respond to viral infection, modulating the immune system at the feto-maternal interface.
Collapse
Affiliation(s)
- Kaori Koga
- Department of Obstetrics and Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|