1
|
Lee C, Lee S, Kim A, Kwon Y. Nitro-Enabled Atroposelective Dynamic Kinetic Resolution of 2-Arylindoles by Phase-Transfer Catalysis. Org Lett 2024; 26:681-686. [PMID: 38232328 DOI: 10.1021/acs.orglett.3c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study presents the atroposelective alkylation of 2-arylindoles catalyzed by a substituted cinchonium salt as a phase-transfer catalyst. Under the optimized reaction conditions, various substrates are employed to yield products with high enantioselectivity. The presence of an ortho-nitro group at the aromatic ring is essential for high atroposelectivity, because it facilitates favorable interactions between the catalyst and substrate. The origin of the enantioselectivity reveals favorable π-π interactions for both enantiomers and unfavorable steric strains for undesired enantiomers.
Collapse
Affiliation(s)
- Chanhee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sujin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Kashiwagi R, Sato R, Masumoto M, Yoshino M, Tanaka H. AS3288802, a highly selective antibody to active plasminogen activator inhibitor-1 (PAI-1), exhibits long efficacy duration in cynomolgus monkeys. Biologicals 2020; 67:21-28. [PMID: 32828642 DOI: 10.1016/j.biologicals.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022] Open
Abstract
Antibodies have strong affinity to their target molecules, a characteristic that is utilized in antibody drugs. For antibody drugs, target molecule specificity and long duration pharmacokinetics, along with strong affinity to the target molecule are important characteristics. Plasminogen activator inhibitor-1 (PAI-1) is one of the key regulators of the fibrinolysis system, and the benefits of PAI-1 activity inhibition have been widely reported for multiple thrombosis and fibrosis-related diseases. Here, we generated a novel antibody, AS3288802, with high selectivity for active PAI-1. AS3288802 exhibited prolonged and strong inhibition of PAI-1 activity in cynomolgus monkey blood in vivo. Given that AS3288802 showed prolonged antigen inhibition activity due to its high target molecule selectivity, we propose that increasing target molecule selectivity may be a key strategy for lengthening the efficacy duration of antibody drugs. AS3288802 may be a promising anti-PAI-1 antibody drug with multiple clinical applications including thrombosis and fibrosis-related diseases.
Collapse
Affiliation(s)
- Risa Kashiwagi
- Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411
| | - Rui Sato
- Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411
| | - Mari Masumoto
- Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411
| | - Masayasu Yoshino
- Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411
| | - Hirotsugu Tanaka
- Astellas Innovation Management LLC, 1030 Massachusetts Avenue, Cambridge, MA, 02138, United States.
| |
Collapse
|
3
|
Can components of the plasminogen activation system predict the outcome of kidney transplants? Cent Eur J Immunol 2018; 43:222-230. [PMID: 30135637 PMCID: PMC6102612 DOI: 10.5114/ceji.2018.77394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/03/2022] Open
Abstract
Proteolytic and antiproteolytic enzymes play a critical role in the physiology and pathology of different stages of human life. One of the important members of the proteolytic family is the plasminogen activation system (PAS), which includes several elements crucial for this review: the 50 kDa glycoprotein plasminogen activator inhibitor 1 (PAI-1) that inhibits tissue-type (tPA) and urokinase-type plasminogen activator (uPA). These two convert plasminogen into its active form named plasmin that can lyse a broad spectrum of proteins. Urokinase receptor (uPAR) is the binding site of uPA. This glycoprotein on the cell surface facilitates urokinase activation of plasminogen, creating high proteolytic activity close to the cell surface. PAS activities have been reported to predict the outcome of kidney transplants. However, reports on expression of PAS in kidney transplants seem to be controversial. On the one hand there are reports that impaired proteolytic activity leads to induction of chronic allograft nephropathy, while on the other hand treatment with uPA and tPA can restore function of acute renal transplants. In this comprehensive review we describe the complexity of the PAS as well as biological effects of the PAS on renal allografts, and provide a possible explanation of the reported controversy.
Collapse
|
4
|
Pautus S, Alami M, Adam F, Bernadat G, Lawrence DA, De Carvalho A, Ferry G, Rupin A, Hamze A, Champy P, Bonneau N, Gloanec P, Peglion JL, Brion JD, Bianchini EP, Borgel D. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1. Sci Rep 2016; 6:36462. [PMID: 27876785 PMCID: PMC5120274 DOI: 10.1038/srep36462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.
Collapse
Affiliation(s)
- Stéphane Pautus
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Mouad Alami
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Fréderic Adam
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Guillaume Bernadat
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Allan De Carvalho
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Gilles Ferry
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Alain Rupin
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Abdallah Hamze
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Pierre Champy
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Natacha Bonneau
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Philippe Gloanec
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Louis Peglion
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Daniel Brion
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Elsa P Bianchini
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,AP-HP, Hôpital Necker, Service d'Hématologie Biologique, 75015 Paris, France
| |
Collapse
|
5
|
Gong L, Proulle V, Fang C, Hong Z, Lin Z, Liu M, Xue G, Yuan C, Lin L, Furie B, Flaumenhaft R, Andreasen P, Furie B, Huang M. A specific plasminogen activator inhibitor-1 antagonist derived from inactivated urokinase. J Cell Mol Med 2016; 20:1851-60. [PMID: 27197780 PMCID: PMC4876229 DOI: 10.1111/jcmm.12875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/13/2016] [Indexed: 12/27/2022] Open
Abstract
Fibrinolysis is a process responsible for the dissolution of formed thrombi to re‐establish blood flow after thrombus formation. Plasminogen activator inhibitor‐1 (PAI‐1) inhibits urokinase‐type and tissue‐type plasminogen activator (uPA and tPA) and is the major negative regulator of fibrinolysis. Inhibition of PAI‐1 activity prevents thrombosis and accelerates fibrinolysis. However, a specific antagonist of PAI‐1 is currently unavailable for therapeutic use. We screened a panel of uPA variants with mutations at and near the active site to maximize their binding to PAI‐1 and identified a potent PAI‐1 antagonist, PAItrap. PAItrap is the serine protease domain of urokinase containing active‐site mutation (S195A) and four additional mutations (G37bR–R217L–C122A–N145Q). PAItrap inhibits human recombinant PAI‐1 with high potency (Kd = 0.15 nM) and high specificity. In vitro using human plasma, PAItrap showed significant thrombolytic activity by inhibiting endogenous PAI‐1. In addition, PAItrap inhibits both human and murine PAI‐1, allowing the evaluation in murine models. In vivo, using a laser‐induced thrombosis mouse model in which thrombus formation and fibrinolysis are monitored by intravital microscopy, PAItrap reduced fibrin generation and inhibited platelet accumulation following vascular injury. Therefore, this work demonstrates the feasibility to generate PAI‐1 inhibitors using inactivated urokinase.
Collapse
Affiliation(s)
- Lihu Gong
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Valerie Proulle
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chao Fang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zebin Hong
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Zhonghui Lin
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Min Liu
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangpu Xue
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Cai Yuan
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Lin Lin
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Barbara Furie
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Bruce Furie
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
WYGANOWSKA-ŞWIĄTKOWSKA MARZENA, JANKUN JERZY. Plasminogen activation system in oral cancer: Relevance in prognosis and therapy (Review). Int J Oncol 2015; 47:16-24. [DOI: 10.3892/ijo.2015.3021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
|
7
|
Rouch A, Vanucci-Bacqué C, Bedos-Belval F, Baltas M. Small molecules inhibitors of plasminogen activator inhibitor-1 - an overview. Eur J Med Chem 2015; 92:619-36. [PMID: 25615797 DOI: 10.1016/j.ejmech.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
PAI-1, a glycoprotein from the serpin family and the main inhibitor of tPA and uPA, plays an essential role in the regulation of intra and extravascular fibrinolysis by inhibiting the formation of plasmin from plasminogen. PAI-1 is also involved in pathological processes such as thromboembolic diseases, atherosclerosis, fibrosis and cancer. The inhibition of PAI-1 activity by small organic molecules has been observed in vitro and with some in vivo models. Based on these findings, PAI-1 appears as a potential therapeutic target for several pathological conditions. Over the past decades, many efforts have therefore been devoted to developing PAI-1 inhibitors. This article provides an overview of the publishing activity on small organic molecules used as PAI-1 inhibitors. The chemical synthesis of the most potent inhibitors as well as their biological and biochemical evaluations is also presented.
Collapse
Affiliation(s)
- Anne Rouch
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Corinne Vanucci-Bacqué
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Florence Bedos-Belval
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | - Michel Baltas
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France.
| |
Collapse
|
8
|
Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Proc Natl Acad Sci U S A 2013; 110:E4941-9. [PMID: 24297881 DOI: 10.1073/pnas.1216499110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is a member of the serine protease inhibitor (serpin) family. Excessive PAI-1 activity is associated with human disease, making it an attractive pharmaceutical target. However, like other serpins, PAI-1 has a labile structure, making it a difficult target for the development of small molecule inhibitors, and to date, there are no US Food and Drug Administration-approved small molecule inactivators of any serpins. Here we describe the mechanistic and structural characterization of a high affinity inactivator of PAI-1. This molecule binds to PAI-1 reversibly and acts through an allosteric mechanism that inhibits PAI-1 binding to proteases and to its cofactor vitronectin. The binding site is identified by X-ray crystallography and mutagenesis as a pocket at the interface of β-sheets B and C and α-helix H. A similar pocket is present on other serpins, suggesting that this site could be a common target in this structurally conserved protein family.
Collapse
|
9
|
Lin Z, Jensen JK, Hong Z, Shi X, Hu L, Andreasen PA, Huang M. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist. ACTA ACUST UNITED AC 2013; 20:253-61. [PMID: 23438754 DOI: 10.1016/j.chembiol.2013.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a serpin, is the physiological inhibitor of tissue-type and urokinase-type plasminogen activators and thus also an inhibitor of fibrinolysis and tissue remodeling. It is a potential therapeutic target in many pathological conditions, including thrombosis and cancer. Several types of PAI-1 antagonist have been developed, but the structural basis for their action has remained largely unknown. Here we report X-ray crystal structure analysis of PAI-1 in complex with a small-molecule antagonist, embelin. We propose a mechanism for embelin-induced rapid conversion of PAI-1 into a substrate for its target proteases and the subsequent slow conversion of PAI-1 into an irreversibly inactivated form. Our work provides structural clues to an understanding of PAI-1 inactivation by small-molecule antagonists and an important step toward the design of drugs targeting PAI-1.
Collapse
Affiliation(s)
- Zhonghui Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Fortenberry YM. Plasminogen activator inhibitor-1 inhibitors: a patent review (2006-present). Expert Opin Ther Pat 2013; 23:801-15. [PMID: 23521527 DOI: 10.1517/13543776.2013.782393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Plasminogen activator inhibitor-1 (PAI-1), the serine protease inhibitor (serpin), binds to and inhibits the plasminogen activators-tissue-type plasminogen activator (tPA) and the urokinase-type plasminogen activator (uPA). This results in both a decrease in plasmin production and a decrease in the dissolution of fibrin clots. Elevated levels of PAI-1 are correlated with an increased risk for cardiovascular disease and have been linked to obesity and metabolic syndrome. Consequently, the pharmacological suppression of PAI-1 might prevent or treat vascular disease. AREAS COVERED This article provides an overview of the patenting activity on PAI-1 inhibitors. Patents filed by pharmaceutical companies or individual research groups are described, and the biological and biochemical evaluation of the inhibitors, including in vitro and in vivo studies, is discussed. An overview of patents pertaining to using these inhibitors for treating various diseases is also included. EXPERT OPINION Although there is still no PAI-1 inhibitor being evaluated in a clinical setting or approved for human therapy, research in this field has progressed, and promising new compounds have been designed. Most research has focused on improving the pharmacological profile of these compounds, which will hopefully allow them to proceed to clinical studies. Despite the need for further testing and research, the potential use of PAI-1 inhibitors for treating cardiovascular disease appears quite promising.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Johns Hopkins University School of Medicine, Division of Hematology/Department of Pediatrics, 720 Rutland Avenue Ross 1120, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Fjellström O, Deinum J, Sjögren T, Johansson C, Geschwindner S, Nerme V, Legnehed A, McPheat J, Olsson K, Bodin C, Paunovic A, Gustafsson D. Characterization of a small molecule inhibitor of plasminogen activator inhibitor type 1 that accelerates the transition into the latent conformation. J Biol Chem 2012; 288:873-85. [PMID: 23155046 DOI: 10.1074/jbc.m112.371732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel class of small molecule inhibitors for plasminogen activator inhibitor type 1 (PAI-1), represented by AZ3976, was identified in a high throughput screening campaign. AZ3976 displayed an IC(50) value of 26 μm in an enzymatic chromogenic assay. In a plasma clot lysis assay, the compound was active with an IC(50) of 16 μm. Surprisingly, AZ3976 did not bind to active PAI-1 but bound to latent PAI-1 with a K(D) of 0.29 μm at 35 °C and a binding stoichiometry of 0.94, as measured by isothermal calorimetry. Reversible binding was confirmed by surface plasmon resonance direct binding experiments. The x-ray structure of AZ3976 in complex with latent PAI-1 was determined at 2.4 Å resolution. The inhibitor was bound in the flexible joint region with the entrance to the cavity located between α-helix D and β-strand 2A. A set of surface plasmon resonance experiments revealed that AZ3976 inhibited PAI-1 by enhancing the latency transition of active PAI-1. Because AZ3976 only had measurable affinity for latent PAI-1, we propose that its mechanism of inhibition is based on binding to a small fraction in equilibrium with active PAI-1, a latent-like prelatent form, from which latent PAI-1 is then generated more rapidly. This mode of action, with induced accelerated latency transition of active PAI-1 may, together with supporting x-ray data, provide improved opportunities for small molecule drug design in the hunt for therapeutically useful PAI-1 inhibitors.
Collapse
Affiliation(s)
- Ola Fjellström
- Department of Medicinal Chemistry, AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Van De Craen B, Declerck PJ, Gils A. The Biochemistry, Physiology and Pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thromb Res 2012; 130:576-85. [DOI: 10.1016/j.thromres.2012.06.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 12/16/2022]
|
13
|
Wang L, Ly CM, Ko CY, Meyers EE, Lawrence DA, Bernstein AM. uPA binding to PAI-1 induces corneal myofibroblast differentiation on vitronectin. Invest Ophthalmol Vis Sci 2012; 53:4765-75. [PMID: 22700714 DOI: 10.1167/iovs.12-10042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Vitronectin (VN) in provisional extracellular matrix (ECM) promotes cell migration. Fibrotic ECM also includes VN and, paradoxically, strongly adherent myofibroblasts (Mfs). Because fibrotic Mfs secrete elevated amounts of urokinase plasminogen activator (uPA), we tested whether increased extracellular uPA promotes the persistence of Mfs on VN. METHODS Primary human corneal fibroblasts (HCFs) were cultured in supplemented serum-free medium on VN or collagen (CL) with 1 ng/mL transforming growth factor β1 (TGFβ1). Adherent cells were quantified using crystal violet. Protein expression was measured by Western blotting and flow cytometry. Transfection of short interfering RNAs was performed by nucleofection. Mfs were identified by α-smooth muscle actin (α-SMA) stress fibers. Plasminogen activator inhibitor (PAI-1) levels were quantified by ELISA. RESULTS TGFβ1-treated HCFs secreted PAI-1 (0.5 uM) that bound to VN, competing with αvβ3/αvβ5 integrin/VN binding, thus promoting cell detachment from VN. However, addition of uPA to cells on VN increased Mf differentiation (9.7-fold), cell-adhesion (2.2-fold), and binding by the VN integrins αvβ3 and -β5 (2.2-fold). Plasmin activity was not involved in promoting these changes, as treatment with the plasmin inhibitor aprotinin had no effect. A dominant negative PAI-1 mutant (PAI-1R) that binds to VN but does not inhibit uPA prevented the increase in uPA-stimulated cell adhesion and reduced uPA-stimulated integrin αvβ3/αvβ5 binding to VN by 73%. CONCLUSIONS uPA induction of TGFβ1-dependent Mf differentiation on VN supports the hypothesis that elevated secretion of uPA in fibrotic tissue may promote cell adhesion and the persistence of Mfs. By blocking uPA-stimulated cell adhesion, PAI-1R may be a useful agent in combating corneal scarring.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ploplis VA. Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease. Curr Drug Targets 2012; 12:1782-9. [PMID: 21707474 DOI: 10.2174/138945011797635803] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/21/2022]
Abstract
Plasminogen Activator Inhibitor-1 (PAI-1) is a multifunctional protein with the ability to not only regulate fibrinolysis through inhibition of plasminogen activation, but also cell signaling events which have direct downstream effects on cell function. Elevated plasma levels of this protein have been shown to have profound effects on the development and progression of cardiovascular diseases. However, results from a number of studies, especially those using PAI-1 deficient mouse models, have demonstrated that its function is ambiguous, with evidence of both preventing and enhancing various disease states. A number of lifestyle changes and pharmacological reagents have been identified that can regulate PAI-1 levels or function. Those reagents that target function are focused on its ability to regulate plasmin formation, and have been studied in in vivo models of thrombosis. Further investigations involving regulation of cell function could potentially resolve paradoxical issues associated with the function of this protein in regulating cardiovascular disease.
Collapse
Affiliation(s)
- Victoria A Ploplis
- W M Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
15
|
Discovery of inhibitors of plasminogen activator inhibitor-1: Structure–activity study of 5-nitro-2-phenoxybenzoic acid derivatives. Bioorg Med Chem Lett 2011; 21:5701-6. [DOI: 10.1016/j.bmcl.2011.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/22/2011] [Accepted: 08/05/2011] [Indexed: 11/22/2022]
|
16
|
Yamaoka N, Kodama H, Izuhara Y, Miyata T, Meguro K. Structure-Activity Relationships of New N-Acylanthranilic Acid Derivatives as Plasminogen Activator Inhibitor-1 Inhibitors. Chem Pharm Bull (Tokyo) 2011; 59:215-24. [DOI: 10.1248/cpb.59.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yuko Izuhara
- Center for Translational and Advanced Research, Tohoku University School of Medicine
| | - Toshio Miyata
- Center for Translational and Advanced Research, Tohoku University School of Medicine
| | | |
Collapse
|
17
|
Yamaoka N, Kawano Y, Izuhara Y, Miyata T, Meguro K. Structure-activity relationships of new 2-acylamino-3-thiophenecarboxylic acid dimers as plasminogen activator inhibitor-1 inhibitors. Chem Pharm Bull (Tokyo) 2010; 58:615-9. [PMID: 20460785 DOI: 10.1248/cpb.58.615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small molecule inhibitors of plasminogen activator inhibitor (PAI)-1 have been reported to date but their clinical effects still remain unknown. The present study was undertaken to investigate the structure-activity relationships (SAR) of newly synthesized 2-acylamino-3-thiophenecarboxylic acid dimers based upon a core structure of TM5001 (1) and TM5007 (2) that we have previously identified as orally effective PAI-1 inhibitors. In general, compounds possessing bulky or/and hydrophobic substituents (e.g. phenyl, isobutyl group) on the both thiophene rings showed potent PAI-1 inhibitory activities irrespective of the positions of the substitution. The mono-carboxyl derivative (10) exhibited PAI-1 inhibition comparable to the corresponding dicarboxyl compound (9f).
Collapse
Affiliation(s)
- Nagahisa Yamaoka
- CT Laboratory, Hamari Chemicals, Ltd., 1-4-29 Kunijima, Higashiyodogawa-ku, Osaka 533-0024, Japan.
| | | | | | | | | |
Collapse
|
18
|
Brown NJ. Review: Therapeutic potential of plasminogen activator inhibitor-1 inhibitors. Ther Adv Cardiovasc Dis 2010; 4:315-24. [DOI: 10.1177/1753944710379126] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of fibrinolysis and regulates cell migration and fibrosis. Preclinical studies using genetically altered mice and biological or small molecule inhibitors have elucidated a role for PAI-1 in the pathogenesis of thrombosis, vascular remodeling, renal injury, and initiation of diabetes. Inhibition of PAI-1 is a potential therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Nancy J. Brown
- 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA,
| |
Collapse
|
19
|
Lucking AJ, Visvanathan A, Philippou H, Fraser S, Grant PJ, Connolly TM, Gardell SJ, Feuerstein GZ, Fox KAA, Booth NA, Newby DE. Effect of the small molecule plasminogen activator inhibitor-1 (PAI-1) inhibitor, PAI-749, in clinical models of fibrinolysis. J Thromb Haemost 2010; 8:1333-9. [PMID: 20345708 DOI: 10.1111/j.1538-7836.2010.03872.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The principal inhibitor of fibrinolysis in vivo is plasminogen activator inhibitor-1 (PAI-1). PAI-749 is a small molecule inhibitor of PAI-1 with proven antithrombotic efficacy in several preclinical models. OBJECTIVE To assess the effect of PAI-749, by using an established ex vivo clinical model of thrombosis and a range of complementary in vitro human plasma-based and whole blood-based models of fibrinolysis. METHODS In a double-blind, randomized, crossover study, ex vivo thrombus formation was assessed using the Badimon chamber in 12 healthy volunteers during extracorporeal administration of tissue-type plasminogen activator (t-PA) in the presence of PAI-749 or control. t-PA-mediated lysis of plasma clots and of whole blood model thrombi were assessed in vitro. The role of vitronectin was examined by assessing lysis of fibrin clots generated from purified plasma proteins. RESULTS There was a dose-dependent reduction in ex vivo thrombus formation by t-PA (P < 0.0001). PAI-749 had no effect on in vitro or ex vivo thrombus formation or fibrinolysis in the presence or absence of t-PA. Inhibition of PAI-1 with a blocking antibody enhanced fibrinolysis in vitro (P < 0.05). CONCLUSIONS Despite its efficacy in a purified human system and in preclinical models of thrombosis, the current study suggests that PAI-749 does not affect thrombus formation or fibrinolysis in a range of established human plasma and whole blood-based systems.
Collapse
Affiliation(s)
- A J Lucking
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A novel inhibitor of plasminogen activator inhibitor-1 provides antithrombotic benefits devoid of bleeding effect in nonhuman primates. J Cereb Blood Flow Metab 2010; 30:904-12. [PMID: 20087372 PMCID: PMC2949193 DOI: 10.1038/jcbfm.2009.272] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhibition of plasminogen activator inhibitor (PAI)-1 is useful to treat several disorders including thrombosis. An inhibitor of PAI-1 (TM5275) was newly identified by an extensive study of structure-activity relationship based on a lead compound (TM5007) which was obtained through virtual screening by docking simulations. Its antithrombotic efficacy and adverse effects were tested in vivo in rats and nonhuman primates (cynomolgus monkey). TM5275, administered orally in rats (1 to 10 mg/kg), has an antithrombotic effect equivalent to that of ticlopidine (500 mg/kg) in an arterial venous shunt thrombosis model and to that of clopidogrel (3 mg/kg) in a ferric chloride-treated carotid artery thrombosis model. TM5275 does not modify activated partial thromboplastin time and prothrombin time or platelet activity and does not prolong bleeding time. Combined with tissue plasminogen activator, TM5275 improves the latter's therapeutic efficacy and reduces its adverse effect. Administered to a monkey model of photochemical induced arterial thrombosis, TM5275 (10 mg/kg) has the same antithrombotic effect as clopidogrel (10 mg/kg), without enhanced bleeding. This study documents the antithrombotic benefits of a novel, more powerful, PAI-1 inhibitor in rats and, for the first time, in nonhuman primates. These effects are obtained without adverse effect on bleeding time.
Collapse
|
21
|
Cale JM, Li SH, Warnock M, Su EJ, North PR, Sanders KL, Puscau MM, Emal CD, Lawrence DA. Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem 2010; 285:7892-902. [PMID: 20061381 DOI: 10.1074/jbc.m109.067967] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC(50) values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10-1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1.
Collapse
Affiliation(s)
- Jacqueline M Cale
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0644, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
El-Ayache NC, Li SH, Warnock M, Lawrence DA, Emal CD. Novel bis-arylsulfonamides and aryl sulfonimides as inactivators of plasminogen activator inhibitor-1 (PAI-1). Bioorg Med Chem Lett 2009; 20:966-70. [PMID: 20056540 DOI: 10.1016/j.bmcl.2009.12.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Inactivators of plasminogen activator inhibitor-1 (PAI-1) have been identified as possible treatments for a range of conditions, including atherosclerosis, venous thrombosis, and obesity. We describe the synthesis and inhibitory activity of a novel series of compounds based on bis-arylsulfonamide and aryl sulfonimide motifs that show potent and specific activity towards PAI-1. Inhibitors containing short linking units between the sulfonyl moieties and a 3,4-dihydroxy aryl substitution pattern showed the most potent inhibitory activity, and retained high specificity for PAI-1 over the structurally-related serpin anti-thrombin III (ATIII).
Collapse
Affiliation(s)
- Nadine C El-Ayache
- Department of Chemistry, Eastern Michigan University, 225 Mark Jefferson, Ypsilanti, MI 48197, United States
| | | | | | | | | |
Collapse
|
23
|
Effects of pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 in radiation-induced intestinal injury. Int J Radiat Oncol Biol Phys 2009; 74:942-8. [PMID: 19480973 DOI: 10.1016/j.ijrobp.2009.01.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. METHODS AND MATERIALS Wild-type (Wt) and PAI-1(-/-) knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. RESULTS At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor beta1 (TGF-beta1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1(-/-) mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. CONCLUSIONS A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.
Collapse
|
24
|
Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci U S A 2008; 105:8754-9. [PMID: 18559859 DOI: 10.1073/pnas.0710823105] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amyloid hypothesis states that a variety of neurotoxic beta-amyloid (Abeta) species contribute to the pathogenesis of Alzheimer's disease. Accordingly, a key determinant of disease onset and progression is the appropriate balance between Abeta production and clearance. Enzymes responsible for the degradation of Abeta are not well understood, and, thus far, it has not been possible to enhance Abeta catabolism by pharmacological manipulation. We provide evidence that Abeta catabolism is increased after inhibition of plasminogen activator inhibitor-1 (PAI-1) and may constitute a viable therapeutic approach for lowering brain Abeta levels. PAI-1 inhibits the activity of tissue plasminogen activator (tPA), an enzyme that cleaves plasminogen to generate plasmin, a protease that degrades Abeta oligomers and monomers. Because tPA, plasminogen and PAI-1 are expressed in the brain, we tested the hypothesis that inhibitors of PAI-1 will enhance the proteolytic clearance of brain Abeta. Our data demonstrate that PAI-1 inhibitors augment the activity of tPA and plasmin in hippocampus, significantly lower plasma and brain Abeta levels, restore long-term potentiation deficits in hippocampal slices from transgenic Abeta-producing mice, and reverse cognitive deficits in these mice.
Collapse
|