1
|
Jiang S, Yang H, Li M. Emerging Roles of Lysophosphatidic Acid in Macrophages and Inflammatory Diseases. Int J Mol Sci 2023; 24:12524. [PMID: 37569902 PMCID: PMC10419859 DOI: 10.3390/ijms241512524] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that regulates physiological and pathological processes in numerous cell biological functions, including cell migration, apoptosis, and proliferation. Macrophages are found in most human tissues and have multiple physiological and pathological functions. There is growing evidence that LPA signaling plays a significant role in the physiological function of macrophages and accelerates the development of diseases caused by macrophage dysfunction and inflammation, such as inflammation-related diseases, cancer, atherosclerosis, and fibrosis. In this review, we summarize the roles of LPA in macrophages, analyze numerous macrophage- and inflammation-associated diseases triggered by LPA, and discuss LPA-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Shufan Jiang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huili Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
2
|
Magkrioti C, Kaffe E, Aidinis V. The Role of Autotaxin and LPA Signaling in Embryonic Development, Pathophysiology and Cancer. Int J Mol Sci 2023; 24:ijms24098325. [PMID: 37176032 PMCID: PMC10179533 DOI: 10.3390/ijms24098325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Autotaxin (ATX) or Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a secreted enzyme with lysophospholipase D activity, with its primary function being the extracellular hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid [...].
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Eleanna Kaffe
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| |
Collapse
|
3
|
Alioli C, Demesmay L, Peyruchaud O, Machuca-Gayet I. Autotaxin/Lysophosphatidic Acid Axis: From Bone Biology to Bone Disorders. Int J Mol Sci 2022; 23:ijms23073427. [PMID: 35408784 PMCID: PMC8998661 DOI: 10.3390/ijms23073427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass.
Collapse
|
4
|
Montanhaur ADRS, Lima EDO, Delafiori J, Esteves CZ, Prado CCR, Allegretti SM, Ueta MT, Levy CE, Catharino RR. Metabolic alterations in Strongyloidiasis stool samples unveil potential biomarkers of infection. Acta Trop 2022; 227:106279. [PMID: 34968451 DOI: 10.1016/j.actatropica.2021.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Strongyloidiasis, a parasitosis caused by Strongyloides stercoralis in humans, is a very prevalent infection in tropical or subtropical areas. Gaps on public health strategies corroborates to the high global incidence of strongyloidiasis especially due to challenges involved on its diagnosis. Based on the lack of a gold-standard diagnostic tool, we aimed to present a metabolomic study for the assessment of stool metabolic alterations. Stool samples were collected from 25 patients segregated into positive for strongyloidiasis (n = 10) and negative control (n = 15) and prepared for direct injection high-resolution mass spectrometry analysis. Using metabolomics workflow, 18 metabolites were annotated increased or decreased in strongyloidiasis condition, from which a group of 5 biomarkers comprising caprylic acid, mannitol, glucose, lysophosphatidylinositol and hydroxy-dodecanoic acid demonstrated accuracy over 89% to be explored as potential markers. The observed metabolic alteration in stool samples indicates involvement of microbiota remodeling, parasite constitution, and host response during S. stercoralis infection.
Collapse
|
5
|
McDougall JJ, Reid AR. Joint Damage and Neuropathic Pain in Rats Treated With Lysophosphatidic Acid. Front Immunol 2022; 13:811402. [PMID: 35185905 PMCID: PMC8855924 DOI: 10.3389/fimmu.2022.811402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Joint pain is a complex phenomenon that involves multiple endogenous mediators and pathophysiological events. In addition to nociceptive and inflammatory pain, some patients report neuropathic-like pain symptoms. Examination of arthritic joints from humans and preclinical animal models have revealed axonal damage which is likely the source of the neuropathic pain. The mediators responsible for joint peripheral neuropathy are obscure, but lysophosphatidic acid (LPA) has emerged as a leading candidate target. In the present study, male and female Wistar rats received an intra-articular injection of LPA into the right knee and allowed to recover for 28 days. Joint pain was measured by von Frey hair algesiometry, while joint pathology was determined by scoring of histological sections. Both male and female rats showed comparable degenerative changes to the LPA-treated knee including chondrocyte death, focal bone erosion, and synovitis. Mechanical withdrawal thresholds decreased by 20-30% indicative of secondary allodynia in the affected limb; however, there was no significant difference in pain sensitivity between the sexes. Treatment of LPA animals with the neuropathic pain drug amitriptyline reduced joint pain for over 2 hours with no sex differences being observed. In summary, intra-articular injection of LPA causes joint degeneration and neuropathic pain thereby mimicking some of the characteristics of neuropathic osteoarthritis.
Collapse
Affiliation(s)
- Jason J. McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
6
|
Phospholipase A1 Member A Activates Fibroblast-like Synoviocytes through the Autotaxin-Lysophosphatidic Acid Receptor Axis. Int J Mol Sci 2021; 22:ijms222312685. [PMID: 34884486 PMCID: PMC8657932 DOI: 10.3390/ijms222312685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.
Collapse
|
7
|
Kim M, Sur B, Villa T, Yun J, Nah SY, Oh S. Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2. J Ginseng Res 2021; 45:575-582. [PMID: 34803427 PMCID: PMC8587511 DOI: 10.1016/j.jgr.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In ginseng, there exists a glycolipoprotein complex with a special form of lipid LPAs called Gintonin. The purpose of this study is to show that Gintonin has a therapeutic effect on rheumatoid arthritis through LPA2 receptors. METHODS Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK) pathways, and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus through western blot. Next, after treatment with LPAR2 antagonist, western blot analysis was performed to measure inflammatory mediator expression levels, and NF-κB signaling pathway. Carrageenan/kaolin-induced arthritis rat model was used. Rats were orally administered with Gintonin (25, 50, and 100 mg/kg) every day for 6 days. The knee joint thickness, squeaking score, and weight distribution ratio (WDR) were measured as the behavioral parameters. After sacrifice, H&E staining was performed for histological analysis. RESULTS Gintonin significantly inhibited the expression of iNOS, TNF-α, IL-6 and COX-2. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. However, pretreatment with an LPA2 antagonist significantly reversed these effects of Gintonin. In the arthritis rat model, Gintonin suppressed all parameters that were measured. CONCLUSION This study suggests that LPA2 receptor plays a key role in mediating the anti-arthritic effects of Gintonin by modulating inflammatory mediators, the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Bongjun Sur
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Thea Villa
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Minamihata T, Takano K, Moriyama M, Nakamura Y. Lysophosphatidylinositol, an Endogenous Ligand for G Protein-Coupled Receptor 55, Has Anti-inflammatory Effects in Cultured Microglia. Inflammation 2021; 43:1971-1987. [PMID: 32519268 DOI: 10.1007/s10753-020-01271-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lysophosphatidylinositol (LysoPI), an endogenous ligand for G protein-coupled receptor (GPR) 55, has been known to show various functions in several tissues and cells; however, its roles in the central nervous system (CNS) are not well known. In particular, the detailed effects of LysoPI on microglial inflammatory responses remain unknown. Microglia is the immune cell that has important functions in maintaining immune homeostasis of the CNS. In this study, we explored the effects of LysoPI on inflammatory responses using the mouse microglial cell line BV-2, which was stimulated with lipopolysaccharide (LPS), and some results were confirmed also in rat primary microglia. LysoPI was found to reduce LPS-induced nitric oxide (NO) production and inducible NO synthase protein expression without affecting cell viability in BV-2 cells. LysoPI also suppressed intracellular generation of reactive oxygen species both in BV-2 cells and primary microglia and cytokine release in BV-2 cells. In addition, LysoPI treatment decreased phagocytic activity of LPS-stimulated BV-2 cells and primary microglia. The GPR55 antagonist CID16020046 completely inhibited LysoPI-induced downregulation of phagocytosis in BV-2 microglia, but did not affect the LysoPI-induced decrease in NO production. Our results suggest that LysoPI suppresses microglial phagocytosis via a GPR55-dependent pathway and NO production via a GPR55-independent pathway. LysoPI may contribute to neuroprotection in pathological conditions such as brain injury or neurodegenerative diseases, through its suppressive role in the microglial inflammatory response.
Collapse
Affiliation(s)
- Tomoki Minamihata
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
9
|
Solís KH, Romero-Ávila MT, Guzmán-Silva A, García-Sáinz JA. The LPA 3 Receptor: Regulation and Activation of Signaling Pathways. Int J Mol Sci 2021; 22:ijms22136704. [PMID: 34201414 PMCID: PMC8269014 DOI: 10.3390/ijms22136704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
The lysophosphatidic acid 3 receptor (LPA3) participates in different physiological actions and in the pathogenesis of many diseases through the activation of different signal pathways. Knowledge of the regulation of the function of the LPA3 receptor is a crucial element for defining its roles in health and disease. This review describes what is known about the signaling pathways activated in terms of its various actions. Next, we review knowledge on the structure of the LPA3 receptor, the domains found, and the roles that the latter might play in ligand recognition, signaling, and cellular localization. Currently, there is some information on the action of LPA3 in different cells and whole organisms, but very little is known about the regulation of its function. Areas in which there is a gap in our knowledge are indicated in order to further stimulate experimental work on this receptor and on other members of the LPA receptor family. We are convinced that knowledge on how this receptor is activated, the signaling pathways employed and how the receptor internalization and desensitization are controlled will help design new therapeutic interventions for treating diseases in which the LPA3 receptor is implicated.
Collapse
|
10
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
11
|
Peyruchaud O, Saier L, Leblanc R. Autotaxin Implication in Cancer Metastasis and Autoimunne Disorders: Functional Implication of Binding Autotaxin to the Cell Surface. Cancers (Basel) 2019; 12:cancers12010105. [PMID: 31906151 PMCID: PMC7016970 DOI: 10.3390/cancers12010105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is an exoenzyme which, due to its unique lysophospholipase D activity, is responsible for the synthesis of lysophosphatidic acid (LPA). ATX activity is responsible for the concentration of LPA in the blood. ATX expression is increased in various types of cancers, including breast cancer, where it promotes metastasis. The expression of ATX is also remarkably increased under inflammatory conditions, particularly in the osteoarticular compartment, where it controls bone erosion. Biological actions of ATX are mediated by LPA. However, the phosphate head group of LPA is highly sensitive to degradation by the action of lipid phosphate phosphatases, resulting in LPA inactivation. This suggests that for efficient action, LPA requires protection, which is potentially achieved through docking to a carrier protein. Interestingly, recent reports suggest that ATX might act as a docking molecule for LPA and also support the concept that binding of ATX to the cell surface through its interaction with adhesive molecules (integrins, heparan sulfate proteoglycans) could facilitate a rapid route of delivering active LPA to its cell surface receptors. This new mechanism offers a new vision of how ATX/LPA works in cancer metastasis and inflammatory bone diseases, paving the way for new therapeutic developments.
Collapse
Affiliation(s)
- Olivier Peyruchaud
- INSERM, Unit 1033, Université Claude Bernard Lyon 1, 69372 Lyon, France;
- Correspondence: ; Tel.: +3-34-78-77-86-72
| | - Lou Saier
- INSERM, Unit 1033, Université Claude Bernard Lyon 1, 69372 Lyon, France;
| | - Raphaël Leblanc
- Centre de Recherche en Cancérologie de Marseille, Institut Poli-Calmettes, INSERM, Unit 1068, University Aix/Marseille, 13009 Marseille, France;
| |
Collapse
|
12
|
Berberine Modulates LPA Function to Inhibit the Proliferation and Inflammation of FLS-RA via p38/ERK MAPK Pathway Mediated by LPA 1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2580207. [PMID: 31781264 PMCID: PMC6875284 DOI: 10.1155/2019/2580207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2019] [Indexed: 02/08/2023]
Abstract
Objective This study aimed to investigate whether berberine exerted anti-inflammatory and antiproliferative effects on the fibroblast-like synoviocytes of rheumatoid arthritis (FLS-RA) through regulating the lysophosphatidic acid (LPA) function. Methods Firstly, the expression levels of LPA and lysophosphatidic acid receptor 1 (LPA1) in RA patients, osteoarthritis (OA) patients, and healthy controls were detected. Moreover, molecular docking was employed to characterize the binding sites of berberine in the predicted protein targets. Later, FLS-RA were stimulated using berberine, LPA, and the specific inhibitor (Ki16425) of LPA1, thereafter, the effects on the proliferation, apoptosis, the release of inflammatory mediators of FLS-RA, and the MAPK pathway were observed. Results Compared with healthy controls (n = 25), the plasma LPA level (n = 28) and synovial fluid (n = 10) were markedly higher in RA patients. LPA1 was highly expressed in RA patients (n = 4) relative to that in OA patients (n = 4). Berberine remarkably inhibited the proliferation and the excessive production of IL-6 and TNF-α in FLS-RA, whereas suppressing the expression of K-ras, c-Raf, and p-38/ERK-phosphorylation. In addition, berberine inhibited the LPA-induced p-38/ERK-phosphorylation through binding to LPA1. Conclusions LPA plays a certain role in promoting the proliferation and inflammation of FLS-RA. Berberine potentially modulates LPA function to suppress the proliferation and inflammation of FLS-RA through blocking the p38/ERK MAPK pathway mediated by LPA1. These findings suggest that, berberine possesses potential lipid-regulating, antiarthritis, and synovial hyperplasia inhibition activities against RA, which may provide a promising therapeutic target for the clinical drug development for RA patients with dyslipidemia and high CVD risk.
Collapse
|
13
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
14
|
Flammier S, Peyruchaud O, Bourguillault F, Duboeuf F, Davignon JL, Norman DD, Isaac S, Marotte H, Tigyi G, Machuca-Gayet I, Coury F. Osteoclast-Derived Autotaxin, a Distinguishing Factor for Inflammatory Bone Loss. Arthritis Rheumatol 2019; 71:1801-1811. [PMID: 31162832 DOI: 10.1002/art.41005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The severity of rheumatoid arthritis (RA) correlates directly with bone erosions arising from osteoclast (OC) hyperactivity. Despite the fact that inflammation may be controlled in patients with RA, those in a state of sustained clinical remission or low disease activity may continue to accrue erosions, which supports the need for treatments that would be suitable for long-lasting inhibition of OC activity without altering the physiologic function of OCs in bone remodeling. Autotaxin (ATX) contributes to inflammation, but its role in bone erosion is unknown. METHODS ATX was targeted by inhibitory treatment with pharmacologic drugs and also by conditional inactivation of the ATX gene Ennp2 in murine OCs (ΔATXC tsk ). Arthritic and erosive diseases were studied in human tumor necrosis factor-transgenic (hTNF+/- ) mice and mice with K/BxN serum transfer-induced arthritis. Systemic bone loss was also analyzed in mice with lipopolysaccharide (LPS)-induced inflammation and estrogen deprivation. Joint inflammation and bone erosion were assessed by histology and micro-computed tomography. The role of ATX in RA was also examined in OC differentiation and activity assays. RESULTS OCs present at sites of inflammation overexpressed ATX. Pharmacologic inhibition of ATX in hTNF+/- mice, as compared to vehicle-treated controls, significantly mitigated focal bone erosion (36% decrease; P < 0.05) and systemic bone loss (43% decrease; P < 0.05), without affecting synovial inflammation. OC-derived ATX was revealed to be instrumental in OC bone resorptive activity and was up-regulated by the inflammation elicited in the presence of TNF or LPS. Specific loss of ATX in OCs from mice subjected to ovariectomy significantly protected against the systemic bone loss and erosion that had been induced with LPS and K/BxN serum treatments (30% reversal of systemic bone loss [P < 0.01]; 55% reversal of erosion [P < 0.001]), without conferring bone-protective properties. CONCLUSION Our results identify ATX as a novel OC factor that specifically controls inflammation-induced bone erosions and systemic bone loss. Therefore, ATX inhibition offers a novel therapeutic approach for potentially preventing bone erosion in patients with RA.
Collapse
Affiliation(s)
- Sacha Flammier
- INSERM UMR 1033 LYOS and University of Lyon I, Lyon, France
| | | | | | | | - Jean-Luc Davignon
- University of Paul Sabatier Toulouse III, INSERM-CNRS U1043, CPTP, CHU Purpan, and Pierre Paul Riquet Hospital, Toulouse, France
| | - Derek D Norman
- University of Tennessee Health Sciences Center, Memphis, Tennessee
| | | | - Hubert Marotte
- SAINBIOSE, INSERM, U1059, LBTO, University of Lyon, and University Hospital of St. Étienne, St. Étienne, France
| | - Gabor Tigyi
- University of Tennessee Health Sciences Center, Memphis, Tennessee
| | | | - Fabienne Coury
- INSERM UMR 1033 LYOS and University of Lyon I, Lyon, France, and Lyon Sud Hospital, Pierre-Bénite, France
| |
Collapse
|
15
|
Magkrioti C, Galaris A, Kanellopoulou P, Stylianaki EA, Kaffe E, Aidinis V. Autotaxin and chronic inflammatory diseases. J Autoimmun 2019; 104:102327. [PMID: 31471142 DOI: 10.1016/j.jaut.2019.102327] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids including blood. ATX catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a growth factor-like, signaling phospholipid. LPA exerts pleiotropic effects mediated by its G-protein-coupled receptors that are widely expressed and exhibit overlapping specificities. Although ATX also possesses matricellular properties, the majority of ATX reported functions in adulthood are thought to be mediated through the extracellular production of LPA. ATX-mediated LPA synthesis is likely localized at the cell surface through the possible interaction of ATX with integrins or other molecules, while LPA levels are further controlled by a group of membrane-associated lipid-phosphate phosphatases. ATX expression was shown to be necessary for embryonic development, and ATX deficient embryos exhibit defective vascular homeostasis and aberrant neuronal system development. In adult life, ATX is highly expressed in the adipose tissue and has been implicated in diet-induced obesity and glucose homeostasis with multiple implications in metabolic disorders. Additionally, LPA has been shown to affect multiple cell types, including stromal and immune cells in various ways. Therefore, LPA participates in many processes that are intricately involved in the pathogenesis of different chronic inflammatory diseases such as vascular homeostasis, skeletal and stromal remodeling, lymphocyte trafficking and immune regulation. Accordingly, increased ATX and LPA levels have been detected, locally and/or systemically, in patients with chronic inflammatory diseases, most notably idiopathic pulmonary fibrosis (IPF), chronic liver diseases, and rheumatoid arthritis. Genetic and pharmacological studies in mice have confirmed a pathogenetic role for ATX expression and LPA signaling in chronic inflammatory diseases, and provided the proof of principle for therapeutic interventions, as exemplified by the ongoing clinical trials for IPF.
Collapse
Affiliation(s)
| | - Apostolos Galaris
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | | | | | - Eleanna Kaffe
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece.
| |
Collapse
|
16
|
Wu X, Ma Y, Chen H, Hao Z, Su N, Li X, Shen J, Wang H. Lysophosphatidic acid induces interleukin-6 and CXCL15 secretion from MLO-Y4 cells through activation of the LPA 1 receptor and PKCθ signaling pathway. Int Immunopharmacol 2019; 74:105664. [PMID: 31233937 DOI: 10.1016/j.intimp.2019.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional phospholipid. Osteocytes are the most abundant cells in bone and can orchestrate bone formation and resorption, in part by producing cytokines that regulate osteoblast and osteoclast differentiation and activity. Interleukin (IL)-6 and IL-8 are two important cytokines that have potent effects on bone fracture healing. Previous studies suggest that platelet-derived LPA may influence fracture healing by inducing osteocyte dendrite outgrowth. However, the biological mechanism through which LPA induces cytokine production in osteocytes is poorly understood. In this study, we report that LPA markedly enhanced IL-6 and CXCL15 (mouse homologue of human IL-8) production in MLO-Y4 cells and that this enhancement was suppressed by the LPA1/3-selective antagonist Ki16425, the Gi/o protein inhibitor PTX or the protein kinase C (PKC) inhibitor sotrastaurin. We also observed that of all the PKC isoform targets of sotrastaurin, only PKCθ was activated by LPA in MLO-Y4 cells and that this activation was blocked by sotrastaurin, Ki16425 or PTX. Taken together, the results of the present study demonstrate that LPA may be a potent inducer of IL-6 and CXCL15 production in MLO-Y4 cells and that this induction is associated with the activation of LPA1, Gi/o protein and the PKCθ pathway. These findings may help us better understand the mechanism of fracture healing and contribute to the treatment of bone damage.
Collapse
Affiliation(s)
- Xiangnan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Helin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhichao Hao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Naichuan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Simiao Pill Attenuates Collagen-Induced Arthritis in Rats through Suppressing the ATX-LPA and MAPK Signalling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7498527. [PMID: 31001354 PMCID: PMC6437962 DOI: 10.1155/2019/7498527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Objective Simiao pill (SM), a traditional Chinese formula, has been used as an antirheumatic drug in clinical practice for hundreds of years. Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation and hyperplasia, cartilage destruction, and joint damage. This study was designed to investigate the protective effects of SM on collagen-induced arthritis (CIA) in rats. It also aimed to explore whether this protective effect of SM was related to the inhibition of the ATX-LPA and MAPK signalling pathways. Materials and Methods Rats were injected with a collagen II emulsion at the end of the tail and on the back to induce arthritis. Treatment with different doses of SM was conducted by intragastric administration. Then, body weights and arthritis scores were measured. The serum levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, C-reactive protein (CRP), osteoprotegerin (OPG), autotaxin (ATX), and lysophosphatidic acid (LPA) were determined by ELISA. Pathological changes in the joints were measured by micro-CT and assessed via haematoxylin-eosin (H&E) staining. The expression of ATX, LPA receptor 1 (LPA1) was detected by immunohistochemical staining, and the expression of mitogen-activated protein kinase (MAPK) was detected by Western blotting. Results SM significantly alleviated arthritis symptoms, inhibited bone erosion, and decreased the levels of TNF-α, IL-1β, CRP, ATX, and LPA in the sera of CIA rats. Importantly, SM clearly reduced the protein expression of LPA1 and ATX. The activation of the MAPK signalling pathway was also inhibited by SM in the synovial tissues of CIA rats. Conclusions The antirheumatic effects of SM were associated with the regulation of the ATX-LPA and MAPK pathways, the suppression of proinflammatory cytokine production, and the alleviation of cartilage and bone injury. These findings suggest that SM might be a promising alternative candidate for RA therapy.
Collapse
|
18
|
Ovadia C, Lövgren-Sandblom A, Edwards LA, Langedijk J, Geenes V, Chambers J, Cheng F, Clarke L, Begum S, Noori M, Pusey C, Padmagirison R, Agarwal S, Peerless J, Cheesman K, Heneghan M, Oude Elferink R, Patel VC, Marschall HU, Williamson C. Therapeutic plasma exchange as a novel treatment for severe intrahepatic cholestasis of pregnancy: Case series and mechanism of action. J Clin Apher 2018; 33:638-644. [PMID: 30321466 DOI: 10.1002/jca.21654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy is characterised by pruritus and elevated serum bile acids. The pruritus can be severe, and pharmacological options achieve inconsistent symptomatic improvement. Raised bile acids are linearly associated with adverse fetal outcomes, with existing management of limited benefit. We hypothesised that therapeutic plasma exchange removes pruritogens and lowers total bile acid concentrations, and improves symptoms and biochemical abnormalities in severe cases that have not responded to other treatments. METHODS Four women with severe pruritus and hypercholanemia were managed with therapeutic plasma exchange. Serial blood biochemistry and visual analogue scores of itch severity were obtained. Blood and waste plasma samples were collected before and after exchange; individual bile acids and sulfated progesterone metabolites were measured with HPLC-MS, autotaxin activity and cytokine profiles with enzymatic methods. Results were analysed using segmental linear regression to describe longitudinal trends, and ratio t tests. RESULTS Total bile acids and visual analogue itch scores demonstrated trends to transiently improve following plasma exchange, with temporary symptomatic benefit reported. Individual bile acids (excluding the drug ursodeoxycholic acid), and the sulfated metabolites of progesterone reduced following exchange (P = .03 and P = .04, respectively), whilst analysis of waste plasma demonstrated removal of autotaxin and cytokines. CONCLUSIONS Therapeutic plasma exchange can lower potentially harmful bile acids and improve itch, likely secondary to the demonstrated removal of pruritogens. However, the limited current experience and potential complications, along with minimal sustained symptomatic benefit, restrict its current use to women with the most severe disease for whom other treatment options have been exhausted.
Collapse
Affiliation(s)
- Caroline Ovadia
- Department of Women and Children's Health, King's College London, London, United Kingdom
| | - Anita Lövgren-Sandblom
- Department of Clinical Chemistry, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lindsey A Edwards
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Jacqueline Langedijk
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Victoria Geenes
- Department of Women and Children's Health, King's College London, London, United Kingdom
| | - Jenny Chambers
- Department of Women and Children's Health, King's College London, London, United Kingdom.,Women's Health Research Centre, Imperial College London, London, United Kingdom
| | - Floria Cheng
- Women's Health Research Centre, Imperial College London, London, United Kingdom
| | - Louise Clarke
- Department of Women and Children's Health, King's College London, London, United Kingdom
| | - Shahina Begum
- Department of Women and Children's Health, King's College London, London, United Kingdom
| | - Muna Noori
- Department of Obstetrics and Gynaecology, Imperial College Hospitals, London, United Kingdom
| | - Charles Pusey
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Radhika Padmagirison
- Department of Obstetrics and Gynaecology, Lister Hospital, Stevenage, Hertfordshire, United Kingdom
| | - Sangita Agarwal
- Department of Rheumatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - James Peerless
- Department of Anaesthetics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Kate Cheesman
- Department of Anaesthetics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Michael Heneghan
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Ronald Oude Elferink
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Vishal C Patel
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Catherine Williamson
- Department of Women and Children's Health, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Ninou I, Kaffe E, Müller S, Budd DC, Stevenson CS, Ullmer C, Aidinis V. Pharmacologic targeting of the ATX/LPA axis attenuates bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther 2018; 52:32-40. [DOI: 10.1016/j.pupt.2018.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
|
20
|
Zou W, Wen X, Xie C, Nie L, Zhou Q, Chen X, Fang C, Wang Y, Zhang L. LC-Q-TOF-MS based plasma metabolomic profile of subclinical pelvic inflammatory disease: A pilot study. Clin Chim Acta 2018; 483:164-169. [DOI: 10.1016/j.cca.2018.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/09/2023]
|
21
|
Brown A, Hossain I, Perez LJ, Nzirorera C, Tozer K, D’Souza K, Trivedi PC, Aguiar C, Yip AM, Shea J, Brunt KR, Legare JF, Hassan A, Pulinilkunnil T, Kienesberger PC. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS One 2017; 12:e0189402. [PMID: 29236751 PMCID: PMC5728537 DOI: 10.1371/journal.pone.0189402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/26/2017] [Indexed: 11/19/2022] Open
Abstract
Background Lysophosphatidic acid (LPA) receptor signaling has been implicated in cardiovascular and obesity-related metabolic disease. However, the distribution and regulation of LPA receptors in the myocardium and adipose tissue remain unclear. Objectives This study aimed to characterize the mRNA expression of LPA receptors (LPA1-6) in the murine and human myocardium and adipose tissue, and its regulation in response to obesity. Methods LPA receptor mRNA levels were determined by qPCR in i) heart ventricles, isolated cardiomyocytes, and perigonadal adipose tissue from chow or high fat-high sucrose (HFHS)-fed male C57BL/6 mice, ii) 3T3-L1 adipocytes and HL-1 cardiomyocytes under conditions mimicking gluco/lipotoxicity, and iii) human atrial and subcutaneous adipose tissue from non-obese, pre-obese, and obese cardiac surgery patients. Results LPA1-6 were expressed in myocardium and white adipose tissue from mice and humans, except for LPA3, which was undetectable in murine adipocytes and human adipose tissue. Obesity was associated with increased LPA4, LPA5 and/or LPA6 levels in mice ventricles and cardiomyocytes, HL-1 cells exposed to high palmitate, and human atrial tissue. LPA4 and LPA5 mRNA levels in human atrial tissue correlated with measures of obesity. LPA5 mRNA levels were increased in HFHS-fed mice and insulin resistant adipocytes, yet were reduced in adipose tissue from obese patients. LPA4, LPA5, and LPA6 mRNA levels in human adipose tissue were negatively associated with measures of obesity and cardiac surgery outcomes. This study suggests that obesity leads to marked changes in LPA receptor expression in the murine and human heart and white adipose tissue that may alter LPA receptor signaling during obesity.
Collapse
Affiliation(s)
- Amy Brown
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Intekhab Hossain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Lester J. Perez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Carine Nzirorera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Kathleen Tozer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Kenneth D’Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Christie Aguiar
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Alexandra M. Yip
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Jennifer Shea
- Department of Pathology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Keith R. Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Jean-Francois Legare
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
- Department of Cardiac Surgery, New Brunswick Heart Centre, Saint John, New Brunswick, Canada
| | - Ansar Hassan
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
- Department of Cardiac Surgery, New Brunswick Heart Centre, Saint John, New Brunswick, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Petra C. Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- * E-mail:
| |
Collapse
|
22
|
Hui W, Zhao C, Bourgoin SG. Differential Effects of Inhibitor Combinations on Lysophosphatidic Acid-Mediated Chemokine Secretion in Unprimed and Tumor Necrosis Factor-α-Primed Synovial Fibroblasts. Front Pharmacol 2017; 8:848. [PMID: 29209219 PMCID: PMC5702485 DOI: 10.3389/fphar.2017.00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic bioactive lysophospholipid involved in inflammatory mediator synthesis. Signaling through p38MAPK, ERK, Rho kinase, and MSK-CREB contributes to LPA-mediated IL-8 production in fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. The study was undertaken to investigate how LPA activates MSKs and how signaling crosstalk between TNFα and LPA contributes to the super-production of cytokines/chemokines. RAFLS pretreated or not with TNFα were stimulated with LPA. Immunoblotting with phospho-antibodies monitored MSK activation. Cytokine/chemokine production was measured using ELISA and multiplex immunoassays. LPA induced MSK activation by signaling through ERK whereas p38MAPK, Rho kinase, NF-κB or PI3K contribute to IL-8 synthesis mainly via MSK-independent pathways. Priming with TNFα enhanced LPA-mediated MSK phosphorylation and cytokine/chemokine production. After priming with TNFα, inhibition of ERK or MSK failed to attenuate LPA-mediated IL-8 synthesis even if the MSK-CREB signaling axis was completely or partially inhibited. In TNFα-primed cells, inhibition of LPA-mediated cytokine/chemokine synthesis required a specific combination of inhibitors such as p38MAPK and ERK for IL-8 and IL-6, and Rho kinase and NF-κB for MCP-1. The ability of the signaling inhibitors to block LPA induced cytokine/chemokine synthesis is dependent on the inflammatory cytokinic environment. In TNFα-primed RAFLS the super-production of IL-8 and IL-6 induced by LPA occurs mainly via MSK-independent pathways, and simultaneous inhibition of at least two MAPK signaling pathways was required to block their synthesis. Since simultaneous inhibition of both the p38MAPK and ERK-MSK-CREB pathways are required to significantly reduce LPA-mediated IL-8 and IL-6 production in TNFα-preconditioned RAFLS, drug combinations targeting these two pathways are potential new strategies to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Weili Hui
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada.,Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Chenqi Zhao
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada
| | - Sylvain G Bourgoin
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada.,Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
23
|
Kleine SA, Budsberg SC. Synovial membrane receptors as therapeutic targets: A review of receptor localization, structure, and function. J Orthop Res 2017; 35:1589-1605. [PMID: 28374922 DOI: 10.1002/jor.23568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Joint pathology and degeneration is a significant cause of pain. The synovial membrane plays an important role in maintenance of the joint, contributes to the pathology of many arthropathies and may be adversely affected in joint disease. Improving knowledge of the receptors present within the synovium will aid in a better understanding of joint pathology and the development of new treatments for diseases such as osteoarthritis and rheumatoid arthritis. Knowledge of the location and function of synovial membrane receptors (both in healthy and diseased synovium) may provide important targets in the treatment of various arthropathies. Classic pain receptors such as opioid receptors in the synovium are a mainstay in local and systemic management of chronic pain in many species. In addition to these, many other receptors such as bradykinin, neurokinin, transient receptor potential vanilloid, and inflammatory receptors, such as prostanoid and interleukin receptors have been discovered within the synovial membrane. These receptors are important in pain, inflammation, and in maintenance of normal joint function and may serve as targets for pharmacologic intervention in pathologic states. The goal of this review is to outline synovial membrane receptor localization and local therapeutic modulation of these receptors, in order to stimulate further research into pharmacological management of arthropathies at the local level. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1589-1605, 2017.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| |
Collapse
|
24
|
Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain. Osteoarthritis Cartilage 2017; 25:926-934. [PMID: 27651153 DOI: 10.1016/j.joca.2016.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Emerging evidence suggests that osteoarthritis (OA) has a neuropathic component; however, the identity of the molecules responsible for this peripheral neuropathy is unknown. The aim of this study was to determine the contribution of the bioactive lipid lysophosphatidic acid (LPA) to joint neuropathy and pain. DESIGN Male Lewis rats received an intra-articular injection of 50 μg of LPA into the knee and allowed to recover for up to 21 days. Saphenous nerve myelination was assessed by g-ratio calculation from electron micrographs and afferent nerve damage visualised by activation transcription factor-3 (ATF-3) expression. Nerve conduction velocity was measured electrophysiologically and joint pain was determined by hindlimb incapacitance. The effect of the LPA antagonist Ki-16425 was also evaluated. Experiments were repeated in the sodium monoiodoacetate (MIA) model of OA. RESULTS LPA caused joint nerve demyelination which resulted in a drop in nerve conduction velocity. Sensory neurones were ATF-3 positive and animals exhibited joint pain and knee joint damage. MIA-treated rats also showed signs of demyelination and joint neuropathy with concomitant pain. Nerve damage and pain could be ameliorated by Ki-16425 pre-treatment. CONCLUSION Intra-articular injection of LPA caused knee joint neuropathy, joint damage and pain. Pharmacological blockade of LPA receptors inhibited joint nerve damage and hindlimb incapacitance. Thus, LPA is a candidate molecule for the development of OA nerve damage and the origin of joint neuropathic pain.
Collapse
|
25
|
Identification and pharmacological characterization of a novel inhibitor of autotaxin in rodent models of joint pain. Osteoarthritis Cartilage 2017; 25:935-942. [PMID: 27638130 DOI: 10.1016/j.joca.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autotaxin is a secreted lysophospholipase that mediates the conversion of lysophosphatidyl choline (LPC) to lysophosphatidic acid (LPA), a bioactive lipid mediator. Autotaxin levels in plasma and synovial fluid correlate with disease severity in patients with knee osteoarthritis (OA). The goal of this study was to develop and characterize a novel small molecule inhibitor of autotaxin to inhibit LPA production in vivo and determine its efficacy in animal models of musculoskeletal pain. DESIGN Compound libraries were screened using an LPC coupled enzyme assay that measures the amount of choline released from LPC by the action of autotaxin. Hits from this assay were tested in a plasma assay to assess inhibition of endogenous plasma autotaxin and subsequently tested for their ability to lower plasma LPA levels upon oral dosing of rats. The best compounds were then tested in animal models of musculoskeletal pain. RESULTS Compound screening led to the identification of compounds with nanomolar potency for inhibition of autotaxin activity. Studies in rats demonstrated a good correlation between compound exposure levels and a decrease in LPA levels in plasma. The leading molecule (compound-1) resulted in a dose dependent decrease in joint pain in the mono-sodium iodoacetate (MIA) and meniscal tear models and a decrease in bone fracture pain in the osteotomy model in rats. CONCLUSION We have identified and characterized a novel small molecule inhibitor of autotaxin and demonstrated its efficacy in animal models of musculoskeletal pain. The inhibitor has the potential to serve as an analgesic for human OA and bone fracture.
Collapse
|
26
|
He M, van Wijk E, van Wietmarschen H, Wang M, Sun M, Koval S, van Wijk R, Hankemeier T, van der Greef J. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:98-106. [PMID: 28199905 DOI: 10.1016/j.jphotobiol.2016.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022]
Abstract
The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective.
Collapse
Affiliation(s)
- Min He
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Eduard van Wijk
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands; Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun 130117, China.
| | - Herman van Wietmarschen
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Mei Wang
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; SU Biomedicine, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands; Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun 130117, China
| | - Mengmeng Sun
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun 130117, China
| | - Slavik Koval
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Roeland van Wijk
- Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands
| | - Thomas Hankemeier
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jan van der Greef
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
27
|
Plastira I, Bernhart E, Goeritzer M, Reicher H, Kumble VB, Kogelnik N, Wintersperger A, Hammer A, Schlager S, Jandl K, Heinemann A, Kratky D, Malle E, Sattler W. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. J Neuroinflammation 2016; 13:205. [PMID: 27565558 PMCID: PMC5002165 DOI: 10.1186/s12974-016-0701-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/20/2016] [Indexed: 01/09/2023] Open
Abstract
Background Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Collapse
Affiliation(s)
- Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Vishwanath Bhat Kumble
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria. .,BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
28
|
Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation-Novel Paradigm and Therapeutic Potential. J Cardiovasc Transl Res 2016; 9:343-59. [PMID: 27230673 DOI: 10.1007/s12265-016-9700-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/29/2022]
Abstract
There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.
Collapse
|
29
|
Bourgoin SG, Hui W. Role of mitogen- and stress-activated kinases in inflammatory arthritis. World J Pharmacol 2015; 4:265-273. [DOI: 10.5497/wjp.v4.i4.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that promotes motility, survival, and the synthesis of chemokines/cytokines in human fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis. LPA activates several proteins within the mitogen activated protein (MAP) kinase signaling network, including extracellular signal-regulated kinases (ERK) 1/2 and p38 MAP kinase (MAPK). Upon docking to mitogen- and stress-activated kinases (MSKs), ERK1/2 and p38 MAPK phosphorylate serine and threonine residues within its C-terminal domain and cause autophosphorylation of MSKs. Activated MSKs can then directly phosphorylate cAMP response element-binding protein (CREB) at Ser133 in FLS. Phosphorylation of CREB by MSKs is essential for the production of pro-inflammatory and anti-inflammatory cytokines. However, other downstream effectors of MSK1/2 such as nuclear factor-kappa B, histone H3, and high mobility group nucleosome binding domain 1 may also regulate gene expression in immune cells involved in disease pathogenesis. MSKs are master regulators of cell function that integrate signals induced by growth factors, pro-inflammatory cytokines, and cellular stresses, as well as those induced by LPA.
Collapse
|
30
|
Orosa B, García S, Conde C. The autotaxin-lysophosphatidic acid pathway in pathogenesis of rheumatoid arthritis. Eur J Pharmacol 2015; 765:228-33. [PMID: 26297977 DOI: 10.1016/j.ejphar.2015.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 01/28/2023]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that is mainly produced by the hydrolysis of lysophosphatidylcholine (LPC) by lysophospholipase D, which is also called autotaxin (ATX). LPA interacts with specific G-protein coupled receptors and is involved in the regulation of cellular survival, proliferation, differentiation and motility. LPA also has roles in several pathological disorders, such as cancer and pulmonary, dermal and renal fibrosis. The involvement of the ATX-LPA pathway has recently been demonstrated in inflammatory responses and apoptosis of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis and during the development of experimental arthritis. This review summarises the current literature of the ATX-LPA pathway in rheumatoid arthritis.
Collapse
Affiliation(s)
- Beatriz Orosa
- Laboratorio de Reumatología Experimental (n°8), Instituto de Investigación Sanitaria de Santiago (IDIS) , Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Travesia da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Samuel García
- Laboratorio de Reumatología Experimental (n°8), Instituto de Investigación Sanitaria de Santiago (IDIS) , Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Travesia da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Carmen Conde
- Laboratorio de Reumatología Experimental (n°8), Instituto de Investigación Sanitaria de Santiago (IDIS) , Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Travesia da Choupana s/n, Santiago de Compostela 15706, Spain.
| |
Collapse
|
31
|
LPA Promotes T Cell Recruitment through Synthesis of CXCL13. Mediators Inflamm 2015; 2015:248492. [PMID: 26339130 PMCID: PMC4539179 DOI: 10.1155/2015/248492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/05/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid playing an important role in various inflammatory diseases by inducing expression and secretion of many inflammatory cytokines/chemokines. Here we report in a murine air pouch model of inflammation that LPA induced CXCL13 secretion in a time-dependent manner and with exacerbation of the response when LPA was administered after a pretreatment with TNF-α, a key inflammatory cytokine. LPA mediates recruitment of leukocytes, including that of CD3+ cells into unprimed and TNF-α-primed air pouches. CXCL13 neutralization using a blocking antibody injected into air pouches prior to administration of LPA into TNF-α-primed air pouches decreased CD3+ cell influx. Our data highlight that LPA-mediated CXCL13 secretion plays a role in T cell recruitment and participates in regulation of the inflammatory response.
Collapse
|
32
|
Orosa B, Martínez P, González A, Guede D, Caeiro JR, Gómez-Reino JJ, Conde C. Effect of lysophosphatidic acid receptor inhibition on bone changes in ovariectomized mice. J Bone Miner Metab 2015; 33:383-91. [PMID: 24994065 DOI: 10.1007/s00774-014-0607-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023]
Abstract
Pharmacological inhibition of signaling through lysophosphatidic acid (LPA) receptors reduces bone erosions in an experimental model of arthritis by mechanisms involving reduced osteoclast differentiation and bone resorption and increased differentiation of osteoblasts and bone mineralization. These results led us to hypothesize that LPA receptor inhibition would be beneficial in osteoporosis. Our aim was to test this hypothesis with the LPA receptor antagonist, Ki16425, in ovariectomized mice, a model of postmenopausal osteoporosis. Ovariectomized mice treated with Ki16425 showed bone loss similar to that observed in the controls. Osteoblast markers, Alpl, Bglap and Col1a1, were increased at the mRNA level but no changes were detected in serum. No additional difference was observed in the Ki16425-treated mice relative to the ovariectomized controls with regard to osteoclast function markers or assays of matrix mineralization or osteoclast differentiation. Thus, pharmacological inhibition of LPA receptor was not beneficial for preventing bone loss in ovariectomized mice, indicating that its favorable effect on bone remodeling is less general than hypothesized.
Collapse
Affiliation(s)
- Beatriz Orosa
- Laboratorio de Investigación 8 y Servicio de Reumatología, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhao C, Sardella A, Davis L, Poubelle PE, Bourgoin SG, Fernandes MJ. A transgenic mouse model for the in vivo bioluminescence imaging of the expression of the lysophosphatidic acid receptor 3: relevance for inflammation and uterine physiology research. Transgenic Res 2015; 24:625-34. [PMID: 25982332 DOI: 10.1007/s11248-015-9882-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 05/02/2015] [Indexed: 01/08/2023]
Abstract
Lysophosphatidic acid (LPA) is a lipid-derived signaling molecule that plays key roles in diverse biological processes including inflammation and uterine remodeling. Although the function of LPA and its receptors has been extensively studied using knock-out mice, the temporal-spatial expression of LPA receptors is less well-characterized. To gain further insight into the dynamic regulation of LPA receptor 3 (Lpar3) expression in vivo by bioluminescence imaging, we generated and characterized mice transgenic for a putative Lpar3 promoter fragment. A non-coding region of the Lpar3 gene immediately upstream of the start site was subcloned adjacent to the luciferase gene. Promoter activity was determined by in vitro luciferase assays, in vivo bioluminescent imaging or by semi-quantitative real-time PCR. The air-pouch model was used to investigate Lpar3 promoter activity in the context of inflammation. The putative Lpar3 promoter fragment behaved similarly to the endogenous promoter in vitro and in vivo. In male mice, elevated levels of Lpar3-induced luciferase activity were observed in the testis. In female mice, the basal level of luciferase activity in the uterus significantly increased during pseudopregnancy. Moreover, luciferase activity was upregulated by TNF-α in the air-pouch model. We report the identification of a functional Lpar3 promoter fragment and the generation of a transgenic mouse model to investigate the regulation of Lpar3 promoter activity non-invasively in vivo by bioluminescence imaging. This mouse model is a valuable tool for reproductive biology and inflammation research as well as other biological processes in which this receptor is involved.
Collapse
Affiliation(s)
- Chenqi Zhao
- Rheumatology and Immunology Research Center, Local T1-49, CHUQ-CHUL Research Center and Faculty of Medicine, Laval University, 2705, Boul. Laurier, Québec, QC, G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Park SJ, Jun YJ, Lee KJ, Hwang SM, Kim TH, Lee SH, Lee SH. Chronic rhinosinusitis with nasal polyps and without nasal polyps is associated with increased expression of lysophosphatidic acid-related molecules. Am J Rhinol Allergy 2015; 28:199-207. [PMID: 24980231 DOI: 10.2500/ajra.2014.28.4032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic sinusitis with nasal polyps (CRSwNPs) or CRS without NPs (CRSsNPs) is associated with expression of various cytokines. Lysophosphatidic acid (LPA) generated by autotaxin (ATX), LPA-producing enzyme, initiates signaling cascade involved in the inflammatory responses and participates in diverse biological processes through LPA receptors, including cytokine production. We analyzed the expression and distribution patterns of LPA-related molecules in nasal secretion and sinus mucosa of normal controls and patients with CRSwNPs and CRSsNPs, to evaluate the possible effects of the ATX-LPA receptor axis on the pathogenesis of CRS. METHODS LPA levels in nasal secretion and the expression and distribution patterns of ATX and LPA receptors 1-3 (LPA1-3) in sinus mucosa were investigated using ELISA, real-time polymerase chain reaction, Western blot, and immunohistochemistry. We elucidated the effect of CRS-relevant cytokines on the expression of ATX and LPA receptors, using cultured sinus epithelial cells, and investigated the effect of LPA on the expression of CRS-relevant cytokines, using sinus mucosa explant culture. RESULTS LPA, ATX, and LPA1-3 levels are increased in CRSwNPs and CRSsNPs. ATX and LPA1-3 were localized to superficial epithelium, submucosal glands in normal and inflammatory mucosa, but in inflammatory mucosa, they were found in inflammatory cells. LPA1-3 were noted in endothelium. Sinus mucosa explant stimulated with LPA increasingly produced IL-4, IL-5, interferon gamma, and TNF-alpha, and in cultured epithelial cells stimulated with CRS-relevant cytokines, ATX, and LPA1-3 were differentially induced. CONCLUSION LPA in human sinus mucosa may play important roles in the pathogenesis of CRS, contributing to produce CRS-related cytokines. LPA-related molecules were increased in CRS, which may attribute to CRS-related cytokines.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
36
|
Mabey T, Taleongpong P, Udomsinprasert W, Jirathanathornnukul N, Honsawek S. Plasma and synovial fluid autotaxin correlate with severity in knee osteoarthritis. Clin Chim Acta 2015; 444:72-7. [PMID: 25659292 DOI: 10.1016/j.cca.2015.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/14/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND This study aimed to investigate the relationships between plasma and synovial autotaxin and the severity in knee osteoarthritis (OA) patients. METHODS A total of 90 participants (70 knee OA patients and 20 controls) were recruited. Autotaxin and high-sensitivity C-reactive protein (hs-CRP) levels were determined. The symptomatic and radiographic severity of OA was assessed using the Western Ontario McMaster University Osteoarthritis Index (WOMAC) scores and the Kellgren-Lawrence grades. RESULTS OA patients had significantly higher circulating autotaxin and hs-CRP than controls. Plasma autotaxin was directly correlated with synovial fluid autotaxin (r=0.639, P<0.001). Additionally, plasma and synovial fluid autotaxin were associated with radiographic severity (P<0.001). Furthermore, plasma and synovial fluid autotaxin levels were positively correlated with WOMAC scores (r=0.558, P<0.001 and r=0.371, P=0.002, respectively). CONCLUSION Plasma and synovial fluid autotaxin levels were positively correlated with the severity of OA. Thus, autotaxin has potential as a biomarker reflecting the severity of knee OA.
Collapse
Affiliation(s)
- Thomas Mabey
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pimpisa Taleongpong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Napaphat Jirathanathornnukul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis Cartilage 2015; 23:308-18. [PMID: 25464168 PMCID: PMC4465392 DOI: 10.1016/j.joca.2014.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/14/2014] [Accepted: 11/09/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Articular cartilage is a highly specialized tissue which forms the surfaces in synovial joints. Full-thickness cartilage defects caused by trauma or microfracture surgery heal via the formation of fibrotic tissue characterized by a high content of collagen I (COL I) and subsequent poor mechanical properties. The goal of this study is to investigate the molecular mechanisms underlying fibrosis after joint injury. DESIGN Rat knee joint models were used to mimic cartilage defects after acute injury. Immunohistochemistry was performed to detect proteins related to fibrosis. Human fetal chondrocytes and bone marrow stromal cells (BMSCs) were used to study the influence of the lipid lysophosphatidic acid (LPA) on COL I synthesis. Quantitative PCR, ELISA and immunohistochemistry were performed to evaluate the production of COL I. Chemical inhibitors were used to block LPA signaling both in vitro and in vivo. RESULTS After full-thickness cartilage injury in rat knee joints, stromal cells migrating to the injury expressed high levels of the LPA-producing enzyme autotaxin (ATX); intact articular cartilage in rat and humans expressed negligible levels of ATX despite expressing the LPA receptors LPAR1 and LPAR2. LPA-induced increases in COL I production by chondrocytes and BMSCs were mediated by the MAP kinase and PI3 Kinase signaling pathways. Inhibition of the ATX/LPA axis significantly reduced COL I-enriched fibrocartilage synthesis in full-thickness cartilage defects in rats in favor of the collagen II-enriched normal state. CONCLUSION Taken together, these results identify an attractive target for intervention in reducing the progression of post-traumatic fibrosis and osteoarthritis.
Collapse
|
38
|
Miyabe Y, Miyabe C, Iwai Y, Yokoyama W, Sekine C, Sugimoto K, Harigai M, Miyasaka M, Miyasaka N, Nanki T. Activation of fibroblast-like synoviocytes derived from rheumatoid arthritis via lysophosphatidic acid-lysophosphatidic acid receptor 1 cascade. Arthritis Res Ther 2014; 16:461. [PMID: 25273676 PMCID: PMC4203966 DOI: 10.1186/s13075-014-0461-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6). Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients. Methods FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry. Results The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1 inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist. Conclusions Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.
Collapse
|
39
|
Wang S, Liu H, Akhtar J, Chen HX, Wang Z. Alteration of runt-related transcription factor 3 gene expression and biologic behavior of esophageal carcinoma TE-1 cells after 5-azacytidine intervention. Asian Pac J Cancer Prev 2014; 14:5427-33. [PMID: 24175838 DOI: 10.7314/apjcp.2013.14.9.5427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
5-Azacytidine (5-azaC) was originally identified as an anticancer drug (NSC102876) which can cause hypomethylation of tumor suppressor genes. To assess its effects on runt-related transcription factor 3 (RUNX3), expression levels and the promoter methylation status of the RUNX3 gene were assessed. We also investigated alteration of biologic behavior of esophageal carcinoma TE-1 cells. MTT assays showed 5-azaC inhibited the proliferation of TE-1 cells in a time and dose-dependent way. Although other genes could be demethylated after 5-azaC intervention, we focused on RUNX3 gene in this study. The expression level of RUNX3 mRNA increased significantly in TE-1 cells after treatment with 5-azaC at hypotoxic levels. RT-PCR showed 5-azaC at 50 μM had the highest RUNX3-induction activity. Methylation-specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. Migration and invasion of TE-1 cells were inhibited by 5-azaC, along with growth of Eca109 xenografts in nude mice. In conclusion, we demonstrate that the RUNX3 gene can be reactivated by the demethylation reagent 5-azaC, which inhibits the proliferation, migration and invasion of esophageal carcinoma TE-1 cells.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China E-mail : wz620226@ hotmail.com
| | | | | | | | | |
Collapse
|
40
|
Lysophosphatidic acid-induced IL-8 secretion involves MSK1 and MSK2 mediated activation of CREB1 in human fibroblast-like synoviocytes. Biochem Pharmacol 2014; 90:62-72. [PMID: 24792438 DOI: 10.1016/j.bcp.2014.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that promotes motility, survival, and the synthesis of chemokines/cytokines such as interleukin-8 (IL-8) and interleukin-6 by human fibroblast-like synoviocytes from patients with rheumatoid arthritis (RAFLS). In those cells LPA was reported to induce IL-8 secretion through activation of various signaling pathways including p38 mitogen-activated protein kinase (p38 MAPK), p42/44 MAPK, and Rho kinase. In addition to those pathways we report that mitogen- and stress-activated protein kinases (MSKs) known to be activated downstream of the ERK1/2 and p38 MAPK cascades and CREB are phosphorylated in response to LPA. The silencing of MSKs with small-interfering RNAs and the pharmacological inhibitor of MSKs SB747651A shows a role for both MSK1 and MSK2 in LPA-mediated phosphorylation of CREB at Ser-133 and secretion of IL-8 and MCP-1. Whereas CREB inhibitors have off target effects and increased LPA-mediated IL-8 secretion, the silencing of CREB1 with short hairpin RNA significantly reduced LPA-induced chemokine production in RAFLS. Taken together the data clearly suggest that MSK1 and MSK2 are the major CREB kinases in RAFLS stimulated with LPA and that phosphorylation of CREB1 at Ser-133 downstream of MSKs plays a significant role in chemokine production.
Collapse
|
41
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 562] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
42
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|
43
|
Wang S, Liu H, Wang Z, Chen HX. Effects of 5-azacytidine on RUNX3 gene expression and the biological behavior of esophageal carcinoma cells. Mol Med Rep 2014; 9:1259-65. [PMID: 24535051 DOI: 10.3892/mmr.2014.1945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/28/2014] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the effects of 5-azacytidine (5-azaC) on the expression level of the human runt-related transcription factor 3 (RUNX3) gene and the biological behavior of esophageal carcinoma Eca109 cells. The effect of the demethylation reagent 5-azaC on the viability of Eca109 cells was detected by the MTT assay, which demonstrated that 5-azaC inhibited the viability of Eca109 cells in a time- and dose-dependent manner. Although demethylation of other genes may occur following treatment with 5-azaC, we focused on the RUNX3 gene. When treated with 5-azaC at hypoxic levels, the expression of RUNX3 increased and the methylation degree of the RUNX3 gene was decreased significantly in Eca109 cells. 5-azaC at 50 µM demonstrated the highest RUNX3-induction activity, inducing RUNX3 mRNA and protein expression, and decreasing the degree of methylation of the RUNX3 gene. Methylation specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. The abilities of migration and invasion of Eca109 cells were inhibited by 5-azaC. The growth of Eca109 cells treated with 5-azaC in vivo was detected by a tumorigenesis experiment. 5-azaC inhibited the growth of Eca109 xenografts in nude mice. Taken together, our findings demonstrated that the RUNX3 gene is hypermethylated in Eca109 cells and that 5-azaC induces the expression of the RUNX3 gene by demethylation, which inhibits the proliferation, migration and invasion of Eca109 cells.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hong Liu
- Department of Otorhinolaryngology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hua-Xia Chen
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
44
|
Orosa B, García S, Martínez P, González A, Gómez-Reino JJ, Conde C. Lysophosphatidic acid receptor inhibition as a new multipronged treatment for rheumatoid arthritis. Ann Rheum Dis 2014; 73:298-305. [PMID: 23486415 DOI: 10.1136/annrheumdis-2012-202832] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effect of lysophosphatidic acid (LPA) receptor inhibition in a mouse model of autoantibody-mediated arthritis. METHODS Arthritis was induced in C57BL/6 mice by K/BxN serum transfer. Arthritic mice were treated with the LPA receptor antagonist, Ki16425 and arthritis severity was assessed clinically and histologically. Expression of inflammatory mediators in joints was identified by a mouse cytokine array and validated by western blot and real-time PCR assays. Effects of treatment with LPA receptor antagonist or with small interfering RNA on bone metabolism were assessed by in vitro assays of osteoclastogenesis, bone resorption, osteoblasts differentiation and bone mineralisation. RESULTS Mice treated with the LPA receptor antagonist Ki16425 showed attenuated arthritis characterised by reduction of synovial inflammation, cartilage damage and, more markedly, bone erosion. We detected increased apoptosis, reduction of inflammatory mediators and of bone remodelling proteins in arthritic joints from mice treated with Ki16425. In addition, we demonstrated that inhibition or suppression of LPA1 receptor reduces osteoclast differentiation and bone resorption and, on the contrary, it promotes differentiation of osteoblasts and bone mineralisation. CONCLUSIONS Pharmacological inhibition of LPA1 receptor in the K/BxN serum-transfer arthritis model led to reduction of severity of arthritis involving multiple mechanisms, increased apoptosis, reduced inflammatory mediators and proteins involved in bone remodelling, that show LPA1 as a very promising target in rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Beatriz Orosa
- Laboratorio de Investigación 8 y Servicio de Reumatología, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS, , Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Miyabe Y, Miyabe C, Iwai Y, Takayasu A, Fukuda S, Yokoyama W, Nagai J, Jona M, Tokuhara Y, Ohkawa R, Albers HM, Ovaa H, Aoki J, Chun J, Yatomi Y, Ueda H, Miyasaka M, Miyasaka N, Nanki T. Necessity of lysophosphatidic acid receptor 1 for development of arthritis. ACTA ACUST UNITED AC 2013; 65:2037-47. [PMID: 23666827 DOI: 10.1002/art.37991] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Lysophosphatidic acid (LPA) is a bioactive lipid that binds to a group of cell surface G protein-coupled receptors (LPA receptors 1-6 [LPA1-6 ]) and has been implicated as an important mediator of angiogenesis, inflammation, and cancer growth. This study was undertaken to analyze the effects of LPA1 on the development of arthritis. METHODS Expression of LPA receptors on synovial tissue was analyzed by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. The effects of abrogation of LPA1 on collagen-induced arthritis (CIA) were evaluated using LPA1 -deficient mice or LPA1 antagonist. Migrating fluorescence-labeled CD11b+ splenocytes, which were transferred into the synovium of mice with CIA, were counted. CD4+ naive T cells were incubated under Th1-, Th2-, or Th17-polarizing conditions, and T helper cell differentiation was assessed. Osteoclast formation from bone marrow cells was examined. RESULTS LPA1 was highly expressed in the synovium of patients with rheumatoid arthritis (RA) compared with that of patients with osteoarthritis. LPA1 -deficient mice did not develop arthritis following immunization with type II collagen (CII). LPA1 antagonist also ameliorated murine CIA. Abrogation of LPA1 was associated with reductions in cell infiltration, bone destruction in the joints, and interleukin-17 production from CII-stimulated splenocytes. Infiltration of transferred CD11b+ macrophages from LPA1 -deficient mice into the synovium was suppressed compared with infiltration of macrophages from wild-type mice. LPA1 antagonist inhibited the infiltration of macrophages from wild-type mice. Differentiation into Th17, but not Th1 or Th2, and osteoclast formation were also suppressed under conditions of LPA1 deficiency or LPA1 inhibition in vitro. CONCLUSION Collectively, these results indicate that LPA/LPA1 signaling contributes to the development of arthritis via cellular infiltration, Th17 differentiation, and osteoclastogenesis. Thus, LPA1 may be a promising target molecule for RA therapy.
Collapse
|
46
|
Nikitopoulou I, Kaffe E, Sevastou I, Sirioti I, Samiotaki M, Madan D, Prestwich GD, Aidinis V. A metabolically-stabilized phosphonate analog of lysophosphatidic acid attenuates collagen-induced arthritis. PLoS One 2013; 8:e70941. [PMID: 23923032 PMCID: PMC3726599 DOI: 10.1371/journal.pone.0070941] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/25/2013] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eleanna Kaffe
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ioanna Sevastou
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ivi Sirioti
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Martina Samiotaki
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Damian Madan
- Echelon Biosciences Inc, Salt Lake City, Utah, United States of America
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Vassilis Aidinis
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
- * E-mail:
| |
Collapse
|
47
|
Lysoglycerophospholipids in chronic inflammatory disorders: The PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:42-60. [DOI: 10.1016/j.bbalip.2012.07.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 02/08/2023]
|
48
|
Current progress in non-Edg family LPA receptor research. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:33-41. [PMID: 22902318 DOI: 10.1016/j.bbalip.2012.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid yet possesses myriad biological functions. Until 2003, the functions of LPA were thought to be elicited exclusively by three subtypes of the endothelial differentiation gene (Edg) family of G protein-coupled receptors - LPA(1), LPA(2), and LPA(3). However, several biological functions of LPA could not be assigned to any of these receptors indicating the existence of one or more additional LPA receptor(s). More recently, the discovery of a second cluster of LPA receptors which includes LPA(4), LPA(5), and LPA(6) has paved the way for new avenues of LPA research. Analyses of these non-Edg family LPA receptors have begun to fill in gaps to understand biological functions of LPA such as platelet aggregation and vascular development that could not be ascribed to classical Edg family LPA receptors and are also unveiling new biological functions. Here we review recent progress in the non-Edg family LPA receptor research, with special emphasis on the pharmacology, signaling, and physiological roles of this family of receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
49
|
Sims SM, Panupinthu N, Lapierre DM, Pereverzev A, Dixon SJ. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:109-16. [PMID: 22892679 DOI: 10.1016/j.bbalip.2012.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/01/2012] [Indexed: 02/05/2023]
Abstract
Osteoclasts (bone resorbing cells) and osteoblasts (bone forming cells) play essential roles in skeletal development, mineral homeostasis and bone remodeling. The actions of these two cell types are tightly coordinated, and imbalances in bone formation and resorption can result in disease states, such as osteoporosis. Lysophosphatidic acid (LPA) is a potent bioactive phospholipid that influences a number of cellular processes, including proliferation, survival and migration. LPA is also involved in wound healing and pathological conditions, such as tumor metastasis and autoimmune disorders. During trauma, activated platelets are likely a source of LPA in bone. Physiologically, osteoblasts themselves can also produce LPA, which in turn promotes osteogenesis. The capacity for local production of LPA, coupled with the proximity of osteoblasts and osteoclasts, leads to the intriguing possibility that LPA acts as a paracrine mediator of osteoblast-osteoclast signaling. Here we summarize emerging evidence that LPA enhances the differentiation of osteoclast precursors, and regulates the morphology, resorptive activity and survival of mature osteoclasts. These actions arise through stimulation of multiple LPA receptors and intracellular signaling pathways. Moreover, LPA is a potent mitogen implicated in promoting the metastasis of breast and ovarian tumors to bone. Thus, LPA released from osteoblasts is potentially an important autocrine and paracrine mediator - physiologically regulating skeletal development and remodeling, while contributing pathologically to metastatic bone disease. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Stephen M Sims
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
50
|
Orosa B, González A, Mera A, Gómez-Reino JJ, Conde C. Lysophosphatidic acid receptor 1 suppression sensitizes rheumatoid fibroblast-like synoviocytes to tumor necrosis factor-induced apoptosis. ACTA ACUST UNITED AC 2012; 64:2460-70. [DOI: 10.1002/art.34443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|