1
|
Trunfio M, Tang B, Iudicello JE, Ma Q, Franklin DR, Cookson D, Riggs PK, Cherner M, Moore DJ, Heaton RK, Letendre SL, Ellis RJ. Distinct Effects of Selective Serotonin Reuptake Inhibitors and Serotonin-Norepinephrine Reuptake Inhibitors on Soluble Biomarkers in Blood and Cerebrospinal Fluid of People With HIV. J Infect Dis 2024; 229:1266-1276. [PMID: 38059529 PMCID: PMC11095536 DOI: 10.1093/infdis/jiad558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Persistent inflammation affects people with HIV (PWH) despite antiretroviral therapy (ART). Selective serotonin and serotonin-norepinephrine reuptake inhibitors (SSRIs, SNRIs), HMG-CoA reductase-inhibitors (statins), and angiotensin-converting enzyme inhibitors (ACEIs) have immunomodulant properties. We evaluated the potential impact of these drugs on inflammation and neurodegeneration in PWH. METHODS Cross-sectional single-center (United States) analysis in 184 PWH on ART with plasma HIV RNA < 200 copies/mL. All participants had 10 biomarkers measured in blood and cerebrospinal fluid (CSF). To reduce dimensionality, hierarchical clustering and principal components (PCs) analysis were employed. The analyses were adjusted for duration of the drugs and clinical conditions. RESULTS Participants were mostly middle-aged men, with median CD4+ T cells of 620/µL. In adjusted models, SSRI use was associated with 3 PCs: higher CSF and plasma Aβ42 and CSF CCL2 (aβ=.14, P = .040); lower CSF 8-oxo-dG, total tau, and sCD14 (aβ=-.12, P = .042); and higher plasma sCD14 with lower sCD40L (aβ=.15, P = .042). SNRI use was associated with higher values of CSF and plasma neopterin and CSF sTNFR-II (aβ=.22, P = .004). Statins and ACEIs showed no association. CONCLUSIONS SSRIs and SNRIs had distinct biomarker signatures. SSRIs were associated with reduced neurodegeneration, immune activation, and oxidative stress in CSF, suggesting a role of SSRIs as adjunctive therapy in PWH.
Collapse
Affiliation(s)
- Mattia Trunfio
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Bin Tang
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Jennifer E Iudicello
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Qing Ma
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Donald R Franklin
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Debra Cookson
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Patricia K Riggs
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Mariana Cherner
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - David J Moore
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Robert K Heaton
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Scott L Letendre
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| | - Ronald J Ellis
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego,San Diego, California, USA
| |
Collapse
|
2
|
Chemparathy DT, Ray S, Ochs C, Ferguson N, Gawande DY, Dravid SM, Callen S, Sil S, Buch S. Neuropathogenic role of astrocyte-derived extracellular vesicles in HIV-associated neurocognitive disorders. J Extracell Vesicles 2024; 13:e12439. [PMID: 38647111 PMCID: PMC11034007 DOI: 10.1002/jev2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Our previous findings demonstrated that astrocytic HIF-1α plays a major role in HIV-1 Tat-mediated amyloidosis which can lead to Alzheimer's-like pathology-a comorbidity of HIV-Associated Neurocognitive Disorders (HAND). These amyloids can be shuttled in extracellular vesicles, and we sought to assess whether HIV-1 Tat stimulated astrocyte-derived EVs (ADEVs) containing the toxic amyloids could result in neuronal injury in vitro and in vivo. We thus hypothesized that blocking HIF-1α could likely mitigate HIV-1 Tat-ADEV-mediated neuronal injury. Rat hippocampal neurons when exposed to HIV-1 Tat-ADEVs carrying the toxic amyloids exhibited amyloid accumulation and synaptodendritic injury, leading to functional loss as evidenced by alterations in miniature excitatory post synaptic currents. The silencing of astrocytic HIF-1α not only reduced the biogenesis of ADEVs, as well as amyloid cargos, but also ameliorated neuronal synaptodegeneration. Next, we determined the effect of HIV-1 Tat-ADEVs carrying amyloids in the hippocampus of naive mice brains. Naive mice receiving the HIV-1 Tat-ADEVs, exhibited behavioural changes, and Alzheimer's 's-like pathology accompanied by synaptodegeneration. This impairment(s) was not observed in mice injected with HIF-1α silenced ADEVs. This is the first report demonstrating the role of amyloid-carrying ADEVs in mediating synaptodegeneration leading to behavioural changes associated with HAND and highlights the protective role of HIF-1α.
Collapse
Affiliation(s)
- Divya T. Chemparathy
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sudipta Ray
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Chase Ochs
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Dinesh Y. Gawande
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Shashank M. Dravid
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Shannon Callen
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Susmita Sil
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shilpa Buch
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
3
|
Sundermann EE, Campbell LM, Villers O, Bondi MW, Gouaux B, Salmon DP, Galasko D, Soontornniyomkij V, Ellis RJ, Moore DJ. Alzheimer's Disease Pathology in Middle Aged and Older People with HIV: Comparisons with Non-HIV Controls on a Healthy Aging and Alzheimer's Disease Trajectory and Relationships with Cognitive Function. Viruses 2023; 15:1319. [PMID: 37376619 PMCID: PMC10305373 DOI: 10.3390/v15061319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
We determined the prevalence of Alzheimer's disease (AD) pathological hallmarks, amyloid-β and phosphorylated-Tau, in autopsied brains of 49 people with HIV (PWH) (ages: 50-68; mean age = 57.0) from the National NeuroAIDS Tissue Consortium and in a comparative cohort of 55 people without HIV (PWoH) from the UC San Diego Alzheimer's Disease Research Center (17 controls, 14 mild cognitive impairment, 24 AD; ages: 70-102, mean age = 88.7). We examined how AD pathology relates to domain-specific cognitive functions in PWH overall and in sex-stratified samples. Amyloid-β and phosphorylated-Tau positivity (presence of pathology of any type/density) was determined via immunohistochemistry in AD-sensitive brain regions. Among PWH, amyloid-β positivity ranged from 19% (hippocampus) to 41% (frontal neocortex), and phosphorylated-Tau positivity ranged from 47% (entorhinal cortex) to 73% (transentorhinal cortex). Generally, AD pathology was significantly less prevalent, and less severe when present, in PWH versus PWoH regardless of cognitive status. Among PWH, positivity for AD pathology related most consistently to memory-related domains. Positivity for p-Tau pathology related to memory-related domains in women with HIV only, although the sample size of women with HIV was small (n = 10). Results indicate that AD pathology is present in a sizable portion of middle aged and older PWH, although not to the extent in older PWoH. Studies with better age-matched PWoH are needed to examine the effect of HIV status on AD pathology.
Collapse
Affiliation(s)
- Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Laura M. Campbell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Olivia Villers
- School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Ben Gouaux
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Virawudh Soontornniyomkij
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - David J. Moore
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| |
Collapse
|
4
|
Osborne OM, Kowalczyk JM, Louis KDP, Daftari MT, Colbert BM, Naranjo O, Torices S, András IE, Dykxhoorn DM, Toborek M. Brain endothelium-derived extracellular vesicles containing amyloid-beta induce mitochondrial alterations in neural progenitor cells. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:340-362. [PMID: 36649440 PMCID: PMC9838065 DOI: 10.20517/evcna.2022.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aim Elevated brain deposits of amyloid beta (Aβ40) contribute to neuropathology and cognitive dysfunction in Alzheimer's disease (AD). However, the role of the blood-brain barrier (BBB) as an interface for the transfer of Aβ40 from the periphery into the brain is not well characterized. In addition, a substantial population of neural progenitor cells (NPCs) resides in close proximity to brain capillaries that form the BBB. The aim of this study is to understand the impact of brain endothelium-derived extracellular vesicles (EV) containing Aβ40 on metabolic functions and differentiation of NPCs. Methods Endothelial EVs were derived from an in vitro model of the brain endothelium treated with 100 nM Aβ40 or PBS. We then analyzed the impact of these EVs on mitochondrial morphology and bioenergetic disruption of NPCs. In addition, NPCs were differentiated and neurite development upon exposure to EVs was assessed using the IncuCyte Zoom live cell imaging system. Results We demonstrate that physiological concentrations of Aβ40 can be transferred to accumulate in NPCs via endothelial EVs. This transfer results in mitochondrial dysfunction, disrupting crista morphology, metabolic rates, fusion and fission dynamics of NPCs, as well as their neurite development. Conclusion Intercellular transfer of Aβ40 is carried out by brain endothelium-derived EVs, which can affect NPC differentiation and induce mitochondrial dysfunction, leading to aberrant neurogenesis. This has pathological implications because NPCs growing into neurons are incorporated into cerebral structures involved in learning and memory, two common phenotypes affected in AD and related dementias.
Collapse
Affiliation(s)
- Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer M. Kowalczyk
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kelssey D. Pierre Louis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Manav T. Daftari
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brett M. Colbert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Sil S, Hu G, Liao K, Niu F, Callen S, Periyasamy P, Fox HS, Buch S. HIV-1 Tat-mediated astrocytic amyloidosis involves the HIF-1α/lncRNA BACE1-AS axis. PLoS Biol 2020; 18:e3000660. [PMID: 32453744 PMCID: PMC7274476 DOI: 10.1371/journal.pbio.3000660] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 06/05/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Increased life expectancy of patients diagnosed with HIV in the current era of antiretroviral therapy is unfortunately accompanied with the prevalence of HIV-associated neurocognitive disorders (HANDs) and risk of comorbidities such as Alzheimer-like pathology. HIV-1 transactivator of transcription (Tat) protein has been shown to induce the production of toxic neuronal amyloid protein and also enhance neurotoxicity. The contribution of astrocytes in Tat-mediated amyloidosis remains an enigma. We report here, in simian immunodeficiency virus (SIV)+ rhesus macaques and patients diagnosed with HIV, brain region-specific up-regulation of amyloid precursor protein (APP) and Aβ (40 and 42) in astrocytes. In addition, we find increased expression of β-site cleaving enzyme (BACE1), APP, and Aβ in human primary astrocytes (HPAs) exposed to Tat. Mechanisms involved up-regulation of hypoxia-inducible factor (HIF-1α), its translocation and binding to the long noncoding RNA (lncRNA) BACE1-antisense transcript (BACE1-AS), resulting, in turn, in the formation of the BACE1-AS/BACE1 RNA complex, subsequently leading to increased BACE1 protein, and activity and generation of Aβ-42. Gene silencing approaches confirmed the regulatory role of HIF-1α in BACE1-AS/BACE1 in Tat-mediated amyloidosis. This is the first report implicating the role of the HIF-1α/lncRNABACE1-AS/BACE1 axis in Tat-mediated induction of astrocytic amyloidosis, which could be targeted as adjunctive therapies for HAND-associated Alzheimer-like comorbidity.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhao X, Fan Y, Vann PH, Wong JM, Sumien N, He JJ. Long-term HIV-1 Tat Expression in the Brain Led to Neurobehavioral, Pathological, and Epigenetic Changes Reminiscent of Accelerated Aging. Aging Dis 2020; 11:93-107. [PMID: 32010484 PMCID: PMC6961778 DOI: 10.14336/ad.2019.0323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and indirect mechanisms. However, most, if not all of studies involve short-time exposure of recombinant Tat protein in vitro or short-term Tat expression in vivo. In this study, we took advantage of the doxycycline-inducible brain-specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, and epigenetic changes in these mice. Long-term Tat expression led to poorer short-and long-term memory, lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and compromised neuronal integrity, and decreased global genomic DNA methylation. There were sex- and brain region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat expression. All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals. These findings also suggest another utility of this model for HIV infection-associated accelerated aging studies.
Collapse
Affiliation(s)
- Xiaojie Zhao
- 1Department of Microbiology, Immunology & Genetics and
| | - Yan Fan
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Philip H Vann
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jessica M Wong
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Nathalie Sumien
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Johnny J He
- 1Department of Microbiology, Immunology & Genetics and
| |
Collapse
|
7
|
Role of Cav-1 in HIV-1 Tat-Induced Dysfunction of Tight Junctions and A β-Transferring Proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3403206. [PMID: 31217837 PMCID: PMC6537002 DOI: 10.1155/2019/3403206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
Abstract
Objective To evaluate the role of caveolin-1 (Cav-1) in HIV-1 Tat-induced dysfunction of tight junction and amyloid β-peptide- (Aβ-) transferring proteins. Methods A Cav-1 shRNA interference target sequence was cloned into the lentiviral vector pHBLV-U6-Scramble-ZsGreen-Puro and verified by double enzyme digestion and DNA sequencing. Human cerebral microvascular endothelium (HBEC-5i) cells were transduced with viral particles made in 293T cells by transfection with lentiviral packaging plasmids. HBEC-5i cells transduced with Cav-1 shRNA or Ctr shRNA were exposed to HIV-1 Tat for 24 h, and the protein and mRNA levels of the tight junction protein occludin, Aβ-transferring protein, receptor for advanced glycation end products (RAGE), low-density lipoprotein receptor-related protein- (LRP-) 1, and RhoA were evaluated with Western blot and real-time reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively. Results After sequencing, an RNA interference recombinant lentivirus expressing a vector targeting Cav-1 was successfully established. The recombined lentiviral particles were made by using 293T cells to package the recombined lentiviral vector. A stable monoclonal cell line with strong GFP expression was acquired with a Cav-1 knockdown rate of 85.7%. The occludin protein and mRNA levels in the Ctr shRNA group were decreased with HIV-1 Tat exposure but were upregulated in the Cav-1 shRNA group. The HIV-1 Tat-induced alterations of RAGE and LRP-1 protein and mRNA levels in the Ctr shRNA group were attenuated in the Cav-1 shRNA group. The RhoA protein levels in the Ctr shRNA group were upregulated by HIV-1 Tat exposure but were downregulated in the Cav-1 shRNA group. Conclusion These results show that HIV-1 Tat-induced downregulation of occludin and LRP-1 and upregulation of RAGE and RhoA may result in the accumulation of Aβ in the brain. Silencing the Cav-1 gene with shRNA plays a key role in the protection against HIV-1 Tat-induced dysfunction of the blood-brain barrier and Aβ accumulation.
Collapse
|
8
|
Hategan A, Masliah E, Nath A. HIV and Alzheimer's disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein. J Neurovirol 2019; 25:648-660. [PMID: 31016584 DOI: 10.1007/s13365-019-00736-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
In patients infected with the human immunodeficiency virus (HIV), the HIV-Tat protein may be continually produced despite adequate antiretroviral therapy. As the HIV-infected population is aging, it is becoming increasingly important to understand how HIV-Tat may interact with proteins such as amyloid β and Tau which accumulate in the aging brain and eventually result in Alzheimer's disease. In this review, we examine the in vivo data from HIV-infected patients and animal models and the in vitro experiments that show how protein complexes between HIV-Tat and amyloid β occur through novel protein-protein interactions and how HIV-Tat may influence the pathways for amyloid β production, degradation, phagocytosis, and transport. HIV-Tat may also induce Tau phosphorylation through a cascade of cellular processes that lead to the formation of neurofibrillary tangles, another hallmark of Alzheimer's disease. We also identify gaps in knowledge and future directions for research. Available evidence suggests that HIV-Tat may accelerate Alzheimer-like pathology in patients with HIV infection which cannot be impacted by current antiretroviral therapy.
Collapse
Affiliation(s)
- Alina Hategan
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10; Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Eliezer Masliah
- Division of Neuroscience, National Institute of Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10; Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
|
10
|
HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nat Commun 2017; 8:1522. [PMID: 29142315 PMCID: PMC5688069 DOI: 10.1038/s41467-017-01795-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
While beta-amyloid (Aβ), a classic hallmark of Alzheimer's disease (AD) and dementia, has long been known to be elevated in the human immunodeficiency virus type 1 (HIV-1)-infected brain, why and how Aβ is produced, along with its contribution to HIV-associated neurocognitive disorder (HAND) remains ill-defined. Here, we reveal that the membrane-associated amyloid precursor protein (APP) is highly expressed in macrophages and microglia, and acts as an innate restriction against HIV-1. APP binds the HIV-1 Gag polyprotein, retains it in lipid rafts and blocks HIV-1 virion production and spread. To escape this restriction, Gag promotes secretase-dependent cleavage of APP, resulting in the overproduction of toxic Aβ isoforms. This Gag-mediated Aβ production results in increased degeneration of primary cortical neurons, and can be prevented by γ-secretase inhibitor treatment. Interfering with HIV-1's evasion of APP-mediated restriction also suppresses HIV-1 spread, offering a potential strategy to both treat infection and prevent HAND.
Collapse
|
11
|
Abstract
Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.
Collapse
|
12
|
HIV-1 Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cells via the Ras Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3160360. [PMID: 28553432 PMCID: PMC5434241 DOI: 10.1155/2017/3160360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
Amyloid beta (Aβ) deposition is increased in human immunodeficiency virus-1- (HIV-1-) infected brain, but the mechanisms are not fully understood. The aim of the present study was to evaluate the role of Ras signaling in HIV-1 transactivator protein- (Tat-) induced Aβ accumulation in human cerebral microvascular endothelial cells (HBEC-5i). Cell viability assay showed that 1 μg/mL Tat and 20 μmol/L of the Ras inhibitor farnesylthiosalicylic acid (FTS) had no significant effect on HBEC-5i cell viability after 24 h exposure. Exposure to Tat decreased protein and mRNA levels of zonula occludens- (ZO-) 1 and Aβ-degrading enzyme neprilysin (NEP) in HBEC-5i cells as determined by western blotting and quantitative real-time polymerase chain reaction. Exposure to Tat also increased transendothelial transfer of Aβ and intracellular reactive oxygen species (ROS) levels; however, these effects were attenuated by FTS. Collectively, these results suggest that the Ras signaling pathway is involved in HIV-1 Tat-induced changes in ZO-1 and NEP, as well as Aβ deposition in HBEC-5i cells. FTS partially protects blood-brain barrier (BBB) integrity and inhibits Aβ accumulation.
Collapse
|
13
|
Biemans EALM, Jäkel L, de Waal RMW, Kuiperij HB, Verbeek MM. Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood-brain barrier. J Neurosci Res 2016; 95:1513-1522. [PMID: 27726164 PMCID: PMC5484315 DOI: 10.1002/jnr.23964] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease and cerebral amyloid angiopathy are characterized by accumulation of amyloid-β (Aβ) at the cerebrovasculature due to decreased clearance at the blood-brain barrier (BBB). However, the exact mechanism of Aβ clearance across this barrier has not been fully elucidated. The hCMEC/D3 cell line has been characterized as a valid model for the BBB. In this study we evaluated the use of this model to study Aβ clearance across the BBB, with an emphasis on brain-to-blood directional permeability. Barrier integrity of hCMEC/D3 monolayers was confirmed for large molecules in both the apical to basolateral and the reverse direction. However, permeability for smaller molecules was substantially higher, especially in basolateral to apical direction, and barrier formation for Aβ was completely absent in this direction. In addition, hCMEC/D3 cells failed to develop a high TEER, possibly caused by incomplete formation of tight junctions. We conclude that the hCMEC/D3 model has several limitations to study the cerebral clearance of Aβ. Therefore, the model needs further characterization before this cell system can be generally applied as a model to study cerebral Aβ clearance. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elisanne A L M Biemans
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Robert M W de Waal
- Radboud University Medical Center, Department of Pathology, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| |
Collapse
|
14
|
HIV-1 Tat Regulates Occludin and Aβ Transfer Receptor Expression in Brain Endothelial Cells via Rho/ROCK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4196572. [PMID: 27563375 PMCID: PMC4985576 DOI: 10.1155/2016/4196572] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/16/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022]
Abstract
HIV-1 transactivator protein (Tat) has been shown to play an important role in HIV-associated neurocognitive disorders. The aim of the present study was to evaluate the relationship between occludin and amyloid-beta (Aβ) transfer receptors in human cerebral microvascular endothelial cells (hCMEC/D3) in the context of HIV-1-related pathology. The protein expressions of occludin, receptor for advanced glycation end products (RAGE), and low-density lipoprotein receptor-related protein 1 (LRP1) in hCMEC/D3 cells were examined using western blotting and immunofluorescent staining. The mRNA levels of occludin, RAGE, and LRP1 were measured using quantitative real-time polymerase chain reaction. HIV-1 Tat at 1 µg/mL and the Rho inhibitor hydroxyfasudil (HF) at 30 µmol/L, with 24 h exposure, had no significant effect on hCMEC/D3 cell viability. Treatment with HIV-1 Tat protein decreased mRNA and protein levels of occludin and LRP1 and upregulated the expression of RAGE; however, these effects were attenuated by HF. These data suggest that the Rho/ROCK signaling pathway is involved in HIV-1 Tat-mediated changes in occludin, RAGE, and LRP1 in hCMEC/D3 cells. HF may have a beneficial influence by protecting the integrity of the blood-brain barrier and the expression of Aβ transfer receptors.
Collapse
|
15
|
Griffin JM, Kho D, Graham ES, Nicholson LFB, O’Carroll SJ. Statins Inhibit Fibrillary β-Amyloid Induced Inflammation in a Model of the Human Blood Brain Barrier. PLoS One 2016; 11:e0157483. [PMID: 27309956 PMCID: PMC4911157 DOI: 10.1371/journal.pone.0157483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/31/2016] [Indexed: 02/03/2023] Open
Abstract
Background Astrocytes and cerebral endothelial cells are important components of the blood-brain barrier (BBB). Disruption to this barrier through inflammation is a major contributor to Alzheimer’s disease (AD) pathology. The amyloid beta (Aβ) protein is known to exist in several forms and is a key modulator of AD that is known to cause inflammation and changes to BBB function. While one of these forms, fibrillary Aβ (fAβ), is known to cause endothelial cell death at the BBB, no studies have looked specifically at its role on inflammation in a model of the human BBB. Aims To determine if fAβ is inflammatory to the human BBB. As statins have been shown to be anti-inflammatory and protective in AD, we also tested if these could inhibit the inflammatory effect of fAβ. Methods Using cultured cerebral endothelial cells and astrocytes we determined changes in cytokine release, cell toxicity and barrier function in response to fibrillary β-amyloid1–42 (fAβ1–42) alone and in combination with statins. Results fAβ1–42 induced inflammatory cytokine release from endothelial cells in the absence of cell toxicity. It also induced astrocyte cytokine release and cell death and caused a loss of barrier integrity. Statin treatment inhibited all of these effects. Conclusions We conclude that fAβ1–42 has both inflammatory and cytotoxic effects on the BBB and the protective effect of statins in AD may in part be through inhibiting these effects.
Collapse
Affiliation(s)
- Jarred M. Griffin
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Kho
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - E. Scott Graham
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Louise F. B. Nicholson
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Simon J. O’Carroll
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
16
|
Statin Therapy and the Development of Cerebral Amyloid Angiopathy--A Rodent in Vivo Approach. Int J Mol Sci 2016; 17:ijms17010126. [PMID: 26797603 PMCID: PMC4730367 DOI: 10.3390/ijms17010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/24/2022] Open
Abstract
Background: Cerebral amyloid angiopathy (CAA) is characterized by vascular deposition of amyloid β (Aβ) with a higher incidence of cerebral microbleeds (cMBs) and spontaneous hemorrhage. Since statins are known for their benefit in vascular disease we tested for the effect on CAA. Methods: APP23-transgenic mice received atorvastatin-supplemented food starting at the age of eight months (n = 13), 12 months (n = 7), and 16 months (n = 6), respectively. Controls (n = 16) received standard food only. At 24 months of age cMBs were determined with T2*-weighted 9.4T magnetic resonance imaging and graded by size. Results: Control mice displayed an average of 35 ± 18.5 cMBs (mean ± standard deviation), compared to 29.3 ± 9.8 in mice with eight months (p = 0.49), 24.9 ± 21.3 with 12 months (p = 0.26), and 27.8 ± 15.4 with 16 months of atorvastatin treatment (p = 0.27). In combined analysis treated mice showed lower absolute numbers (27.4 ± 15.6, p = 0.16) compared to controls and also after adjustment for cMB size (p = 0.13). Conclusion: Despite to a non-significant trend towards fewer cMBs our results failed to provide evidence for beneficial effects of long-term atorvastatin treatment in the APP23-transgenic mouse model of CAA. A higher risk for bleeding complications was not observed.
Collapse
|
17
|
Silva JN, Polesskaya O, Wei HS, Rasheed IYD, Chamberlain JM, Nishimura C, Feng C, Dewhurst S. Chronic central nervous system expression of HIV-1 Tat leads to accelerated rarefaction of neocortical capillaries and loss of red blood cell velocity heterogeneity. Microcirculation 2015; 21:664-76. [PMID: 24813724 DOI: 10.1111/micc.12145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/06/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVES HIV-1 infection of the CNS is associated with impairment of CBF and neurocognitive function, and accelerated signs of aging. As normal aging is associated with rarefaction of the cerebral vasculature, we set out to examine chronic viral effects on the cerebral vasculature. METHODS DOX-inducible HIV-1 Tat-tg and WT control mice were used. Animals were treated with DOX for three weeks or five to seven months. Cerebral vessel density and capillary segment length were determined from quantitative image analyses of sectioned cortical tissue. In addition, movement of red blood cells in individual capillaries was imaged in vivo using multiphoton microscopy, to determine RBCV and flux. RESULTS Mean RBCV was not different between Tat-tg mice and age-matched WT controls. However, cortical capillaries from Tat-tg mice showed a significant loss of RBCV heterogeneity and increased RBCF that was attributed to a marked decrease in total cortical capillary length (35-40%) compared to WT mice. CONCLUSIONS Cerebrovascular rarefaction is accelerated in HIV-1 Tat-transgenic mice, and this is associated with alterations in red cell blood velocity. These changes may have relevance to the pathogenesis of HIV-associated neurocognitive disorders in an aging HIV-positive population.
Collapse
Affiliation(s)
- Jharon N Silva
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rosiglitazone suppresses HIV-1 Tat-induced vascular inflammation via Akt signaling. Mol Cell Biochem 2015; 407:173-9. [PMID: 26048716 DOI: 10.1007/s11010-015-2467-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/29/2015] [Indexed: 01/20/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARƔ) contributes to human immunodeficiency virus (HIV)-1-induced dysfunction of brain endothelial cells. The aim of the present study was to evaluate the protection mechanism of PPARƔ against Tat-induced responses of adhesion molecules. We measured the protein expressions of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in human brain microvascular endothelial cells (hCMEC/D3) and C57BL/6J mouse brain microvessels with Western blotting and immunofluorescent labeling. The mRNA levels of ICAM-1 and VCAM-1 were determined by real-time reverse-transcriptase polymerase chain reaction. HIV-1 Tat induced overexpression of ICAM-1 but not VCAM-1 in both hCMEC/D3 and brain microvessels, this response was attenuated by treatment with the PPARƔ agonist rosiglitazone. Tat-mediated upregulation of ICAM-1 and VCAM-1 levels were abolished by the addition of PPARƔ antagonist GW9662 and the Akt inhibitor KP3721, indicating that Akt signaling is involved in the PPARƔ-mediated protection of Tat-induced adhesion molecule upregulation. These results show that Akt signaling plays a key role in PPARƔ's vascular inflammatory effects that contribute to blood-brain barrier damage.
Collapse
|
19
|
András IE, Rampersaud E, Eum SY, Toborek M. Transcriptional profile of HIV-induced nuclear translocation of amyloid β in brain endothelial cells. Arch Med Res 2014; 45:744-52. [PMID: 25446617 DOI: 10.1016/j.arcmed.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/03/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Increased amyloid deposition in HIV-infected brains may contribute to the pathogenesis of neurocognitive dysfunction in infected patients. We have previously shown that exposure to HIV results in enhanced amyloid β (Aβ) levels in human brain microvascular endothelial cells, suggesting that brain endothelial cells contribute to accumulation of Aβ in HIV-infected brains. Importantly, Aβ not only accumulates in the cytoplasm of HIV-exposed cells but also enters the nuclei of brain endothelial cells. METHODS cDNA microarray analysis was performed in order to examine changes in the transcriptional profile associated with Aβ nuclear entry in the presence of HIV-1. RESULTS Gene network analysis indicated that inhibition of nuclear entry of Aβ resulted in enrichment in gene sets involved in apoptosis and survival, endoplasmic reticulum stress response, immune response, cell cycle, DNA damage, oxidative stress, cytoskeleton remodeling and transforming growth factor β (TGFβ) receptor signaling. CONCLUSIONS The obtained data indicate that HIV-induced Aβ nuclear uptake affects several cellular stress-related pathways relevant for HIV-induced Aβ pathology.
Collapse
Affiliation(s)
- Ibolya E András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida.
| | - Evadnie Rampersaud
- Division of Genetic Epidemiology, Hussman Institute for Human Genomics, Miami, Florida
| | - Sung Yong Eum
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Ashraf T, Jiang W, Hoque MT, Henderson J, Wu C, Bendayan R. Role of anti-inflammatory compounds in human immunodeficiency virus-1 glycoprotein120-mediated brain inflammation. J Neuroinflammation 2014; 11:91. [PMID: 24884548 PMCID: PMC4046047 DOI: 10.1186/1742-2094-11-91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuroinflammation is a common immune response associated with brain human immunodeficiency virus-1 (HIV-1) infection. Identifying therapeutic compounds that exhibit better brain permeability and can target signaling pathways involved in inflammation may benefit treatment of HIV-associated neurological complications. The objective of this study was to implement an in vivo model of brain inflammation by intracerebroventricular administration of the HIV-1 viral coat protein gp120 in rats and to examine anti-inflammatory properties of HIV adjuvant therapies such as minocycline, chloroquine and simvastatin. METHODS Male Wistar rats were administered a single dose of gp120ADA (500 ng) daily for seven consecutive days, intracerebroventricularly, with or without prior intraperitoneal administration of minocycline, chloroquine or simvastatin. Maraviroc, a CCR5 antagonist, was administered intracerebroventricularly prior to gp120 administration for seven days as control. Real-time qPCR was used to assess gene expression of inflammatory markers in the frontal cortex, hippocampus and striatum. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) secretion in cerebrospinal fluid (CSF) was measured applying ELISA. Protein expression of mitogen-activated protein kinases (MAPKs) (extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs) and P38 kinases (P38Ks)) was detected using immunoblot analysis. Student's t-test and ANOVA were applied to determine statistical significance. RESULTS In gp120ADA-injected rats, mRNA transcripts of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) were significantly elevated in the frontal cortex, striatum and hippocampus compared to saline or heat-inactivated gp120-injected controls. In CSF, a significant increase in TNF-α and IL-1β was detected. Maraviroc reduced upregulation of these markers suggesting that the interaction of R5-tropic gp120 to CCR5 chemokine receptor is critical for induction of an inflammatory response. Minocycline, chloroquine or simvastatin attenuated upregulation of IL-1β and iNOS transcripts in different brain regions. In CSF, minocycline suppressed TNF-α and IL-1β secretion, whereas chloroquine attenuated IL-1β secretion. In gp120-injected animals, activation of ERK1/2 and JNKs was observed in the hippocampus and ERK1/2 activation was significantly reduced by the anti-inflammatory agents. CONCLUSIONS Our data demonstrate that anti-inflammatory compounds can completely or partially reverse gp120-associated brain inflammation through an interaction with MAPK signaling pathways and suggest their potential role in contributing towards the prevention and treatment of HIV-associated neurological complications.
Collapse
Affiliation(s)
- Tamima Ashraf
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Wenlei Jiang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Jeffrey Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Chiping Wu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON M5S 3 M2, Canada
| |
Collapse
|
21
|
András IE, Toborek M. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling. Exp Cell Res 2014; 323:66-76. [PMID: 24491918 DOI: 10.1016/j.yexcr.2014.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 11/16/2022]
Abstract
Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood-brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level.
Collapse
Affiliation(s)
- Ibolya E András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019, United States.
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019, United States.
| |
Collapse
|
22
|
Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013; 10:16. [PMID: 23531482 PMCID: PMC3623852 DOI: 10.1186/2045-8118-10-16] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/25/2013] [Indexed: 12/29/2022] Open
Abstract
Since the first attempts in the 1970s to isolate cerebral microvessel endothelial cells (CECs) in order to model the blood-brain barrier (BBB) in vitro, the need for a human BBB model that closely mimics the in vivo phenotype and is reproducible and easy to grow, has been widely recognized by cerebrovascular researchers in both academia and industry. While primary human CECs would ideally be the model of choice, the paucity of available fresh human cerebral tissue makes wide-scale studies impractical. The brain microvascular endothelial cell line hCMEC/D3 represents one such model of the human BBB that can be easily grown and is amenable to cellular and molecular studies on pathological and drug transport mechanisms with relevance to the central nervous system (CNS). Indeed, since the development of this cell line in 2005 over 100 studies on different aspects of cerebral endothelial biology and pharmacology have been published. Here we review the suitability of this cell line as a human BBB model for pathogenic and drug transport studies and we critically consider its advantages and limitations.
Collapse
|
23
|
Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013. [PMID: 23531482 DOI: 10.1186/2045‐8118‐10‐16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Since the first attempts in the 1970s to isolate cerebral microvessel endothelial cells (CECs) in order to model the blood-brain barrier (BBB) in vitro, the need for a human BBB model that closely mimics the in vivo phenotype and is reproducible and easy to grow, has been widely recognized by cerebrovascular researchers in both academia and industry. While primary human CECs would ideally be the model of choice, the paucity of available fresh human cerebral tissue makes wide-scale studies impractical. The brain microvascular endothelial cell line hCMEC/D3 represents one such model of the human BBB that can be easily grown and is amenable to cellular and molecular studies on pathological and drug transport mechanisms with relevance to the central nervous system (CNS). Indeed, since the development of this cell line in 2005 over 100 studies on different aspects of cerebral endothelial biology and pharmacology have been published. Here we review the suitability of this cell line as a human BBB model for pathogenic and drug transport studies and we critically consider its advantages and limitations.
Collapse
|
24
|
András IE, Toborek M. Amyloid beta accumulation in HIV-1-infected brain: The role of the blood brain barrier. IUBMB Life 2012; 65:43-9. [PMID: 23225609 DOI: 10.1002/iub.1106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022]
Abstract
In recent years, we face an increase in the aging of the HIV-1-infected population, which is not only due to effective antiretroviral therapy but also to new infections among older people. Even with the use of the antiretroviral therapy, HIV-associated neurocognitive disorders represent an increasing problem as the HIV-1-infected population ages. Increased amyloid beta (Aβ) deposition is characteristic of HIV-1-infected brains, and it has been hypothesized that brain vascular dysfunction contributes to this phenomenon, with a critical role suggested for the blood-brain barrier in brain Aβ homeostasis. This review will describe the mechanisms by which the blood-brain barrier may contribute to brain Aβ accumulation, and our findings in the context of HIV-1 infection will be discussed.
Collapse
Affiliation(s)
- Ibolya E András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, USA.
| | | |
Collapse
|
25
|
Chen L, Choi JJ, Choi YJ, Hennig B, Toborek M. HIV-1 Tat-induced cerebrovascular toxicity is enhanced in mice with amyloid deposits. Neurobiol Aging 2012; 33:1579-90. [PMID: 21764480 PMCID: PMC3206197 DOI: 10.1016/j.neurobiolaging.2011.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/04/2011] [Accepted: 06/04/2011] [Indexed: 01/07/2023]
Abstract
HIV-1-infected brains are characterized by elevated depositions of amyloid beta (Aβ); however, the interactions between Aβ and HIV-1 are poorly understood. In the present study, we administered specific HIV-1 protein Tat into the cerebral vasculature of 50-52-week-old double transgenic (B6C3-Tg) mice that express a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) and are characterized by increased Aβ depositions in the brain. Exposure to Tat increased permeability across cerebral capillaries, enhanced disruption of zonula occludens (ZO)-1 tight junction protein, and elevated brain expression of matrix metalloproteinase-9 (MMP-9) in B6C3-Tg mice as compared with age-matched littermate controls. These changes were associated with increased leukocyte attachment and their transcapillary migration. The majority of Tat-induced effects were attenuated by treatment with a specific Rho inhibitor, hydroxyfasudil. The results of animal experiments were reproduced in cultured brain endothelial cells exposed to Aβ and/or Tat. The present data indicate that increased brain levels of Aβ can enhance vascular toxicity and proinflammatory responses induced by HIV-1 protein Tat.
Collapse
Affiliation(s)
- Lei Chen
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA
| | - Jeong June Choi
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA
| | - Yean Jung Choi
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA
| | - Bernhard Hennig
- College of Agriculture University of Kentucky, Lexington, Kentucky, USA
| | - Michal Toborek
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
26
|
Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 2012; 10:392-406. [PMID: 22591363 PMCID: PMC3580828 DOI: 10.2174/157016212802138832] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 02/08/2023]
Abstract
Glutamate, the most abundant excitatory transmitter in the brain can lead to neurotoxicity when not properly regulated. Excitotoxicity is a direct result of abnormal regulation of glutamate concentrations in the synapse, and is a common neurotoxic mediator associated with neurodegenerative disorders. It is well accepted that methamphetamine (METH), a potent central nervous stimulant with high abuse potential, and human immunodeficiency virus (HIV)-1 are implicated in the progression of neurocognitive malfunction. Both have been shown to induce common neurodegenerative effects such as astrogliosis, compromised blood brain barrier integrity, and excitotoxicity in the brain. Reduced glutamate uptake from neuronal synapses likely leads to the accumulation of glutamate in the extracellular spaces. Astrocytes express the glutamate transporters responsible for majority of the glutamate uptake from the synapse, as well as for vesicular glutamate release. However, the cellular and molecular mechanisms of astrocyte-mediated excitotoxicity in the context of METH and HIV-1 are undefined. Topics reviewed include dysregulation of the glutamate transporters, specifically excitatory amino acid transporter-2, metabotropic glutamate receptor(s) expression and the release of glutamate by vesicular exocytosis. We also discuss glutamate concentration dysregulation through astrocytic expression of enzymes for glutamate synthesis and metabolism. Lastly, we discuss recent evidence of various astrocyte and neuron crosstalk mechanisms implicated in glutamate regulation. Astrocytes play an essential role in the neuropathologies associated with METH/HIV-1-induced excitotoxicity. We hope to shed light on common cellular and molecular pathways astrocytes share in glutamate regulation during drug abuse and HIV-1 infection.
Collapse
Affiliation(s)
| | - Anuja Ghorpade
- University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
27
|
Simvastatin blocks blood-brain barrier disruptions induced by elevated cholesterol both in vivo and in vitro. Int J Alzheimers Dis 2012; 2012:109324. [PMID: 22506129 PMCID: PMC3296225 DOI: 10.1155/2012/109324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/28/2011] [Indexed: 11/29/2022] Open
Abstract
Background. Hypercholesterolemia and disruptions of the blood brain barrier (BBB) have been implicated as underlying mechanisms in the pathogenesis of Alzheimer's disease (AD). Simvastatin therapy may be of benefit in treating AD; however, its mechanism has not been yet fully understood. Objective. To explore whether simvastatin could block disruption of BBB induced by cholesterol both in vivo and in vitro. Methods. New Zealand rabbits were fed cholesterol-enriched diet with or without simvastatin. Total cholesterol of serum and brain was measured. BBB dysfunction was evaluated. To further test the results in vivo, rat brain microvascular endothelial cells (RBMECs) were stimulated with cholesterol in the presence/absence of simvastatin in vitro. BBB disruption was evaluated. Results. Simvastatin blocked cholesterol-rich diet induced leakage of Evan's blue dye. Cholesterol content in the serum was affected by simvastatin, but not brain cholesterol. Simvastatin blocked high-cholesterol medium-induced decrease in TEER and increase in transendothelial FITC-labeled BSA Passage in RBMECs. Conclusions. The present study firstly shows that simvastatin improves disturbed BBB function both in vivo and in vitro. Our data provide that simvastatin may be useful for attenuating disturbed BBB mediated by hypercholesterolemia.
Collapse
|
28
|
Mogi M, Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J 2011; 75:1042-8. [PMID: 21441696 DOI: 10.1253/circj.cj-11-0121] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although it is feared that diabetes-induced cognitive decline will become a major clinical problem worldwide in the future, the detailed pathological mechanism is not well known. Because patients with diabetes have various complications of vascular disease, with not only macrovascular but also microvascular disorders, vascular disorders in the brain are considered to be one of the mechanisms in diabetes-induced cognitive impairment. Indeed, disruption of the blood-brain barrier (BBB) has been observed in some diabetic patients and experimental diabetes models. Moreover, white matter lesions, part of the evidence of BBB dysfunction, are reported to be observed more frequently in patients with diabetes. Animal studies demonstrate that diabetes enhances BBB permeability through a decrease in the level of tight junction proteins and an increase in matrix metalloproteinase activity. However, there are several reports indicating that BBB disruption does not occur with diabetes. Therefore, the association of BBB breakdown with diabetes-induced cognitive impairment is not conclusive. Recently, neuronal diseases involving dementia have been induced experimentally through dysfunction of neurovascular coupling, which involves blood vessels, astrocytes and neutrons. Diabetes-induced cognitive decline may be induced via disruption of neurovascular coupling, with not only vascular disorder but also impairment of astrocytic trafficking. Here, the relation between vascular disorder and cognitive impairment in diabetes is discussed.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Japan.
| | | |
Collapse
|
29
|
Zou W, Wang Z, Liu Y, Fan Y, Zhou BY, Yang XF, He JJ. Involvement of p300 in constitutive and HIV-1 Tat-activated expression of glial fibrillary acidic protein in astrocytes. Glia 2010; 58:1640-8. [PMID: 20578042 DOI: 10.1002/glia.21038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HIV-1 Tat protein is an important pathogenic factor in HIV-1-associated neurological diseases. One hallmark of HIV-1 infection of the central nervous system (CNS) is astrocytosis, which is characterized by elevated glial fibrillary acidic protein (GFAP) expression in astrocytes. We have shown that Tat activates GFAP expression in astrocytes [Zhou et al., (2004) Mol Cell Neurosci 27:296-305] and that GFAP is an important regulator of Tat neurotoxicity [Zou et al., (2007) Am J Pathol 171:1293-1935]. However, the underlying mechanisms for Tat-mediated GFAP up-regulation are not understood. In this study, we reported concurrent up-regulation of adenovirus E1a-associated 300 kDa protein p300 and GFAP in Tat-expressing human astrocytoma cells and primary astrocytes. We showed that p300 was indeed induced by Tat expression and HIV-1 infection and that the induction occurred at the transcriptional level through the cis-acting elements of early growth response 1 (egr-1) within its promoter. Using siRNA, we further showed that p300 regulated both constitutive and Tat-mediated GFAP expression. Moreover, we showed that ectopic expression of p300 potentiated Tat transactivation activity and increased proliferation of HIV-1-infected astrocytes, but had little effect on HIV-1 replication in these cells. Taken together, these results demonstrate for the first time that Tat is a positive regulator of p300 expression, which in turn regulates GFAP expression, and suggest that the Tat-Egr-1-p300-GFAP axis likely contributes to Tat neurotoxicity and predisposes astrocytes to be an HIV-1 sanctuary in the CNS.
Collapse
Affiliation(s)
- Wei Zou
- Department of Internal Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Araújo JR, Gonçalves P, Martel F. Characterization of uptake of folates by rat and human blood-brain barrier endothelial cells. Biofactors 2010; 36:201-9. [PMID: 20232349 DOI: 10.1002/biof.82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study aimed to characterize (3)H-folic acid ((3)H-FA) and (14)C-methyltetrahydrofolic acid ((14)C-MTHF) uptake by rat (RBE4) and human (hCMEC/D3) blood-brain barrier (BBB) endothelial cell lines. Uptake of (3)H-FA and (14)C-MTHF by RBE4 cells was time dependent and linear for the first 2 min of incubation; uptake by hCMEC/D3 cells showed a less marked time-dependency and a greater experimental variability. So, further experiments were performed in RBE4 cells only. Uptake of (3)H-FA was stimulated at acidic and alkaline pH, Na(+) dependent, stimulated when F(-) substituted for Cl(-), energy independent, inhibited by premetrexed, stimulated by cytochalasin D, and unaffected by MTHF, DIDS, SITS, methotrexate, monensin, and FA. Uptake of (14)C-MTHF was found to be pH-, Na(+)-, Cl(-)- and energy independent, inhibited by premetrexed and methotrexate, stimulated by cytochalasin D, and unaffected by FA, DIDS, SITS, monensin, and MTHF. RT-PCR analysis showed mRNA expression of reduced folate transporter (RFC), but neither of FRalpha nor of proton-coupled folate transporter (PCFT) in RBE4 cells, and mRNA expression of RFC and PCFT, but not of FRalpha, in hCMEC/D3 cells. In conclusion, both human and rat BBB endothelial cells show little capacity for (3)H-FA and (14)C-MTHF apical uptake. Hence, these cell lines do not appear to be a good model to study the transport of folates at the BBB.
Collapse
Affiliation(s)
- João R Araújo
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
31
|
Huang W, Rha GB, Chen L, Seelbach MJ, Zhang B, András IE, Bruemmer D, Hennig B, Toborek M. Inhibition of telomerase activity alters tight junction protein expression and induces transendothelial migration of HIV-1-infected cells. Am J Physiol Heart Circ Physiol 2010; 298:H1136-45. [PMID: 20139322 DOI: 10.1152/ajpheart.01126.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomerase, via its catalytic component telomerase reverse transcriptase (TERT), extends telomeres of eukaryotic chromosomes. The importance of this reaction is related to the fact that telomere shortening is a rate-limiting mechanism for human life span that induces cell senescence and contributes to the development of age-related pathologies. The aim of the present study was to evaluate whether the modulation of telomerase activity can influence human immunodeficiency virus type 1 (HIV-1)-mediated dysfunction of human brain endothelial cells (hCMEC/D3 cells) and transendothelial migration of HIV-1-infected cells. Telomerase activity was modulated in hCMEC/D3 cells via small interfering RNA-targeting human TERT (hTERT) or by using a specific pharmacological inhibitor of telomerase, TAG-6. The inhibition of hTERT resulted in the upregulation of HIV-1-induced overexpression of intercellular adhesion molecule-1 via the nuclear factor-kappaB-regulated mechanism and induced the transendothelial migration of HIV-1-infected monocytic U937 cells. In addition, the blocking of hTERT activity potentiated a HIV-induced downregulation of the expression of tight junction proteins. These results were confirmed in TERT-deficient mice injected with HIV-1-specific protein Tat into the cerebral vasculature. Further studies revealed that the upregulation of matrix metalloproteinase-9 is the underlying mechanisms of disruption of tight junction proteins in hCMEC/D3 cells with inhibited TERT and exposed to HIV-1. These results indicate that the senescence of brain endothelial cells may predispose to the HIV-induced upregulation of inflammatory mediators and the disruption of the barrier function at the level of the brain endothelium.
Collapse
Affiliation(s)
- Wen Huang
- Dept. of Neurosurgery, Univ. of Kentucky, Lexington, 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
András IE, Eum SY, Huang W, Zhong Y, Hennig B, Toborek M. HIV-1-induced amyloid beta accumulation in brain endothelial cells is attenuated by simvastatin. Mol Cell Neurosci 2010; 43:232-43. [PMID: 19944163 PMCID: PMC2818553 DOI: 10.1016/j.mcn.2009.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 01/02/2023] Open
Abstract
HIV-1-infected brains are characterized by increased amyloid deposition. To study the influence of HIV-1 on amyloid beta (Abeta) homeostasis at the blood-brain barrier (BBB) level, we employed a model of brain microvascular endothelial cells exposed to HIV-1 in the presence or absence of Abeta. HIV-1 markedly increased endogenous Abeta levels and elevated accumulation of exogenous Abeta. Simvastatin, the HMG-CoA reductase inhibitor, blocked these effects. We next evaluated the effects of HIV-1 and/or simvastatin on expression of the receptor for lipoprotein related protein (LRP1) and the receptor for advanced glycation end products (RAGE), known to regulate Abeta transport across the BBB. LRP1 expression was not affected by HIV-1; however, it was increased by simvastatin. Importantly, simvastatin attenuated HIV-1-induced RAGE expression. These results suggest that HIV-1 may directly contribute to Abeta accumulation at the BBB level. In addition, statins may protect against increased Abeta levels associated with HIV-1 infection in the brain.
Collapse
Affiliation(s)
- Ibolya E. András
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY
| | - Sung Yong Eum
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY
| | - Wen Huang
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY
| | - Yu Zhong
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY
| | - Bernhard Hennig
- College of Agriculture, University of Kentucky, Lexington, KY
| | - Michal Toborek
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY
| |
Collapse
|
33
|
Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009; 16:205-20. [PMID: 19526283 DOI: 10.1007/s12640-009-9047-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/13/2022]
Abstract
The Tat protein of the human immunodeficiency virus (HIV) has been implicated in the pathophysiology of the neurocognitive deficits associated with HIV infection. This is the earliest protein to be produced by the proviral DNA in the infected cell. The protein not only drives the regulatory regions of the virus but may also be actively released from the cell and then interact with the cell surface receptors of other uninfected cells in the brain leading to cellular dysfunction. It may also be taken up by these cells and can then activate a number of host genes. The Tat protein is highly potent and has the unique ability to travel along neuronal pathways. Importantly, its production is not impacted by the use of antiretroviral drugs once the proviral DNA has been formed. This article reviews the pleomorphic actions of Tat protein and the evidence supporting its central role in the neuropathogenesis of the HIV infection.
Collapse
|
34
|
Current World Literature. Curr Opin Neurol 2009; 22:321-9. [DOI: 10.1097/wco.0b013e32832cf9cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Huang W, Eum SY, András IE, Hennig B, Toborek M. PPARalpha and PPARgamma attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. FASEB J 2009; 23:1596-606. [PMID: 19141539 DOI: 10.1096/fj.08-121624] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1. Control experiments involved exposure to uninfected monocytes. Alterations of tight junction protein expression were associated with increased endothelial permeability and elevated transendothelial migration of HIV-infected monocytes across an in vitro model of the BBB. Notably, overexpression of the peroxisome proliferator-activated receptor (PPAR)alpha or PPARgamma attenuated HIV-mediated dysregulation of tight junction proteins. With the use of exogenous PPARgamma agonists and silencing of PPARalpha or PPARgamma, these protective effects were connected to down-regulation of matrix metalloproteinase (MMP) and proteasome activities. Indeed, the HIV-induced decrease in the expression of JAM-A and occludin was restored by inhibition of MMP activity. Moreover, both MMP and proteasome inhibitors attenuated HIV-mediated altered expression of ZO-1. The present data indicate that down-regulation of MMP and proteasome activities constitutes a novel mechanism of PPAR-induced protections against HIV-induced disruption of brain endothelial cells.
Collapse
Affiliation(s)
- Wen Huang
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky Medical Center, 593 Wethington Bldg., 900 S Limestone, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
36
|
Austin SA, Combs CK. Amyloid precursor protein mediates monocyte adhesion in AD tissue and apoE(-)/(-) mice. Neurobiol Aging 2008; 31:1854-66. [PMID: 19058878 DOI: 10.1016/j.neurobiolaging.2008.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/07/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
Amyloid precursor protein (APP) is a type 1 integral membrane protein, which is highly conserved and ubiquitously expressed. Numerous data suggest it functions in cellular adhesion. For example, APP binds components of the extracellular matrix to propagate intracellular signaling responses. In order to investigate adhesion-related changes in inflamed vasculature, brains from apolipoprotein E(-/-) (apoE(-/-)) mice were examined for changes related to APP then compared to human Alzheimer's disease (AD) brains. Cerebrovasculature from mouse apoE(-)/(-) and human AD brains revealed strong immunoreactivity for APP, APP phosphorylated at tyrosine residue 682 (pAPP) and Aβ. Further, Western blot analyses from mouse apoE(-/-) and AD brains showed statistically higher protein levels of APP, pAPP and increased APP association with the tyrosine kinase, Src. Lastly, utilizing a modified Stamper-Woodruff adhesion assay, we demonstrated that adhesion of monocytic cells to apoE(-/-) and AD brain endothelium is partially APP dependent. These data suggest that endothelial APP function coupled with increased Aβ production are involved in the vascular dysfunction associated with atherosclerosis and AD.
Collapse
Affiliation(s)
- Susan A Austin
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, School of Medicine and Health Sciences, 504 Hamline St., Room 116, Grand Forks, ND 58203, United States
| | | |
Collapse
|
37
|
Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Declèves X. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2008; 77:897-909. [PMID: 19041851 DOI: 10.1016/j.bcp.2008.11.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022]
Abstract
We investigated the expression of genes encoding ABC transporters, cytochromes P450 (CYPs) and some transcription factors in the hCMEC/D3 immortalized human cerebral microvascular endothelial cell line, a promising in vitro model of the human BBB, and we compared these expressions to a non-brain endothelial cell line (HUVEC) and freshly human brain microvessels. qRT-PCR showed that the MDR1, BCRP, MRP1, MRP3, MRP4 and MRP5 genes were expressed and that the main CYP gene was CYP2U1 in hCMEC/D3. The pattern of ABC and CYPs gene expression in hCMEC/D3 differed from HUVEC which did not express MDR1. Moreover, expression of P-gp and BCRP was lower in hCMEC/D3 than in human brain microvessels but remain functional as shown by rhodamine 123 efflux assay. The gene encoding the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of some ABC and CYPs was highly expressed in hCMEC/D3 and HUVEC, while the pregnane-X-receptor (PXR) and the constitutive androstane receptor (CAR) were barely detected. We investigated the function of the AhR-mediated regulatory pathway in hCMEC/D3 by treating them with the AhR agonist TCDD. The expressions of two AhR-target genes, CYP1A1 and CYP1B1, were increased 26-fold and 28-fold. But the expressions of ABC transporter genes were not significantly altered. We have thus determined the pattern of expression of the genes encoding ABC transporters, CYPs and three transcription factors in hCMEC/D3 and shown that the AhR pathway might afford an original functional transport and metabolic pattern in cerebral endothelial cells that is different from other peripheral endothelial cells.
Collapse
Affiliation(s)
- Sandrine Dauchy
- Neuropsychopharmacologie des addictions (CNRS UMR 7157), Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|