1
|
Manville RW, Foglia L, Yoshimura RF, Hogenkamp DJ, Nguyen A, Yu A, Abbott GW. A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1. Proc Natl Acad Sci U S A 2025; 122:e2411816122. [PMID: 39793113 PMCID: PMC11745346 DOI: 10.1073/pnas.2411816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 01/30/2025] Open
Abstract
Loss-of-function sequence variants in KCNA1, which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.1 channel function, current therapeutic strategies for KCNA1-linked disorders involve indirect modulation of neuronal excitability. Native Americans have traditionally used conifer extracts to treat paralysis, weakness, and pain, all of which may involve altered electrical activity and/or Kv1.1 dysfunction specifically. Here, screening conifer extracts, we found that Chamaecyparis pisifera increases wild-type (WT) Kv1.1 activity, as does its prominent metabolite, the abietane diterpenoid pisiferic acid. Uniquely, pisiferic acid also restored function in 12/12 EA1-linked mutant Kv1.1 channels tested in vitro. Crucially, pisiferic acid (1 mg/kg) restored WT function in Kv1.1E283K/+ mice, a model of human EA1. Experimentally validated all-atom molecular dynamics simulations in a neuron-like membrane revealed that the Kv1.1 voltage-sensing domain (VSD) also acts as a ligand-binding domain akin to those of classic ligand-gated channels; binding of pisiferic acid induces a conformational shift in the VSD that ligand-dependently opens the pore. Conifer metabolite pisiferic acid is a promising and versatile therapeutic lead for EA1 and other Kv1.1-linked disorders.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Lorenzo Foglia
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Ryan F. Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Derk J. Hogenkamp
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Amy Nguyen
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Alvin Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| |
Collapse
|
2
|
Servettini I, Talani G, Megaro A, Setzu MD, Biggio F, Briffa M, Guglielmi L, Savalli N, Binda F, Delicata F, Bru–Mercier G, Vassallo N, Maglione V, Cauchi RJ, Di Pardo A, Collu M, Imbrici P, Catacuzzeno L, D’Adamo MC, Olcese R, Pessia M. An activator of voltage-gated K + channels Kv1.1 as a therapeutic candidate for episodic ataxia type 1. Proc Natl Acad Sci U S A 2023; 120:e2207978120. [PMID: 37487086 PMCID: PMC10401004 DOI: 10.1073/pnas.2207978120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.
Collapse
Affiliation(s)
- Ilenio Servettini
- Section of Physiology, Department of Medicine, University of Perugia, Perugia06123, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Monserrato09042, Italy
| | - Alfredo Megaro
- Section of Physiology, Department of Medicine, University of Perugia, Perugia06123, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato09042, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato09042, Italy
| | - Michelle Briffa
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
| | - Luca Guglielmi
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Nicoletta Savalli
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Francesca Binda
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1011, Switzerland
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, StrasbourgF-67000, France
| | - Francis Delicata
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MBR3E 0T5, Canada
| | - Gilles Bru–Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain17666, United Arab Emirates
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
| | - Vittorio Maglione
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli86077, Italy
| | - Ruben J. Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
| | - Alba Di Pardo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli86077, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato09042, Italy
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari ‘‘Aldo Moro”, 70125Bari, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia06123, Italy
| | - Maria Cristina D’Adamo
- Department of Medicine and Surgery, Libera Università Mediterranea ‘‘Giuseppe DEGENNARO”, Casamassima 70010, Italy
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain17666, United Arab Emirates
| |
Collapse
|
3
|
Sun JF, Xu YJ, Kong XH, Su Y, Wang ZY. Fenamates inhibit human sodium channel Nav1.7 and Nav1.8. Neurosci Lett 2019; 696:67-73. [DOI: 10.1016/j.neulet.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
|
4
|
Guo J, Durdagi S, Changalov M, Perissinotti LL, Hargreaves JM, Back TG, Noskov SY, Duff HJ. Structure driven design of novel human ether-a-go-go-related-gene channel (hERG1) activators. PLoS One 2014; 9:e105553. [PMID: 25191697 PMCID: PMC4156305 DOI: 10.1371/journal.pone.0105553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023] Open
Abstract
One of the main culprits in modern drug discovery is apparent cardiotoxicity of many lead-candidates via inadvertent pharmacologic blockade of K+, Ca2+ and Na+ currents. Many drugs inadvertently block hERG1 leading to an acquired form of the Long QT syndrome and potentially lethal polymorphic ventricular tachycardia. An emerging strategy is to rely on interventions with a drug that may proactively activate hERG1 channels reducing cardiovascular risks. Small molecules-activators have a great potential for co-therapies where the risk of hERG-related QT prolongation is significant and rehabilitation of the drug is impractical. Although a number of hERG1 activators have been identified in the last decade, their binding sites, functional moieties responsible for channel activation and thus mechanism of action, have yet to be established. Here, we present a proof-of-principle study that combines de-novo drug design, molecular modeling, chemical synthesis with whole cell electrophysiology and Action Potential (AP) recordings in fetal mouse ventricular myocytes to establish basic chemical principles required for efficient activator of hERG1 channel. In order to minimize the likelihood that these molecules would also block the hERG1 channel they were computationally engineered to minimize interactions with known intra-cavitary drug binding sites. The combination of experimental and theoretical studies led to identification of functional elements (functional groups, flexibility) underlying efficiency of hERG1 activators targeting binding pocket located in the S4–S5 linker, as well as identified potential side-effects in this promising line of drugs, which was associated with multi-channel targeting of the developed drugs.
Collapse
Affiliation(s)
- Jiqing Guo
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Serdar Durdagi
- Centre for Molecular Simulation, Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mohamed Changalov
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Laura L. Perissinotti
- Centre for Molecular Simulation, Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Thomas G. Back
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (TGB); (SYN); (HJD)
| | - Sergei Y. Noskov
- Centre for Molecular Simulation, Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (TGB); (SYN); (HJD)
| | - Henry J. Duff
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (TGB); (SYN); (HJD)
| |
Collapse
|
5
|
In silico determination of the effect of multi-target drugs on calcium dynamics signaling network underlying sea urchin spermatozoa motility. PLoS One 2014; 9:e104451. [PMID: 25162222 PMCID: PMC4146467 DOI: 10.1371/journal.pone.0104451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The motility of spermatozoa of both Lytechinus pictus and Strongylocentrotus purpuratus sea urchin species is modulated by the egg-derived decapeptide speract via an oscillatory [Ca2+]-dependent signaling pathway. Comprehension of this pathway is hence directly related to the understanding of regulated sperm swimming. Niflumic acid (NFA), a nonsteroidal anti-inflammatory drug alters several ion channels. Though unspecific, NFA profoundly affects how sea urchin sperm respond to speract, increasing the [Ca2+]i oscillation period, amplitude, peak and average level values of the responses in immobilized and swimming cells. A previous logical network model we developed for the [Ca2+] dynamics of speract signaling cascade in sea urchin sperm allows integrated dissection of individual and multiple actions of NFA. Among the channels affected by NFA are: hyperpolarization-activated and cyclic nucleotide gated Na+ channels (HCN), [Ca2+]-dependent Cl- channels (CaCC) and [Ca2+]-dependent K+ channels (CaKC), all present in the sea urchin genome. Here, using our model we investigated the effect of blocking in silico HCN and CaCC channels suggested by experiments. Regarding CaKC channels, arguments can be provided for either their blockage or activation by NFA. Our study yielded two scenarios compliant with experimental observations: i) under CaKC inhibition, this [Ca2+]-dependent K+ channel should be different from the Slo1 channel and ii) under activation of the CaKC channel, another [Ca2+] channel not considered previously in the network is required, such as the pH-dependent CatSper channel. Additionally, our findings predict cause-effect relations resulting from a selective inhibition of those channels. Knowledge of these relations may be of consequence for a variety of electrophysiological studies and have an impact on drug related investigations. Our study contributes to a better grasp of the network dynamics and suggests further experimental work.
Collapse
|
6
|
Singh RD, Gibbons SJ, Saravanaperumal SA, Du P, Hennig GW, Eisenman ST, Mazzone A, Hayashi Y, Cao C, Stoltz GJ, Ordog T, Rock JR, Harfe BD, Szurszewski JH, Farrugia G. Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J Physiol 2014; 592:4051-68. [PMID: 25063822 DOI: 10.1113/jphysiol.2014.277152] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical activity to drive contractility in the gastrointestinal tract via ion channels. Ano1 (Tmem16a), a Ca(2+)-activated Cl(-) channel, is an ion channel expressed in ICC. Genetic deletion of Ano1 in mice resulted in loss of slow waves in smooth muscle of small intestine. In this study, we show that Ano1 is required to maintain coordinated Ca(2+) transients between myenteric ICC (ICC-MY) of small intestine. First, we found spontaneous Ca(2+) transients in ICC-MY in both Ano1 WT and knockout (KO) mice. However, Ca(2+) transients within the ICC-MY network in Ano1 KO mice were uncoordinated, while ICC-MY Ca(2+) transients in Ano1 WT mice were rhythmic and coordinated. To confirm the role of Ano1 in the loss of Ca(2+) transient coordination, we used pharmacological inhibitors of Ano1 activity and shRNA-mediated knock down of Ano1 expression in organotypic cultures of Ano1 WT small intestine. Coordinated Ca(2+) transients became uncoordinated using both these approaches, supporting the conclusion that Ano1 is required to maintain coordination/rhythmicity of Ca(2+) transients. We next determined the effect on smooth muscle contractility using spatiotemporal maps of contractile activity in Ano1 KO and WT tissues. Significantly decreased contractility that appeared to be non-rhythmic and uncoordinated was observed in Ano1 KO jejunum. In conclusion, Ano1 has a previously unidentified role in the regulation of coordinated gastrointestinal smooth muscle function through coordination of Ca(2+) transients in ICC-MY.
Collapse
Affiliation(s)
- Raman Deep Singh
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Simon J Gibbons
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | | | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Seth T Eisenman
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Chike Cao
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gary J Stoltz
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Jason R Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Joseph H Szurszewski
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Veale EL, Al-Moubarak E, Bajaria N, Omoto K, Cao L, Tucker SJ, Stevens EB, Mathie A. Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels. Mol Pharmacol 2014; 85:671-81. [PMID: 24509840 DOI: 10.1124/mol.113.091199] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
TWIK-related K(+) 1 (TREK1) potassium channels are members of the two-pore domain potassium channel family and contribute to background potassium conductances in many cell types, where their activity can be regulated by a variety of physiologic and pharmacologic mediators. Fenamates such as FFA (flufenamic acid; 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid), MFA [mefenamic acid; 2-(2,3-dimethylphenyl)aminobenzoic acid], NFA [niflumic acid; 2-{[3-(trifluoromethyl)phenyl]amino}nicotinic acid], and diclofenac [2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid] and the related experimental drug BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine] enhance the activity of TREK1 currents, and we show that BL-1249 is the most potent of these compounds. Alternative translation initiation produces a shorter, N terminus truncated form of TREK1 with a much reduced open probability and a proposed increased permeability to sodium compared with the longer form. We show that both forms of TREK1 can be activated by fenamates and that a number of mutations that affect TREK1 channel gating occlude the action of fenamates but only in the longer form of TREK1. Furthermore, fenamates produce a marked enhancement of current through the shorter, truncated form of TREK1 and reveal a K(+)-selective channel, like the long form. These results provide insight into the mechanism of TREK1 channel activation by fenamates, and, given the role of TREK1 channels in pain, they suggest a novel analgesic mechanism for these compounds.
Collapse
Affiliation(s)
- Emma L Veale
- Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom (E.L.V., E.A.-M., N.B., A.M.); Pfizer Neusentis, Great Abington, Cambridge, United Kingdom (K.O., L.C., E.B.S.); and Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom (S.J.T.)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jee BC, Youm HW, Lee JH, Kim JH, Suh CS, Kim SH. Impact of ketorolac administration around ovarian stimulation on in vivo and in vitro fertilization and subsequent embryo development. Gynecol Endocrinol 2013; 29:436-9. [PMID: 23339678 DOI: 10.3109/09513590.2012.758701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We performed this study to investigate the effect of ketorolac (a non-steroidal anti-inflammatory drug) administration around ovarian stimulation on in vivo and in vitro fertilization process. Sixty-four female mice (ICR) were injected with ketorolac (0, 7.5, 15 and 30 µg/d) for 3 d starting from the day of eCG treatment. In experiment 1, 41 mice were triggered by hCG and then mated; two-cell embryos were obtained and in vitro development up to blastocyst was observed. In experiment 2, 23 mice were triggered by hCG and mature oocytes were collected; in vitro fertilization rate and subsequent embryo development up to blastocyst was recorded. In experiment 1, the blastocyst-forming rates per in vivo fertilized two-cell embryo showed an inverse relationship with a dosage of ketorolac (97.6%, 64.2%, 35.4% and 25.9%). In experiment 2, degenerated oocytes were frequently observed in a dose-dependent manner (4.3%, 22.9%, 22.4% and 75.0%). Lower fertilization rates were noted in all the three ketorolac-treating groups; blastocyst-forming rate was significantly lower in 30-µg-treating group when compared with the control group. Administration of ketorolac around ovarian stimulation significantly affects the development of in vivo fertilized embryo in a dose-dependent manner. High-dose ketorolac could result in a poor oocyte quality and decreased embryo developmental competence.
Collapse
Affiliation(s)
- Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul , Korea
| | | | | | | | | | | |
Collapse
|
9
|
Bilet A, Bauer CK. Effects of the small molecule HERG activator NS1643 on Kv11.3 channels. PLoS One 2012; 7:e50886. [PMID: 23226420 PMCID: PMC3511382 DOI: 10.1371/journal.pone.0050886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 10/26/2012] [Indexed: 01/15/2023] Open
Abstract
NS1643 is one of the small molecule HERG (Kv11.1) channel activators and has also been found to increase erg2 (Kv11.2) currents. We now investigated whether NS1643 is also able to act as an activator of Kv11.3 (erg3) channels expressed in CHO cells. Activation of rat Kv11.3 current occurred in a dose-dependent manner and maximal current increasing effects were obtained with 10 µM NS1643. At this concentration, steady-state outward current increased by about 80% and the current increase was associated with a significant shift in the voltage dependence of activation to more negative potentials by about 15 mV. In addition, activation kinetics were accelerated, whereas deactivation was slowed. There was no significant effect on the kinetics of inactivation and recovery from inactivation. The strong current-activating agonistic effect of NS1643 did not result from a shift in the voltage dependence of Kv11.3 channel inactivation and was independent from external Na+ or Ca2+. At the higher concentration of 20 µM, NS1643 induced clearly less current increase. The left shift in the voltage dependence of activation reversed and the voltage sensitivity of activation dramatically decreased along with a slowing of Kv11.3 channel activation. These data show that, in comparison to other Kv11 family members, NS1643 exerts distinct effects on Kv11.3 channels with especially pronounced partial antagonistic effects at higher concentration.
Collapse
Affiliation(s)
- Arne Bilet
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christiane K. Bauer
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Garg P, Sanguinetti MC. Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol Pharmacol 2012; 82:795-802. [PMID: 22851714 PMCID: PMC3477229 DOI: 10.1124/mol.112.079194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022] Open
Abstract
Niflumic acid, 2-{[3-(trifluoromethyl)phenyl]amino}pyridine-3-carboxylic acid (NFA), a nonsteroidal anti-inflammatory drug that blocks cyclooxygenase (COX), was shown previously to activate [Na(+)](i)-regulated Slo2.1 channels. In this study, we report that other fenamates, including flufenamic acid, mefenamic acid, tolfenamic acid, meclofenamic acid, and a phenyl acetic acid derivative, diclofenac, also are low-potency (EC(50) = 80 μM to 2.1 mM), partial agonists of human Slo2.1 channels heterologously expressed in Xenopus oocytes. Substituent analysis determined that N-phenylanthranilic acid was the minimal pharmacophore for fenamate activation of Slo2.1 channels. The effects of fenamates were biphasic, with an initial rapid activation phase followed by a slow phase of current inhibition. Ibuprofen, a structurally dissimilar COX inhibitor, did not activate Slo2.1. Preincubation of oocytes with ibuprofen did not significantly alter the effects of NFA, suggesting that neither channel activation nor inhibition is associated with COX activity. A point mutation (A278R) in the pore-lining S6 segment of Slo2.1 increased the sensitivity to activation and reduced the inhibition induced by NFA. Together, our results suggest that fenamates bind to two sites on Slo2.1 channels: an extracellular accessible site to activate and a cytoplasmic accessible site in the pore to inhibit currents.
Collapse
Affiliation(s)
- Priyanka Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Department of Physiology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
11
|
Wiemuth D, Gründer S. The pharmacological profile of brain liver intestine Na+ channel: inhibition by diarylamidines and activation by fenamates. Mol Pharmacol 2011; 80:911-9. [PMID: 21828194 DOI: 10.1124/mol.111.073726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The brain liver intestine Na(+) channel (BLINaC) is a member of the degenerin/epithelial Na(+) channel gene family of unknown function. Elucidation of the physiological function of BLINaC would benefit greatly from pharmacological tools that specifically affect BLINaC activity. Guided by the close molecular relation of BLINaC to acid-sensing ion channels, we discovered in this study that rat BLINaC (rBLINaC) and mouse BLINaC are inhibited by micromolar concentrations of diarylamidines and nafamostat, similar to acid-sensing ion channels. Inhibition was voltage-dependent, suggesting pore block as the mechanism of inhibition. Furthermore, we identified the fenamate flufenamic acid and related compounds as agonists of rBLINaC. Application of millimolar concentrations of flufenamic acid to rBLINaC induced a robust, Na(+)-selective current, which was blocked partially by amiloride. The identification of an artificial agonist of rBLINaC supports the hypothesis that rBLINaC is opened by an unknown physiological ligand. Inhibition by diarylamidines and activation by fenamates define a unique pharmacological profile for BLINaC, which will be useful to unravel the physiological function of this ion channel.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Department of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | |
Collapse
|
12
|
Subbotina J, Yarov-Yarovoy V, Lees-Miller J, Durdagi S, Guo J, Duff HJ, Noskov SY. Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations. Proteins 2010; 78:2922-34. [PMID: 20740484 PMCID: PMC2939218 DOI: 10.1002/prot.22815] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed.
Collapse
Affiliation(s)
- Julia Subbotina
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | - James Lees-Miller
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Serdar Durdagi
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jiqing Guo
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Henry J. Duff
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sergei Yu. Noskov
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Zifarelli G, Liantonio A, Gradogna A, Picollo A, Gramegna G, De Bellis M, Murgia AR, Babini E, Conte Camerino D, Pusch M. Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels. Br J Pharmacol 2010; 160:1652-61. [PMID: 20649569 PMCID: PMC2936838 DOI: 10.1111/j.1476-5381.2010.00822.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/02/2010] [Accepted: 03/09/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE ClC-K kidney Cl(-) channels are important for renal and inner ear transepithelial Cl(-) transport, and are potentially interesting pharmacological targets. They are modulated by niflumic acid (NFA), a non-steroidal anti-inflammatory drug, in a biphasic way: NFA activates ClC-Ka at low concentrations, but blocks the channel above approximately 1 mM. We attempted to identify the amino acids involved in the activation of ClC-Ka by NFA. EXPERIMENTAL APPROACH We used site-directed mutagenesis and two-electrode voltage clamp analysis of wild-type and mutant channels expressed in Xenopus oocytes. Guided by the crystal structure of a bacterial CLC homolog, we screened 97 ClC-Ka mutations for alterations of NFA effects. KEY RESULTS Mutations of five residues significantly reduced the potentiating effect of NFA. Two of these (G167A and F213A) drastically altered general gating properties and are unlikely to be involved in NFA binding. The three remaining mutants (L155A, G345S and A349E) severely impaired or abolished NFA potentiation. CONCLUSIONS AND IMPLICATIONS The three key residues identified (L155, G345, A349) are localized in two different protein regions that, based on the crystal structure of bacterial CLC homologs, are expected to be exposed to the extracellular side of the channel, relatively close to each other, and are thus good candidates for being part of the potentiating NFA binding site. Alternatively, the protein region identified mediates conformational changes following NFA binding. Our results are an important step towards the development of ClC-Ka activators for treating Bartter syndrome types III and IV with residual channel activity.
Collapse
Affiliation(s)
- G Zifarelli
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
| | - A Liantonio
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
- Sezione di Farmacologia, Dipartimento Farmacobiologico, Via Orabona 4, Università di BariBari, Italy
| | - A Gradogna
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
| | - A Picollo
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
| | - G Gramegna
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
- Sezione di Farmacologia, Dipartimento Farmacobiologico, Via Orabona 4, Università di BariBari, Italy
| | - M De Bellis
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
- Sezione di Farmacologia, Dipartimento Farmacobiologico, Via Orabona 4, Università di BariBari, Italy
| | - AR Murgia
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
| | - E Babini
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
| | - D Conte Camerino
- Sezione di Farmacologia, Dipartimento Farmacobiologico, Via Orabona 4, Università di BariBari, Italy
| | - M Pusch
- Istituto di Biofisica, Consiglio Nazionale delle RicercheGenova, Italy
| |
Collapse
|
14
|
Abstract
Slo2.1 channels conduct an outwardly rectifying K+ current when activated by high [Na+]i. Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na+. In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC50 = 2.1 mM) or flufenamic acid (EC50 = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K+]e, the conductance–voltage (G-V) relationship had a V1/2 of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V1/2 to more negative potentials (EC50 = 2.1 mM) and increased the minimum value of G/Gmax (EC50 = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V1/2 of the G-V relationship was shifted to more positive potentials when [K+]e was elevated from 1 to 300 mM (EC50 = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K+]e dependency (EC50 = 23.5 mM). Conductance was also [Na+]e dependent. Outward currents were reduced when Na+ was replaced with choline or mannitol, but unaffected by substitution with Rb+ or Li+. Neutralization of charged residues in the S1–S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1–S4 segments. In contrast, mutation of R190 located in the adjacent S4–S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K+]e. Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K+]e and [Na+]e, and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na+.
Collapse
Affiliation(s)
- Li Dai
- Department of Physiology, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
15
|
Functional properties of human neuronal Kv11 channels. Pflugers Arch 2009; 458:689-700. [DOI: 10.1007/s00424-009-0651-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
|
16
|
Chiba Y, Todoroki M, Nishida Y, Tanabe M, Misawa M. A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice. Am J Respir Cell Mol Biol 2009; 41:516-24. [PMID: 19202006 DOI: 10.1165/rcmb.2008-0163oc] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukin-13 (IL-13) is one of the central mediators for development of airway hyperresponsiveness in asthma. The signal transducer and activation of transcription 6 (STAT6) is one of the major signal transducers activated by IL-13, and a possible involvement of IL-13/STAT6 pathway in the augmented bronchial smooth muscle (BSM) contraction has been suggested. In the present study, the effect of a novel STAT6 inhibitor, AS1517499, on the development of antigen-induced BSM hyperresponsiveness was investigated. In cultured human BSM cells, IL-13 (100 ng/ml) caused a phosphorylation of STAT6 and an up-regulation of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of smooth muscle contraction: both events were inhibited by co-incubation with AS1517499 (100 nM). In BALB/c mice that were actively sensitized and repeatedly challenged with ovalbumin antigen, an increased IL-13 level in bronchoalveolar lavage fluids and a phosphorylation of STAT6 in bronchial tissues were observed after the last antigen challenge. These mice had an augmented BSM contractility to acetylcholine together with an up-regulation of RhoA in bronchial tissues. Intraperitoneal injections of AS1517499 (10 mg/kg) 1 hour before each ovalbumin exposure inhibited both the antigen-induced up-regulation of RhoA and BSM hyperresponsiveness, almost completely. A partial but significant inhibition of antigen-induced production of IL-13 was also found. These findings suggest that the inhibitory effects of STAT6 inhibitory agents, such as AS1517499, both on RhoA and IL-13 up-regulations might be useful for asthma treatment.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | |
Collapse
|
17
|
Wu SN, Peng H, Chen BS, Wang YJ, Wu PY, Lin MW. Potent activation of large-conductance Ca2+-activated K+ channels by the diphenylurea 1,3-bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) in pituitary tumor (GH3) cells. Mol Pharmacol 2008; 74:1696-1704. [PMID: 18809671 DOI: 10.1124/mol.108.049106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1,3-Bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) is reported to be an activator of human ether-à-go-go-related gene current. However, it remains unknown whether it has any effects on other types of ion channels. The effects of NS1643 on ion currents and membrane potential were investigated in this study. NS1643 stimulated Ca(2+)-activated K(+) current [I(K(Ca))] in a concentration-dependent manner with an EC(50) value of 1.8 microM in pituitary tumor (GH(3)) cells. In inside-out recordings, this compound applied to the intracellular side of the detached channels stimulated large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels with no change in single-channel conductance. It shifted the activation curve of BK(Ca) channels to less depolarized voltages without altering the gating charge of the channels. NS1643-stimulated channel activity depended on intracellular Ca(2+), and mean closed time during exposure to NS1643 was reduced. NS1643 (3 microM) had little or no effect on peak amplitude of ether-à-go-go-related gene-mediated K(+) current evoked by membrane hyperpolarization, although it increased the amplitude of late-sustained components of K(+) inward current, which was suppressed by paxilline but not by azimilide. NS1643 (3 microM) had no effect on L-type Ca(2+) current. This compound reduced repetitive firing of action potentials, and further application of paxilline attenuated its decrease in firing rate. In addition, NS1643 enhanced BK(Ca)-channel activity in human embryonic kidney 293T cells expressing alpha-hSlo. In summary, we clearly show that NS1643 interacts directly with the BK(Ca) channel to increase the amplitude of I(K(Ca)) in pituitary tumor (GH(3)) cells. The alpha-subunit of the channel may be a target for the action of this small compound.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan.
| | | | | | | | | | | |
Collapse
|