1
|
Corridon PR. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies: Opportunities and hurdles. Front Med (Lausanne) 2023; 10:1143028. [PMID: 36960337 PMCID: PMC10028138 DOI: 10.3389/fmed.2023.1143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The rising global incidence of acute and chronic kidney diseases has increased the demand for renal replacement therapy. This issue, compounded with the limited availability of viable kidneys for transplantation, has propelled the search for alternative strategies to address the growing health and economic burdens associated with these conditions. In the search for such alternatives, significant efforts have been devised to augment the current and primarily supportive management of renal injury with novel regenerative strategies. For example, gene- and cell-based approaches that utilize recombinant peptides/proteins, gene, cell, organoid, and RNAi technologies have shown promising outcomes primarily in experimental models. Supporting research has also been conducted to improve our understanding of the critical aspects that facilitate the development of efficient gene- and cell-based techniques that the complex structure of the kidney has traditionally limited. This manuscript is intended to communicate efforts that have driven the development of such therapies by identifying the vectors and delivery routes needed to drive exogenous transgene incorporation that may support the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Peter R. Corridon,
| |
Collapse
|
2
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog Lipid Res 2016; 62:107-28. [DOI: 10.1016/j.plipres.2016.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
|
4
|
Nicolussi S, Gertsch J. Endocannabinoid transport revisited. VITAMINS AND HORMONES 2015; 98:441-85. [PMID: 25817877 DOI: 10.1016/bs.vh.2014.12.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocannabinoids are arachidonic acid-derived endogenous lipids that activate the endocannabinoid system which plays a major role in health and disease. The primary endocannabinoids are anandamide (AEA, N-arachidonoylethanolamine) and 2-arachidonoyl glycerol. While their biosynthesis and metabolism have been studied in detail, it remains unclear how endocannabinoids are transported across the cell membrane. In this review, we critically discuss the different models of endocannabinoid trafficking, focusing on AEA cellular uptake which is best studied. The evolution of the current knowledge obtained with different AEA transport inhibitors is reviewed and the confusions caused by the lack of their specificity discussed. A comparative summary of the most important AEA uptake inhibitors and the studies involving their use is provided. Based on a comprehensive literature analysis, we propose a model of facilitated AEA membrane transport followed by intracellular shuttling and sequestration. We conclude that novel and more specific probes will be essential to identify the missing targets involved in endocannabinoid membrane transport.
Collapse
Affiliation(s)
- Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
González-Jamett AM, Haro-Acuña V, Momboisse F, Caviedes P, Bevilacqua JA, Cárdenas AM. Dynamin-2 in nervous system disorders. J Neurochem 2013; 128:210-23. [DOI: 10.1111/jnc.12455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Jorge A. Bevilacqua
- Departamento de Neurología y Neurocirugía; Hospital Clínico Universidad de Chile; and Programa de Anatomía y Biología del Desarrollo; ICBM; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| |
Collapse
|
6
|
Fowler CJ. Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 2013; 280:1895-904. [PMID: 23441874 DOI: 10.1111/febs.12212] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/08/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
Endocannabinoids are readily accumulated from the extracellular space by cells. Although their uptake properties have the appearance of a process of facilitated diffusion, it is by no means clear as to whether there is a plasma membrane transporter dedicated to this task. Intracellular carrier proteins that shuttle the endocannabinoid anandamide from the plasma membrane to its intracellular targets such as the metabolic enzyme, fatty acid amide hydrolase, have been identified. These include proteins with other primary functions, such as fatty-acid-binding proteins and heat shock protein 70, and possibly a fatty acid amide hydrolase-like anandamide transporter protein. Thus, anandamide uptake can be adequately described as a diffusion process across the plasma membrane followed by intracellular carrier-mediated transport to effector molecules, catabolic enzymes and sequestration sites, although it is recognized that different cells are likely to utilize different mechanisms of endocannabinoid transport depending upon the utility of the endocannabinoid for the cell in question.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden.
| |
Collapse
|
7
|
Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 2012; 287:34660-82. [PMID: 22879589 DOI: 10.1074/jbc.m112.373241] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
8
|
Rimmerman N, Bradshaw HB, Kozela E, Levy R, Juknat A, Vogel Z. Compartmentalization of endocannabinoids into lipid rafts in a microglial cell line devoid of caveolin-1. Br J Pharmacol 2012; 165:2436-49. [PMID: 21449981 DOI: 10.1111/j.1476-5381.2011.01380.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE N-acyl ethanolamines (NAEs) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids and along with related lipids are synthesized on demand from membrane phospholipids. Here, we have studied the compartmentalization of NAEs and 2-AG into lipid raft fractions isolated from the caveolin-1-lacking microglial cell line BV-2, following vehicle or cannabidiol (CBD) treatment. Results were compared with those from the caveolin-1-positive F-11 cell line. EXPERIMENTAL APPROACH BV-2 cells were incubated with CBD or vehicle. Cells were fractionated using a detergent-free continuous OptiPrep density gradient. Lipids in fractions were quantified using HPLC/MS/MS. Proteins were measured using Western blot. KEY RESULTS BV-2 cells were devoid of caveolin-1. Lipid rafts were isolated from BV-2 cells as confirmed by co-localization with flotillin-1 and sphingomyelin. Small amounts of cannabinoid CB(1) receptors were found in lipid raft fractions. After incubation with CBD, levels and distribution in lipid rafts of 2-AG, N-arachidonoyl ethanolamine (AEA), and N-oleoyl ethanolamine (OEA) were not changed. Conversely, the levels of the saturated N-stearoyl ethanolamine (SEA) and N-palmitoyl ethanolamine (PEA) were elevated in lipid raft fractions. In whole cells with growth medium, CBD treatment increased AEA and OEA time-dependently, while levels of 2-AG, PEA and SEA did not change. CONCLUSIONS AND IMPLICATIONS Whereas levels of 2-AG were not affected by CBD treatment, the distribution and levels of NAEs showed significant changes. Among the NAEs, the degree of acyl chain saturation predicted the compartmentalization after CBD treatment suggesting a shift in cell signalling activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Neta Rimmerman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
9
|
Fowler CJ. Anandamide uptake explained? Trends Pharmacol Sci 2012; 33:181-5. [DOI: 10.1016/j.tips.2012.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 12/23/2022]
|
10
|
Bardell TK, Barker EL. Activation of TRPC6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells. Neurochem Int 2010; 57:76-83. [PMID: 20466028 PMCID: PMC2897062 DOI: 10.1016/j.neuint.2010.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/29/2010] [Accepted: 05/01/2010] [Indexed: 12/13/2022]
Abstract
Calcium influx activates biosynthesis of the endogenous cannabinoids 2-arachidonyl glycerol (2-AG) and anandamide (AEA). The calcium channel involved with endocannabinoid synthesis and release in neurons is still unknown. The canonical TRP (TRPC) channels are calcium-permeable channels that are a homology-based subdivision of the broader class of TRP channels. TRPC3, 6, and 7 are G-protein-gated non-selective cation channels that have been localized to lipid rafts and shown to colocalize with caveolin 1. Because endocannabinoid synthesis has been found to occur "on demand" in a calcium-dependent manner and has been linked to lipid rafts, we explored the potential role of transient receptor potential (TRP) channels in this process. Previously, we observed that after metabolism AEA and arachidonic acid (ArA) can be recycled into new endocannabinoid molecules. Consistent with these previous findings, we found that Cath.a differentiated (CAD) cells pretreated with radiolabeled ArA exhibited a robust increase in 2-AG release in response to TRPC stimulation with the diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). Furthermore, cells pretreated with [(3)H]AEA produced a significant amount of AEA and 2-AG upon stimulation of TRPC channels. This process was not mediated through protein kinase C activation. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that only TRPC6 was present in the CAD cells. siRNA-induced knockdown of TRPC6 in the CAD cells abolished OAG-stimulated production of the endocannabionids. This evidence suggests that TRPC6 may be capable of promoting endocannabinoid synthesis in neuronal cells.
Collapse
Affiliation(s)
- Tamera K Bardell
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, IN 47907-2091, United States
| | | |
Collapse
|
11
|
Placzek EA, Cooper BR, Placzek AT, Chester JA, Davisson VJ, Barker EL. Lipidomic metabolism analysis of the endogenous cannabinoid anandamide (N-arachidonylethanolamide). J Pharm Biomed Anal 2010; 53:567-75. [PMID: 20417049 DOI: 10.1016/j.jpba.2010.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 01/21/2023]
Abstract
Elucidation of pathways involved with lipid metabolism has been limited by analytical challenges associated with detection and structure identification. A discovery-based mass spectrometry lipidomic approach has been applied to identify metabolites of the endogenous cannabinoid anandamide (N-arachidonylethanolamide). Previously, a model system was established to show that anandamide can be recycled by cells to form new endocannabinoids suggesting recycling of the arachidonate carbon chain. We hypothesized that distinct cellular pathways exist to direct the anandamide-derived arachidonate chain into a specific set of metabolites, different from the metabolite pool that is comprised of non-anandamide-derived arachidonic acid. Using stable isotope encoding and liquid chromatography-mass spectrometry, we identified a distinct pool of lipid metabolites derived from exogenous anandamide or arachidonic acid in RBL-2H3 cells. We discovered that arachidonic acid-derived metabolites were primarily comprised of the eicosanoid lipid class, whereas anandamide-derived arachidonic acid, in addition to eicosanoids, was metabolized into diradylglycerols, fatty acid amides, sterols, and glycerophospholipids. From the list of anandamide metabolites of particular interest was 1-O-arachidonyl-sn-glycero-3-phosphocholine. Furthermore, we determined that while 1-O-arachidonyl-sn-glycero-3-phosphocholine may be a metabolite of anandamide, the sn-2 compound was more abundant in mouse brain tissue. Overall, our results provide a novel approach to study the metabolic fate of endocannabinoids and fatty acid-derived signaling molecules.
Collapse
Affiliation(s)
- Ekaterina A Placzek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47904, United States
| | | | | | | | | | | |
Collapse
|
12
|
Snider NT, Walker VJ, Hollenberg PF. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev 2010; 62:136-54. [PMID: 20133390 PMCID: PMC2835397 DOI: 10.1124/pr.109.001081] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, 7720 Medical Science II, 1301 E. Catherine Street, Ann Arbor, MI 48109-5622, USA.
| | | | | |
Collapse
|
13
|
Yates ML, Barker EL. Inactivation and biotransformation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol. Mol Pharmacol 2009; 76:11-7. [PMID: 19389920 DOI: 10.1124/mol.109.055251] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The cannabinoid field is currently an active research area. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most characterized endogenous cannabinoids (also known as endocannabinoids). These neuromodulators have been implicated in various physiologically relevant phenomena, including mood (Witkin et al., 2005), the immune response (Ashton, 2007), appetite (Kirkham and Tucci, 2006), reproduction (Wang et al., 2006), spasticity (Pertwee, 2002), and pain (Hohmann and Suplita, 2006). Pharmacological manipulation of AEA and 2-AG signaling should prove to have significant therapeutic applications in disorders linked to endocannabinoid signaling. One way to alter endocannabinoid signaling is to regulate the events responsible for termination of the endocannabinoid signal-cellular uptake and metabolism. However, to pharmacologically exploit AEA and/or 2-AG signaling in this way, we must first gain a better understanding of the proteins and mechanisms governing these processes. This review serves as an introduction to the endocannabinoid system with an emphasis on the proteins and events responsible for the termination of AEA and 2-AG signaling.
Collapse
Affiliation(s)
- Marla L Yates
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy, West Lafayette, IN 47907-2091, USA
| | | |
Collapse
|
14
|
Maccarrone M, De Chiara V, Gasperi V, Viscomi MT, Rossi S, Oddi S, Molinari M, Musella A, Finazzi-Agrò A, Centonze D. Lipid rafts regulate 2-arachidonoylglycerol metabolism and physiological activity in the striatum. J Neurochem 2009; 109:371-81. [PMID: 19187444 DOI: 10.1111/j.1471-4159.2009.05948.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several G protein-associated receptors and synaptic proteins function within lipid rafts, which are subdomains of the plasma membranes that contain high concentrations of cholesterol. In this study we addressed the possible role of lipid rafts in the control of endocannabinoid system in striatal slices. Disruption of lipid rafts following cholesterol depletion with methyl-beta-cyclodestrin (MCD) failed to affect synthesis and degradation of anandamide, while it caused a marked increase in the synthesis and concentration of 2-arachidonoylglycerol (2-AG), as well as in the binding activity of cannabinoid CB1 receptors. Surprisingly, endogenous 2-AG-mediated control of GABA transmission was not potentiated by MCD treatment and, in contrast, neither basal nor 3,5-Dihydroxyphenylglycine-stimulated 2-AG altered GABA synapses in cholesterol-depleted slices. Synaptic response to the cannabinoid CB1 receptor agonist HU210 was however intact in MCD-treated slices, indicating that reduced sensitivity of cannabinoid CB1 receptors does not explain why endogenous 2-AG is ineffective in inhibiting striatal GABA transmission after cholesterol depletion. Confocal microscopy analysis suggested that disruption of raft integrity by MCD might uncouple metabotropic glutamate 5-CB1 receptor interaction by altering the correct localization of both receptors in striatal neuron elements. In conclusion, our data indicate that disruption of raft integrity causes a complex alteration of the endocannabinoid signalling in the striatum.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Dipartimento di Scienze Biomediche, Università degli Studi di Teramo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chapter 2 Organized Trafficking of Anandamide and Related Lipids. VITAMINS AND HORMONES 2009; 81:25-53. [DOI: 10.1016/s0083-6729(09)81002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Placzek EA, Okamoto Y, Ueda N, Barker EL. Membrane microdomains and metabolic pathways that define anandamide and 2-arachidonyl glycerol biosynthesis and breakdown. Neuropharmacology 2008; 55:1095-104. [PMID: 18760289 PMCID: PMC2645998 DOI: 10.1016/j.neuropharm.2008.07.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/16/2008] [Accepted: 07/22/2008] [Indexed: 01/31/2023]
Abstract
Anandamide (AEA) and 2-arachidonyl glycerol (2-AG), endogenous ligands for the CB1 and CB2 cannabinoid receptors, are referred to as endocannabinoids because they mimic the actions of delta9-tetrahydrocannabinol (Delta9-THC), a plant-derived cannabinoid. The processes by which AEA and 2-AG are biosynthesized, released, taken up by cells and hydrolyzed have been of much interest as potential therapeutic targets. In this review we will discuss the progress that has been made to characterize the primary pathways for AEA and 2-AG formation and breakdown as well as the role that specialized membrane microdomains known as lipid rafts play in these processes. Furthermore we will review the recent advances made to track and detect AEA in biological matrices.
Collapse
Affiliation(s)
- Ekaterina A. Placzek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 Stadium Mall Drive West Lafayette, IN 47904
| | - Yasuo Okamoto
- Department of Biochemistry, Kagawa University School of Medicine 1750-1 Ikenobe, Miki Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine 1750-1 Ikenobe, Miki Kagawa 761-0793, Japan
| | - Eric L. Barker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 Stadium Mall Drive West Lafayette, IN 47904
| |
Collapse
|
17
|
Placzek EA, Okamoto Y, Ueda N, Barker EL. Mechanisms for recycling and biosynthesis of endogenous cannabinoids anandamide and 2-arachidonylglycerol. J Neurochem 2008; 107:987-1000. [PMID: 18778304 PMCID: PMC2581634 DOI: 10.1111/j.1471-4159.2008.05659.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms of endogenous cannabinoid biosynthesis are not completely understood. We hypothesized that anandamide could be recycled by the cell to form new endocannabinoid molecules and released into the extracellular space. We determined that new endocannabinoids derived from exogenous anandamide or arachidonic acid were synthesized and released from RBL-2H3 cells in response to ionomycin. Treatment of RBL-2H3 cells with nystatin and progesterone, agents that disrupt organization of lipid raft/caveolae, resulted in the attenuation of anandamide and 2-arachidonyl glycerol synthesis and/or release in response to stimulation with ionomycin suggesting a role for these membrane microdomains in endocannabinoid biosynthesis. Furthermore, anandamide synthesis may be independent of N-acyl phosphatidylethanolamine phospholipase D as expression of the enzyme was not detected in RBL-2H3 cells. We also established that extracellular calcium is necessary for endocannabinoid biosynthesis because release of intracellular calcium stores alone does not promote endocannabinoid biosynthesis. Next, we examined the role of calcium as a 'switch' to activate the synthesis of anandamide and simultaneously reduce uptake. Indeed, [(3)H] anandamide uptake was reduced in the presence of calcium. Our findings suggest a mechanism indicative of calcium-modulated activation of anandamide synthesis and simultaneous termination of uptake.
Collapse
Affiliation(s)
- Ekaterina A. Placzek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47904
| | - Yasuo Okamoto
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Eric L. Barker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47904
| |
Collapse
|