1
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
2
|
Efficient detoxification of nerve agents by oxime-assisted reactivation of acetylcholinesterase mutants. Neuropharmacology 2020; 171:108111. [PMID: 32333945 DOI: 10.1016/j.neuropharm.2020.108111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
Abstract
The recent advancements in crystallography and kinetics studies involving reactivation mechanism of acetylcholinesterase (AChE) inhibited by nerve agents have enabled a new paradigm in the search for potent medical countermeasures in case of nerve agents exposure. Poisonings by organophosphorus compounds (OP) that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OP centers on the use of bioscavengers against the parent organophosphate. Our recent research showed that site-directed mutagenesis of AChE can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates while dramatically slowing down rates of OP-conjugate dealkylation (aging). Therefore, this review focuses on oxime-assisted catalysis by AChE mutants that provides a potential means for degradation of organophosphates in the plasma before reaching the cellular target site. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
|
3
|
Kovarik Z, Maček Hrvat N, Kalisiak J, Katalinić M, Sit RK, Zorbaz T, Radić Z, Fokin VV, Sharpless KB, Taylor P. Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase. Toxicol Appl Pharmacol 2019; 372:40-46. [PMID: 30978400 DOI: 10.1016/j.taap.2019.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
Abstract
Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al., 2019), we showed that several oximes prepared by the Huisgen 1,3 dipolar cycloaddition and related precursors efficiently reactivate the tabun-AChE conjugate. Herein, we pursue the antidotal question further and examine a series of lead precursor molecules, along with triazole compounds, as reactivators of two AChE mutant enzymes. Such studies should reveal structural subtleties that reside within the architecture of the active center gorge of AChE and uncover intimate mechanisms of reactivation of alkylphosphate conjugates of AChE. The designated mutations appear to minimize steric constraints of the reactivating oximes within the impacted active center gorge. Indeed, after initial screening of the triazole oxime library and its precursors for the reactivation efficacy on Y337A and Y337A/F338A human AChE mutants, we found potentially active oxime-mutant enzyme pairs capable of degrading tabun in cycles of inhibition and reactivation. Surprisingly, the most sensitive ex vivo reactivation of mutant AChEs occurred with the alkylpyridinium aldoximes. Hence, although the use of mutant enzyme bio-scavengers in humans may be limited in practicality, bioscavenging and efficient neutralization of tabun itself or phosphoramidate mixtures of organophosphates might be achieved efficiently in vitro or ex vivo with these mutant AChE combinations.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rakesh K Sit
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA.
| |
Collapse
|
4
|
Xu YL, Li FY, Ndikuryayo F, Yang WC, Wang HM. Cholinesterases and Engineered Mutants for the Detection of Organophosphorus Pesticide Residues. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4281. [PMID: 30563111 PMCID: PMC6312092 DOI: 10.3390/s18124281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/04/2023]
Abstract
Nowadays, pesticide residues constitute an increasing public health concern. Cholinesterases, acetylcholinesterase, and butyrylcholinesterase, are reported to be involved in detoxification processes owing to their capability of scavenging organophosphates and carbamates. Thus, these enzymes are targeted for the discovery of sensors aiming at detecting pesticide residues. In recent years, cholinesterase-based biosensors have attracted more and more attention in the detection of pesticides. Herein, this review describes the recent progress on the engineering of cholinesterases and the development of the corresponding sensors that could be used for the detection of organophosphorus pesticide residues.
Collapse
Affiliation(s)
- Yu-Ling Xu
- School of Chemical & Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng-Ye Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hong-Mei Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
5
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
6
|
Maček Hrvat N, Žunec S, Taylor P, Radić Z, Kovarik Z. HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants. Chem Biol Interact 2016; 259:148-153. [PMID: 27083141 PMCID: PMC5061595 DOI: 10.1016/j.cbi.2016.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022]
Abstract
The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms.
Collapse
Affiliation(s)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
7
|
Noy-Porat T, Cohen O, Ehrlich S, Epstein E, Alcalay R, Mazor O. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life. Bioconjug Chem 2015; 26:1753-8. [DOI: 10.1021/acs.bioconjchem.5b00305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tal Noy-Porat
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Ehrlich
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eyal Epstein
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ron Alcalay
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
8
|
Atsmon J, Brill-Almon E, Nadri-Shay C, Chertkoff R, Alon S, Shaikevich D, Volokhov I, Haim KY, Bartfeld D, Shulman A, Ruderfer I, Ben-Moshe T, Shilovitzky O, Soreq H, Shaaltiel Y. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R. Toxicol Appl Pharmacol 2015; 287:202-9. [PMID: 26051873 DOI: 10.1016/j.taap.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.
Collapse
Affiliation(s)
- Jacob Atsmon
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | - Sari Alon
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | - Dimitri Shaikevich
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Inna Volokhov
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Kirsten Y Haim
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Avidor Shulman
- Protalix Biotherapeutics, Science Park, Carmiel, Israel.
| | - Ilya Ruderfer
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | | | | | - Hermona Soreq
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
9
|
Kovarik Z, Hrvat NM, Katalinić M, Sit RK, Paradyse A, Žunec S, Musilek K, Fokin VV, Taylor P, Radić Z. Catalytic Soman Scavenging by the Y337A/F338A Acetylcholinesterase Mutant Assisted with Novel Site-Directed Aldoximes. Chem Res Toxicol 2015; 28:1036-44. [PMID: 25835984 PMCID: PMC4791098 DOI: 10.1021/acs.chemrestox.5b00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 min when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Rakesh K. Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander Paradyse
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Valery V. Fokin
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| |
Collapse
|
10
|
Labeling Acetyl- and Butyrylcholinesterase Using Semiconductor Nanocrystals for Biological Applications. BIONANOSCIENCE 2013. [DOI: 10.1007/s12668-012-0072-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Cochran R, Kalisiak J, Küçükkilinç T, Radic Z, Garcia E, Zhang L, Ho KY, Amitai G, Kovarik Z, Fokin VV, Sharpless KB, Taylor P. Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging. J Biol Chem 2011; 286:29718-24. [PMID: 21730071 DOI: 10.1074/jbc.m111.264739] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase, are primary targets of organophosphates (OPs). Exposure to OPs can lead to serious cardiovascular complications, respiratory compromise, and death. Current therapy to combat OP poisoning involves an oxime reactivator (2-PAM, obidoxime, TMB4, or HI-6) combined with atropine and on occasion an anticonvulsant. Butyrylcholinesterase, administered in the plasma compartment as a bio-scavenger, has also shown efficacy but is limited by its strict stoichiometric scavenging, slow reactivation, and a propensity for aging. Here, we characterize 10 human (h) AChE mutants that, when coupled with an oxime, give rise to catalytic reactivation and aging resistance of the soman conjugate. With the most efficient human AChE mutant Y337A/F338A, we show enhanced reactivation rates for several OP-hAChE conjugates compared with wild-type hAChE when reactivated with HI-6 (1-(2'-hydroxyiminomethyl-1'-pyridinium)-3-(4'-carbamoyl-1-pyridinium)). In addition, we interrogated an 840-member novel oxime library for reactivation of Y337A/F338A hAChE-OP conjugates to delineate the most efficient oxime-mutant enzyme pairs for catalytic bio-scavenging. Combining the increased accessibility of the Y337A mutation to oximes within the space-impacted active center gorge with the aging resistance of the F338A mutation provides increased substrate diversity in scavenging potential for aging-prone alkyl phosphate inhibitors.
Collapse
Affiliation(s)
- Rory Cochran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Structural approach to the aging of phosphylated cholinesterases. Chem Biol Interact 2010; 187:157-62. [DOI: 10.1016/j.cbi.2010.03.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 03/08/2010] [Accepted: 03/12/2010] [Indexed: 12/18/2022]
|
13
|
Next generation OP-bioscavengers: A circulatory long-lived 4-PEG hypolysine mutant of F338A-HuAChE with optimal pharmacokinetics and pseudo-catalytic characteristics. Chem Biol Interact 2010; 187:253-8. [DOI: 10.1016/j.cbi.2009.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 11/21/2022]
|
14
|
Haigh JR, Adler M, Apland JP, Deshpande SS, Barham CB, Desmond P, Koplovitz I, Lenz DE, Gordon RK. Protection by pyridostigmine bromide of marmoset hemi-diaphragm acetylcholinesterase activity after soman exposure. Chem Biol Interact 2010; 187:416-20. [PMID: 20144889 DOI: 10.1016/j.cbi.2010.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
Pyridostigmine bromide (PB) was approved by the U.S. Food and Drug Administration (FDA) in 2003 as a pretreatment in humans against the lethal effects of the irreversible nerve agent soman (GD). Organophosphate (OP) chemical warfare agents such as GD exert their toxic effects by inhibiting acetylcholinesterase (AChE) from terminating the action of acetylcholine at postsynaptic sites in cholinergic nerve terminals (including crucial peripheral muscle such as diaphragm). As part of the post-marketing approval of PB, the FDA required (under 21CFR314, the "two animal rule") the study of a non-human primate model (the common marmoset Callithrix jacchus jacchus) to demonstrate increased survival against lethal GD poisoning, and protection of physiological hemi-diaphragm function after PB pretreatment and subsequent GD exposure. Marmosets (male and female) were placed in the following experimental groups: (i) control (saline pretreatment only), (ii) low dose PB (12.5 microg/kg), or (iii) high dose (39.5 microg/kg) PB. Thirty minutes after the PB dose, animals were challenged with either saline (control) or soman (GD, 45 microg/kg), followed 1 min later by atropine (2mg/kg) and 2-PAM (25mg/kg). After a further 16 min, animals were euthanized and the complete diaphragm removed; the right hemi-diaphragm was frozen immediately at -80 degrees C, and the left hemi-diaphragm was placed in a tissue bath for 4h (to allow for decarbamylation to occur), then frozen. AChE activities were determined using the automated WRAIR cholinesterase assay. Blood samples were collected for AChE activities prior to PB, before GD challenge, and after sacrifice. RBC-AChE was inhibited by approximately 18% and 50% at the low and high doses of PB, respectively, compared to control (baseline) activity. In the absence of PB pretreatment, the inhibition of RBC-AChE by GD was 98%. The recovery of hemi-diaphragm AChE activity after the 4h wash period (decarbamylation) was approximately 8% and 17%, at the low and high PB doses, respectively, compared with the baseline (control) AChE activity prior to PB pretreatment or soman exposure. The results suggest that PB pretreatment protects a critical fraction of AChE activity in the marmoset diaphragm, which is sufficient to allow the animal to breathe despite exposure to a dose of soman that is lethal in unprotected animals.
Collapse
Affiliation(s)
- Julian R Haigh
- Department of Regulated Laboratories, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 2009; 494:107-20. [PMID: 20004171 DOI: 10.1016/j.abb.2009.12.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/24/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
Abstract
Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However, inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include (a) treatment with an OP scavenger, (b) reaction of non-aged enzyme with oximes, (c) reactivation of aged enzyme, (d) slowing down aging with peripheral site ligands, and (e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methylindoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine.
Collapse
|
16
|
Liang D, Blouet JP, Borrega F, Bon S, Massoulié J. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase. FEBS J 2009; 276:94-108. [PMID: 19019080 DOI: 10.1111/j.1742-4658.2008.06756.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Butyrylcholinesterase (BChE) and the T splice variant of acetylcholinesterase that is predominant in mammalian brain and muscles (AChE(T)) possess a characteristic C-terminal tail (t) peptide. This t peptide allows their assembly into tetramers associated with the anchoring proteins ColQ and PRiMA. Although the t peptides of all vertebrate cholinesterases are remarkably similar and, in particular, contain seven strictly conserved aromatic residues, these enzymes differ in some of their oligomerization properties. To explore these differences, we studied human AChE (Aa) and BChE (Bb), and chimeras in which the t peptides (a and b) were exchanged (Ab and Ba). We found that secretion was increased by deletion of the t peptides, and that it was more efficient with a than with b. The patterns of oligomers were similar for Aa and Ab, as well as for Ba and Bb, indicating a predominant influence of the catalytic domains. However, addition of a cysteine within the aromatic-rich segment of the t peptides modified the oligomeric patterns: with a cysteine at position 19, the proportion of tetramers was markedly increased for Aa(S19C) and Ba(S19C), and to a lesser extent for Bb(N19C); the Ab(N19C) mutant produced all oligomeric forms, from monomers to hexamers. These results indicate that both the catalytic domains and the C-terminal t peptides contribute to the capacity of cholinesterases to form and secrete various oligomers. Sequence comparisons show that the differences between the t peptides of AChE and BChE are remarkably conserved among all vertebrates, suggesting that they reflect distinct functional adaptations.
Collapse
Affiliation(s)
- Dong Liang
- Laboratoire de Neurobiologie, CNRS UMR 8544, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|