1
|
Molina I, Mansell R, Liang R, Crespo B, Puente M, Franco V, Viera S, Camino I, Saadeddin A, Bellotti P, Leung A, Henning S, Sun S, Herring M, Lopez C, Cuevas C, Pogány P, Urones B, Baxt L, Fernández E, Geri J, Kirkman L, Kafsack BFC, Mata-Cantero L. The critical role of PSAC channel in malaria parasite survival is driven home by phenotypic screening under relevant nutrient levels. Cell Chem Biol 2025:S2451-9456(25)00136-9. [PMID: 40412380 DOI: 10.1016/j.chembiol.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/02/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025]
Abstract
Spreading resistance to front-line treatments necessitate the search for new classes of antimalarials. Limitations of standard screening conditions lead us to develop an assay using culture media that more closely reflects nutrient levels in human serum to reveal new therapeutically relevant parasite pathways. Our approach was validated by testing 22k compounds followed by a full 750k compound screen and identified 29 chemotypes with higher activity in nutrient restricted media that were further characterized. Through a combination of chemo-genomics and innovative photocatalytic proximity labeling proteomics, we identified the target of two compounds as the CLAG3 component of the plasmodial surface anion channel (PSAC). Strikingly, every one of the other 29 chemotypes selected was also found to block PSAC activity, highlighting the importance of this nutrient channel for parasite survival under physiological conditions. The effect of PSAC inhibitors in the in vivo humanized mouse model was confirmed.
Collapse
Affiliation(s)
- Irene Molina
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | - Ryan Mansell
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rui Liang
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Benigno Crespo
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | | | - Virginia Franco
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | - Sara Viera
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | - Isabel Camino
- R&D Pre-clinical Sciences DMPK, Tres Cantos, CP28760 Madrid, Spain
| | - Anas Saadeddin
- R&D Pre-clinical Sciences DMPK, Tres Cantos, CP28760 Madrid, Spain
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Annie Leung
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Henning
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shan Sun
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Mikayla Herring
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Celia Lopez
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | - Carmen Cuevas
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | - Peter Pogány
- Data and Predictive Sciences, Research Technologies, R&D, GSK Medicine Research Centre, Stevenage SG12NY, UK
| | - Beatriz Urones
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | - Leigh Baxt
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Esther Fernández
- Global Health Medicines R&D, GSK, Tres Cantos, CP28760 Madrid, Spain
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Kirkman
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| | | |
Collapse
|
2
|
Trickey ML, Chowdury M, Bramwell G, Counihan NA, de Koning-Ward TF. Utilisation of an in vivo malaria model to provide functional proof for RhopH1/CLAG essentiality and conserved orthology with P. falciparum. J Biomed Sci 2025; 32:13. [PMID: 39894870 PMCID: PMC11789411 DOI: 10.1186/s12929-024-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Malaria parasites establish new permeation pathways (NPPs) at the red blood cell membrane to facilitate the transport of essential nutrients from the blood plasma into the infected host cell. The NPPs are critical to parasite survival and, therefore, in the pursuit of novel therapeutics are an attractive drug target. The NPPs of the human parasite, P. falciparum, have been linked to the RhopH complex, with the monoallelic paralogues clag3.1 and clag3.2 encoding the protein RhopH1/CLAG3 that likely forms the NPP channel-forming component. Yet curiously, the combined knockout of both clag3 genes does not completely eliminate NPP function. The essentiality of the clag3 genes is, however, complicated by three additional clag paralogs (clag2, clag8 and clag9) in P. falciparum that could also be contributing to NPP formation. METHODS Here, the rodent malaria species, P. berghei, was utilised to investigate clag essentiality since it contains only two clag genes, clagX and clag9. Allelic replacement of the regions encompassing the functional components of P. berghei clagX with either P. berghei clag9 or P. falciparum clag3.1 examined the relationship between the two P. berghei clag genes as well as functional orthology across the two species. An inducible P. berghei clagX knockout was created to examine the essentiality of the clag3 ortholog to both survival and NPP functionality. RESULTS It was revealed P. berghei CLAGX and CLAG9, which belong to two distinct phylogenetic clades, have separate non-complementary functions, and that clagX is the functional orthologue of P. falciparum clag3. The inducible clagX knockout in conjunction with a guanidinium chloride induced-haemolysis assay to assess NPP function provided the first evidence of CLAG essentiality to Plasmodium survival and NPP function in an in vivo model of infection. CONCLUSIONS This work provides valuable insight regarding the essentiality of the RhopH1 clag genes to the NPPs functionality and validates the continued investigation of the RhopH complex as a therapeutic target to treat malaria infections.
Collapse
Affiliation(s)
- Mitchell L Trickey
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Natalie A Counihan
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Australia.
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.
| |
Collapse
|
3
|
Trickey ML, Counihan NA, Modak JK, de Koning-Ward TF. Guanidinium Chloride-Induced Haemolysis Assay to Measure New Permeation Pathway Functionality in Rodent Malaria Plasmodium berghei. Biomolecules 2024; 14:781. [PMID: 39062495 PMCID: PMC11274399 DOI: 10.3390/biom14070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Parasite-derived new permeation pathways (NPPs) expressed at the red blood cell (RBC) membrane enable Plasmodium parasites to take up nutrients from the plasma to facilitate their survival. Thus, NPPs represent a potential novel therapeutic target for malaria. The putative channel component of the NPP in the human malaria parasite P. falciparum is encoded by mutually exclusively expressed clag3.1/3.2 genes. Complicating the study of the essentiality of these genes to the NPP is the addition of three clag paralogs whose contribution to the P. falciparum channel is uncertain. Rodent malaria P. berghei contains only two clag genes, and thus studies of P. berghei clag genes could significantly aid in dissecting their overall contribution to NPP activity. Previous methods for determining NPP activity in a rodent model have utilised flux-based assays of radioisotope-labelled substrates or patch clamping. This study aimed to ratify a streamlined haemolysis assay capable of assessing the functionality of P. berghei NPPs. Several isotonic lysis solutions were tested for their ability to preferentially lyse infected RBCs (iRBCs), leaving uninfected RBCs (uRBCs) intact. The osmotic lysis assay was optimised and validated in the presence of NPP inhibitors to demonstrate the uptake of the lysis solution via the NPPs. Guanidinium chloride proved to be the most efficient reagent to use in an osmotic lysis assay to establish NPP functionality. Furthermore, following treatment with guanidinium chloride, ring-stage parasites could develop into trophozoites and schizonts, potentially enabling use of guanidinium chloride for parasite synchronisation. This haemolysis assay will be useful for further investigation of NPPs in P. berghei and could assist in validating its protein constituents.
Collapse
Affiliation(s)
- Mitchell L. Trickey
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.L.T.); (N.A.C.); (J.K.M.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.L.T.); (N.A.C.); (J.K.M.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Joyanta K. Modak
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.L.T.); (N.A.C.); (J.K.M.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.L.T.); (N.A.C.); (J.K.M.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| |
Collapse
|
4
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
5
|
Henshall IG, Spielmann T. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol 2023; 39:936-944. [PMID: 37716852 PMCID: PMC10580322 DOI: 10.1016/j.pt.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Nutrient import and waste efflux are critical dependencies for intracellular Plasmodium falciparum parasites. Nutrient transport proteins are often lineage specific and can provide unique targets for antimalarial drug development. P. falciparum nutrient transport pathways can be a double-edged sword for the parasite, not only mediating the import of nutrients and excretion of waste products but also providing an access route for drugs. Here we briefly summarise the nutrient acquisition pathways of intracellular P. falciparum blood-stage parasites and then highlight how these pathways influence many aspects relevant to antimalarial drugs, resulting in complex and often underappreciated interdependencies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
6
|
Ito D, Kondo Y, Takashima E, Iriko H, Thongkukiatkul A, Torii M, Otsuki H. Roles of the RON3 C-terminal fragment in erythrocyte invasion and blood-stage parasite proliferation in Plasmodium falciparum. Front Cell Infect Microbiol 2023; 13:1197126. [PMID: 37457963 PMCID: PMC10340547 DOI: 10.3389/fcimb.2023.1197126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Plasmodium species cause malaria, and in the instance of Plasmodium falciparum is responsible for a societal burden of over 600,000 deaths annually. The symptoms and pathology of malaria are due to intraerythocytic parasites. Erythrocyte invasion is mediated by the parasite merozoite stage, and is accompanied by the formation of a parasitophorous vacuolar membrane (PVM), within which the parasite develops. The merozoite apical rhoptry organelle contains various proteins that contribute to erythrocyte attachment and invasion. RON3, a rhoptry bulb membrane protein, undergoes protein processing and is discharged into the PVM during invasion. RON3-deficient parasites fail to develop beyond the intraerythrocytic ring stage, and protein export into erythrocytes by the Plasmodium translocon of exported proteins (PTEX) apparatus is abrogated, as well as glucose uptake into parasites. It is known that truncated N- and C-terminal RON3 fragments are present in rhoptries, but it is unclear which RON3 fragments contribute to protein export by PTEX and glucose uptake through the PVM. To investigate and distinguish the roles of the RON3 C-terminal fragment at distinct developmental stages, we used a C-terminus tag for conditional and post-translational control. We demonstrated that RON3 is essential for blood-stage parasite survival, and knockdown of RON3 C-terminal fragment expression from the early schizont stage induces a defect in erythrocyte invasion and the subsequent development of ring stage parasites. Protein processing of full-length RON3 was partially inhibited in the schizont stage, and the RON3 C-terminal fragment was abolished in subsequent ring-stage parasites compared to the RON3 N-terminal fragment. Protein export and glucose uptake were abrogated specifically in the late ring stage. Plasmodial surface anion channel (PSAC) activity was partially retained, facilitating small molecule traffic across the erythrocyte membrane. The knockdown of the RON3 C-terminal fragment after erythrocyte invasion did not alter parasite growth. These data suggest that the RON3 C-terminal fragment participates in erythrocyte invasion and serves an essential role in the progression of ring-stage parasite growth by the establishment of the nutrient-permeable channel in the PVM, accompanying the transport of ring-stage parasite protein from the plasma membrane to the PVM.
Collapse
Affiliation(s)
- Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoko Kondo
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | | | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
7
|
Butler MM, Waidyarachchi SL, Shao J, Nguyen ST, Ding X, Cardinale SC, Morin LR, Kwasny SM, Ito M, Gezelle J, Jiménez-Díaz MB, Angulo-Barturen I, Jacobs RT, Burrows JN, Aron ZD, Bowlin TL, Desai SA. Optimized Pyridazinone Nutrient Channel Inhibitors Are Potent and Specific Antimalarial Leads. Mol Pharmacol 2022; 102:172-182. [PMID: 35798366 PMCID: PMC9450958 DOI: 10.1124/molpharm.122.000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using Plasmodium falciparum, a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human P. falciparum pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.
Collapse
Affiliation(s)
- Michelle M Butler
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Samanthi L Waidyarachchi
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Jinfeng Shao
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Son T Nguyen
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Xiaoyuan Ding
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Steven C Cardinale
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Lucas R Morin
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Steven M Kwasny
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Mai Ito
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Jeanine Gezelle
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - María B Jiménez-Díaz
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Iñigo Angulo-Barturen
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Robert T Jacobs
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Jeremy N Burrows
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Zachary D Aron
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Terry L Bowlin
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Sanjay A Desai
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| |
Collapse
|
8
|
Gao J, Zhang H, Xiong P, Yan X, Liao C, Jiang G. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Gupta A, Bokhari AAB, Pillai AD, Crater AK, Gezelle J, Saggu G, Nasamu AS, Ganesan SM, Niles JC, Desai SA. Complex nutrient channel phenotypes despite Mendelian inheritance in a Plasmodium falciparum genetic cross. PLoS Pathog 2020; 16:e1008363. [PMID: 32069335 PMCID: PMC7048409 DOI: 10.1371/journal.ppat.1008363] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/28/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Malaria parasites activate a broad-selectivity ion channel on their host erythrocyte membrane to obtain essential nutrients from the bloodstream. This conserved channel, known as the plasmodial surface anion channel (PSAC), has been linked to parasite clag3 genes in P. falciparum, but epigenetic switching between the two copies of this gene hinders clear understanding of how the encoded protein determines PSAC activity. Here, we used linkage analysis in a P. falciparum cross where one parent carries a single clag3 gene to overcome the effects of switching and confirm a primary role of the clag3 product with high confidence. Despite Mendelian inheritance, CLAG3 conditional knockdown revealed remarkably preserved nutrient and solute uptake. Even more surprisingly, transport remained sensitive to a CLAG3 isoform-specific inhibitor despite quantitative knockdown, indicating that low doses of the CLAG3 transgene are sufficient to confer block. We then produced a complete CLAG3 knockout line and found it exhibits an incomplete loss of transport activity, in contrast to rhoph2 and rhoph3, two PSAC-associated genes that cannot be disrupted because nutrient uptake is abolished in their absence. Although the CLAG3 knockout did not incur a fitness cost under standard nutrient-rich culture conditions, this parasite could not be propagated in a modified medium that more closely resembles human plasma. These studies implicate oligomerization of CLAG paralogs encoded by various chromosomes in channel formation. They also reveal that CLAG3 is dispensable under standard in vitro conditions but required for propagation under physiological conditions.
Collapse
Affiliation(s)
- Ankit Gupta
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Abdullah A. B. Bokhari
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajay D. Pillai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anna K. Crater
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeanine Gezelle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gagandeep Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Armiyaw S. Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Suresh M. Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jacquin C. Niles
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sanjay A. Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
10
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
11
|
Kushwaha AK, Apolis L, Ito D, Desai SA. Increased Ca ++ uptake by erythrocytes infected with malaria parasites: Evidence for exported proteins and novel inhibitors. Cell Microbiol 2018; 20:e12853. [PMID: 29726084 DOI: 10.1111/cmi.12853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Malaria parasites export many proteins into their host erythrocytes and increase membrane permeability to diverse solutes. Although most solutes use a broad-selectivity channel known as the plasmodial surface anion channel, increased Ca++ uptake is mediated by a distinct, poorly characterised mechanism that appears to be essential for the intracellular parasite. Here, we examined infected cell Ca++ uptake with a kinetic fluorescence assay and the virulent human pathogen, Plasmodium falciparum. Cell surface labelling with N-hydroxysulfosuccinimide esters revealed differing effects on transport into infected and uninfected cells, indicating that Ca++ uptake at the infected cell surface is mediated by new or altered proteins at the host membrane. Conditional knockdown of PTEX, a translocon for export of parasite proteins into the host cell, significantly reduced infected cell Ca++ permeability, suggesting involvement of parasite-encoded proteins trafficked to the host membrane. A high-throughput chemical screen identified the first Ca++ transport inhibitors active against Plasmodium-infected cells. These novel chemical scaffolds inhibit both uptake and parasite growth; improved in vitro potency at reduced free [Ca++ ] is consistent with parasite killing specifically via action on one or more Ca++ transporters. These inhibitors should provide mechanistic insights into malaria parasite Ca++ transport and may be starting points for new antimalarial drugs.
Collapse
Affiliation(s)
- Ambuj K Kushwaha
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Liana Apolis
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Daisuke Ito
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
12
|
CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane. mBio 2018; 9:mBio.02293-17. [PMID: 29739907 PMCID: PMC5941077 DOI: 10.1128/mbio.02293-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malaria parasites increase host erythrocyte permeability to ions and nutrients via a broad-selectivity channel known as the plasmodial surface anion channel (PSAC), linked to parasite-encoded CLAG3 and two associated proteins. These proteins lack the multiple transmembrane domains typically present in channel-forming proteins, raising doubts about their precise roles. Using the virulent human Plasmodium falciparum parasite, we report that CLAG3 undergoes self-association and that this protein’s expression determines channel phenotype quantitatively. We overcame epigenetic silencing of clag3 paralogs and engineered parasites that express two CLAG3 isoforms simultaneously. Stoichiometric expression of these isoforms yielded intermediate channel phenotypes, in agreement with observed trafficking of both proteins to the host membrane. Coimmunoprecipitation and surface labeling revealed formation of CLAG3 oligomers. In vitro selections applied to these transfectant lines yielded distinct mutants with correlated changes in channel activity. These findings support involvement of the identified oligomers in PSAC formation and parasite nutrient acquisition. Malaria parasites are globally important pathogens that evade host immunity by replicating within circulating erythrocytes. To facilitate intracellular growth, these parasites increase erythrocyte nutrient uptake through an unusual ion channel. The parasite CLAG3 protein is a key determinant of this channel, but its lack of homology to known ion channels has raised questions about possible mechanisms. Using a new method that allows simultaneous expression of two different CLAG3 proteins, we identify self-association of CLAG3. The two expressed isoforms faithfully traffic to and insert in the host membrane, while remaining associated with two unrelated parasite proteins. Both the channel phenotypes and molecular changes produced upon selections with a highly specific channel inhibitor are consistent with a multiprotein complex that forms the nutrient pore. These studies support direct involvement of the CLAG3 protein in channel formation and are relevant to antimalarial drug discovery projects targeting parasite nutrient acquisition.
Collapse
|
13
|
Steinman JB, Santarossa CC, Miller RM, Yu LS, Serpinskaya AS, Furukawa H, Morimoto S, Tanaka Y, Nishitani M, Asano M, Zalyte R, Ondrus AE, Johnson AG, Ye F, Nachury MV, Fukase Y, Aso K, Foley MA, Gelfand VI, Chen JK, Carter AP, Kapoor TM. Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. eLife 2017; 6. [PMID: 28524820 PMCID: PMC5478271 DOI: 10.7554/elife.25174] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that transport cellular cargos toward microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has in part been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally constrained isosteres. These studies identified dynapyrazoles, inhibitors more potent than ciliobrevins. At single-digit micromolar concentrations dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Further, we find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles strongly block only microtubule-stimulated activity. Together, our studies suggest that chemical-structure-based analyses can lead to inhibitors with improved properties and distinct modes of inhibition. DOI:http://dx.doi.org/10.7554/eLife.25174.001
Collapse
Affiliation(s)
- Jonathan B Steinman
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Cristina C Santarossa
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Rand M Miller
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Lola S Yu
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Anna S Serpinskaya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Hideki Furukawa
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Sachie Morimoto
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Yuta Tanaka
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | | | - Moriteru Asano
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Ruta Zalyte
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alison E Ondrus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Fan Ye
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Yoshiyuki Fukase
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Kazuyoshi Aso
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Michael A Foley
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| |
Collapse
|
14
|
Sherling ES, Knuepfer E, Brzostowski JA, Miller LH, Blackman MJ, van Ooij C. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. eLife 2017; 6. [PMID: 28252384 PMCID: PMC5365315 DOI: 10.7554/elife.23239] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/26/2017] [Indexed: 11/18/2022] Open
Abstract
Merozoites of the protozoan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invade erythrocytes. Invasion involves discharge of rhoptries, specialized secretory organelles. Once intracellular, parasites induce increased nutrient uptake by generating new permeability pathways (NPP) including a Plasmodium surface anion channel (PSAC). RhopH1/Clag3, one member of the three-protein RhopH complex, is important for PSAC/NPP activity. However, the roles of the other members of the RhopH complex in PSAC/NPP establishment are unknown and it is unclear whether any of the RhopH proteins play a role in invasion. Here we demonstrate that RhopH3, the smallest component of the complex, is essential for parasite survival. Conditional truncation of RhopH3 substantially reduces invasive capacity. Those mutant parasites that do invade are defective in nutrient import and die. Our results identify a dual role for RhopH3 that links erythrocyte invasion to formation of the PSAC/NPP essential for parasite survival within host erythrocytes. DOI:http://dx.doi.org/10.7554/eLife.23239.001 Malaria is a life-threatening disease that affects millions of people around the world. The parasites that cause malaria have a complex life cycle that involves infecting both mosquitoes and mammals, including humans. In humans, the parasites spend part of their life cycle inside red blood cells, which causes the symptoms of the disease. In order to survive and multiply, malaria parasites need to make the red blood cell more permeable so that it can absorb nutrients from the blood stream and get rid of the toxic waste products they generate. It remains unclear how the parasites do this, but previous research has shown that the parasites produce channel-like proteins that make red blood cells more permeable to nutrients. One of the proteins involved in this process forms part of a complex with two other proteins, called RhopH2 and RhopH3. It is not known what these other two proteins do, and whether they are necessary for creating the new nutrient channels. Sherling et al. studied the RhopH3 protein to see if it is required to make red blood cells more permeable. The experiments used a genetically modified version of the parasite, in which RhopH3 no longer interacted with the two other proteins. The findings show that RhopH3 has two important roles: first, parasites need it to invade the red blood cells, and second, parasites cannot get nutrients into the red blood cell without RhopH3. Most antimalarial drugs work by preventing parasite replication in red blood cells, but parasites are becoming increasingly resistant to these drugs. Understanding which proteins allow parasites to invade and grow within blood cells will further the development of new malaria medication. The next step will be to understand the molecular mechanisms by which RhopH3 promotes invasion and subsequently facilitates nutrient uptake, and will help researchers to explore its potential as a drug target. DOI:http://dx.doi.org/10.7554/eLife.23239.002
Collapse
Affiliation(s)
- Emma S Sherling
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joseph A Brzostowski
- Laboratory of Immunogenetics Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
15
|
Chalapareddy S, Desai SA. Malaria parasite proteins involved in nutrient channels at the host erythrocyte membrane: advances and questions for future research. INTERNATIONAL JOURNAL OF CURRENT MULTIDISCIPLINARY STUDIES 2017; 3:619-623. [PMID: 28736757 PMCID: PMC5516901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Erythrocytes infected malaria parasites have increased permeability to nutrients and other solutes, as mediated by an unusual ion channel known as the plasmodial surface anion channel (PSAC). Although the increased permeability of infected erythrocytes was identified more than 70 years ago and subsequently characterized with tracer studies, its mechanism and role in parasite biology remained unclear until the introduction of patch-clamp methods and high-throughput screening technologies. These methods discovered and implicated PSAC as the primary mechanism, determined that this channel is essential for parasite development, led to identification of the channel's genes, and stimulated antimalarial drug discovery against this target. Despite these advances, many questions remain about this unusual parasite channel. Our review highlights some recent advances and describes important questions for future research.
Collapse
Affiliation(s)
- S Chalapareddy
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana, India 500046
| | - SA Desai
- Laboratory of Malaria and Vector Research, Division of Intramural Research, NIAID, National Institutes of Health, Rockville, MD, USA 20852
| |
Collapse
|
16
|
Ito D, Schureck MA, Desai SA. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. eLife 2017; 6. [PMID: 28221136 PMCID: PMC5349850 DOI: 10.7554/elife.23485] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/16/2017] [Indexed: 11/27/2022] Open
Abstract
Malaria parasites evade immune detection by growth and replication within erythrocytes. After erythrocyte invasion, the intracellular pathogen must increase host cell uptake of nutrients from plasma. Here, we report that the parasite-encoded RhopH complex contributes to both invasion and channel-mediated nutrient uptake. As rhoph2 and rhoph3 gene knockouts were not viable in the human P. falciparum pathogen, we used conditional knockdowns to determine that the encoded proteins are essential and to identify their stage-specific functions. We exclude presumed roles for RhopH2 and CLAG3 in erythrocyte invasion but implicate a RhopH3 contribution either through ligand-receptor interactions or subsequent parasite internalization. These proteins then traffic via an export translocon to the host membrane, where they form a nutrient channel. Knockdown of either RhopH2 or RhopH3 disrupts the entire complex, interfering with organellar targeting and subsequent trafficking. Therapies targeting this complex should attack the pathogen at two critical points in its cycle. DOI:http://dx.doi.org/10.7554/eLife.23485.001 The parasites that cause malaria in humans and other animals infect and live inside red blood cells to escape attack by their hosts’ immune systems. Malaria parasites grow and multiply in red blood cells before bursting out and invading new red blood cells. To fuel this growth, the parasite needs access to sugars and other nutrients that are found outside in the bloodstream. Malaria parasites achieve this by inserting some of their own proteins into the membrane of the red blood cell to form an unusual channel that allows the nutrients to enter the cell. A parasite protein called CLAG3 (also known as RhopH1) is involved in formation of the unusual nutrient channel. Unlike most other proteins, malaria parasites make the CLAG3 protein while they are inside one cell and release it later when they invade a new red blood cell. The CLAG3 protein also binds to two other parasite proteins, called RhopH2 and RhopH3, to form a larger protein complex. However, it was not known what roles these other proteins played, or why the complex was made in the preceding red blood cell. Ito et al. have now addressed these unknowns by editing the genes of the parasite that causes the most dangerous form of malaria in people, a parasite called Plasmodium falciparum. These experiments revealed that the parasites could still invade host cells as normal if they lost CLAG3 and RhopH2. This suggests, that contrary to what was expected, CLAG3 and RhopH2 are not needed for the invasion process. Instead, the experiments revealed that RhopH3 serves a major role in invasion, either by helping the parasite to interact with or enter the new red blood cell. After the parasite has invaded the cell, this complex of three proteins is shuttled to the red blood cell’s membrane, where it inserts to help form the nutrient channel. The findings of Ito et al. reveal that one protein complex serves two unrelated but essential roles at different locations and time points in the life cycle of a malaria parasite. Since a parasite will not survive if it cannot enter a host cell and obtain nutrients, interfering with these processes by targeting this protein complex could lead to new therapies against malaria in the future. DOI:http://dx.doi.org/10.7554/eLife.23485.002
Collapse
Affiliation(s)
- Daisuke Ito
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, United States
| | - Marc A Schureck
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, United States
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, United States
| |
Collapse
|
17
|
Dickerman BK, Elsworth B, Cobbold SA, Nie CQ, McConville MJ, Crabb BS, Gilson PR. Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Sci Rep 2016; 6:37502. [PMID: 27874068 PMCID: PMC5118696 DOI: 10.1038/srep37502] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Plasmodium parasites are responsible for the devastating disease malaria that affects hundreds of millions of people each year. Blood stage parasites establish new permeability pathways (NPPs) in infected red blood cell membranes to facilitate the uptake of nutrients and removal of parasite waste products. Pharmacological inhibition of the NPPs is expected to lead to nutrient starvation and accumulation of toxic metabolites resulting in parasite death. Here, we have screened a curated library of antimalarial compounds, the MMV Malaria Box, identifying two compounds that inhibit NPP function. Unexpectedly, metabolic profiling suggested that both compounds also inhibit dihydroorotate dehydrogense (DHODH), which is required for pyrimidine synthesis and is a validated drug target in its own right. Expression of yeast DHODH, which bypasses the need for the parasite DHODH, increased parasite resistance to these compounds. These studies identify two potential candidates for therapeutic development that simultaneously target two essential pathways in Plasmodium, NPP and DHODH.
Collapse
Affiliation(s)
| | - Brendan Elsworth
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
| | - Simon A. Cobbold
- Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Malcolm J. McConville
- Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Gilson PR, Chisholm SA, Crabb BS, de Koning-Ward TF. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J Parasitol 2016; 47:119-127. [PMID: 27368610 DOI: 10.1016/j.ijpara.2016.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/01/2022]
Abstract
When in their human hosts, malaria parasites spend most of their time housed within vacuoles inside erythrocytes and hepatocytes. The parasites extensively modify their host cells to obtain nutrients, prevent host cell breakdown and avoid the immune system. To perform these modifications, malaria parasites export hundreds of effector proteins into their host cells and this process is best understood in the most lethal species to infect humans, Plasmodium falciparum. The effector proteins are synthesized within the parasite and following a proteolytic cleavage event in the endoplasmic reticulum and sorting of mature proteins into the correct vesicular trafficking pathway, they are transported to the parasite surface and released into the vacuole. The effector proteins are then unfolded before extrusion across the vacuole membrane by a unique translocon complex called Plasmodium translocon of exported proteins. After gaining access to the erythrocyte cytoplasm many effector proteins continue their journey to the erythrocyte surface by utilising various membranous structures established by the parasite. This complex trafficking pathway and a large number of the effector proteins are unique to Plasmodium parasites. This pathway could, therefore, be developed as new drug targets given that protein export and the functional role of these proteins are essential for parasite survival. This review explores known and potential drug targetable steps in the protein export pathway and strategies for discovering novel drug targets.
Collapse
Affiliation(s)
- Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia.
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
19
|
Pain M, Fuller AW, Basore K, Pillai AD, Solomon T, Bokhari AAB, Desai SA. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors. PLoS One 2016; 11:e0149214. [PMID: 26866812 PMCID: PMC4750852 DOI: 10.1371/journal.pone.0149214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/28/2016] [Indexed: 11/17/2022] Open
Abstract
Malaria parasites increase their host erythrocyte's permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel's structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing.
Collapse
Affiliation(s)
- Margaret Pain
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Alexandra W Fuller
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katherine Basore
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajay D Pillai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tsione Solomon
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Abdullah A B Bokhari
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
20
|
Benzothiazepinecarboxamides: Novel hepatitis C virus inhibitors that interfere with viral entry and the generation of infectious virions. Antiviral Res 2016; 129:39-46. [PMID: 26850830 DOI: 10.1016/j.antiviral.2016.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
Abstract
Upon screening synthetic small molecule libraries with the infectious hepatitis C virus (HCV) cell culture system, we identified a benzothiazepinecarboxamide (BTC) scaffold that inhibits HCV. A structure-activity relationship (SAR) study with BTCs was performed, and modifications that led to nanomolar antiviral activity and improved the selective index (CC50/EC50) by more than 1000-fold were identified. In addition, a pharmacophore modeling study determined that the tricyclic core and positive charge on the piperidine moiety were essential for antiviral activity. Furthermore, we demonstrated that BTC interferes with HCV glycoprotein E1/E2-mediated viral entry and the generation of infectious virions by using HCV pseudoparticle and cell culture supernatant transfer assays, respectively. BTC showed potent antiviral activity against HCV genotype 2 (EC50 = 0.01 ± 0.01 μM), but was less potent against a genotype 1/2 chimeric virus (EC50 = 2.71 ± 0.05 μM), which expressed the structural proteins of HCV genotype 1. In summary, we identified, optimized, and characterized novel BTC inhibitors that interfere with early and late steps of the HCV viral life cycle.
Collapse
|
21
|
Basore K, Cheng Y, Kushwaha AK, Nguyen ST, Desai SA. How do antimalarial drugs reach their intracellular targets? Front Pharmacol 2015; 6:91. [PMID: 25999857 PMCID: PMC4419668 DOI: 10.3389/fphar.2015.00091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
Drugs represent the primary treatment available for human malaria, as caused by Plasmodium spp. Currently approved drugs and antimalarial drug leads generally work against parasite enzymes or activities within infected erythrocytes. To reach their specific targets, these chemicals must cross at least three membranes beginning with the host cell membrane. Uptake at each membrane may involve partitioning and diffusion through the lipid bilayer or facilitated transport through channels or carriers. Here, we review the features of available antimalarials and examine whether transporters may be required for their uptake. Our computational analysis suggests that most antimalarials have high intrinsic membrane permeability, obviating the need for uptake via transporters; a subset of compounds appear to require facilitated uptake. We also review parasite and host transporters that may contribute to drug uptake. Broad permeability channels at the erythrocyte and parasitophorous vacuolar membranes of infected cells relax permeability constraints on antimalarial drug design; however, this uptake mechanism is prone to acquired resistance as the parasite may alter channel activity to reduce drug uptake. A better understanding of how antimalarial drugs reach their intracellular targets is critical to prioritizing drug leads for antimalarial development and may reveal new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine Basore
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| | - Yang Cheng
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| | - Ambuj K Kushwaha
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| | | | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| |
Collapse
|
22
|
A CLAG3 mutation in an amphipathic transmembrane domain alters malaria parasite nutrient channels and confers leupeptin resistance. Infect Immun 2015; 83:2566-74. [PMID: 25870226 DOI: 10.1128/iai.02966-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/04/2015] [Indexed: 11/20/2022] Open
Abstract
Erythrocytes infected with malaria parasites have increased permeability to ions and nutrients, as mediated by the plasmodial surface anion channel (PSAC) and recently linked to parasite clag3 genes. Although the encoded protein is integral to the host membrane, its precise contribution to solute transport remains unclear because it lacks conventional transmembrane domains and does not have homology to ion channel proteins in other organisms. Here, we identified a probable CLAG3 transmembrane domain adjacent to a variant extracellular motif. Helical-wheel analysis revealed strict segregation of polar and hydrophobic residues to opposite faces of a predicted α-helical transmembrane domain, suggesting that the domain lines a water-filled pore. A single CLAG3 mutation (A1210T) in a leupeptin-resistant PSAC mutant falls within this transmembrane domain and may affect pore structure. Allelic-exchange transfection and site-directed mutagenesis revealed that this mutation alters solute selectivity in the channel. The A1210T mutation also reduces the blocking affinity of PSAC inhibitors that bind on opposite channel faces, consistent with global changes in channel structure. Transfected parasites carrying this mutation survived a leupeptin challenge significantly better than a transfection control did. Thus, the A1210T mutation contributes directly to both altered PSAC activity and leupeptin resistance. These findings reveal the molecular basis of a novel antimalarial drug resistance mechanism, provide a framework for determining the channel's composition and structure, and should guide the development of therapies targeting the PSAC.
Collapse
|
23
|
Spillman NJ, Beck JR, Goldberg DE. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu Rev Biochem 2015; 84:813-41. [PMID: 25621510 DOI: 10.1146/annurev-biochem-060614-034157] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.
Collapse
|
24
|
The conserved clag multigene family of malaria parasites: essential roles in host-pathogen interaction. Drug Resist Updat 2014; 18:47-54. [PMID: 25467627 DOI: 10.1016/j.drup.2014.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The clag multigene family is strictly conserved in malaria parasites, but absent from neighboring genera of protozoan parasites. Early research pointed to roles in merozoite invasion and infected cell cytoadherence, but more recent studies have implicated channel-mediated uptake of ions and nutrients from host plasma. Here, we review the current understanding of this gene family, which appears to be central to host-parasite interactions and an important therapeutic target.
Collapse
|
25
|
High guanidinium permeability reveals dehydration-dependent ion selectivity in the plasmodial surface anion channel. BIOMED RESEARCH INTERNATIONAL 2014; 2014:741024. [PMID: 25243175 PMCID: PMC4160636 DOI: 10.1155/2014/741024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 11/17/2022]
Abstract
Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC), an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development.
Collapse
|
26
|
Sawetzki T, Eggleton CD, Desai SA, Marr DWM. Viscoelasticity as a biomarker for high-throughput flow cytometry. Biophys J 2014; 105:2281-8. [PMID: 24268140 DOI: 10.1016/j.bpj.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/15/2013] [Accepted: 10/01/2013] [Indexed: 11/16/2022] Open
Abstract
The mechanical properties of living cells are a label-free biophysical marker of cell viability and health; however, their use has been greatly limited by low measurement throughput. Although examining individual cells at high rates is now commonplace with fluorescence activated cell sorters, development of comparable techniques that nondestructively probe cell mechanics remains challenging. A fundamental hurdle is the signal response time. Where light scattering and fluorescence signatures are virtually instantaneous, the cell stress relaxation, typically occurring on the order of seconds, limits the potential speed of elastic property measurement. To overcome this intrinsic barrier to rapid analysis, we show here that cell viscoelastic properties measured at frequencies far higher than those associated with cell relaxation can be used as a means of identifying significant differences in cell phenotype. In these studies, we explore changes in erythrocyte mechanical properties caused by infection with Plasmodium falciparum and find that the elastic response alone fails to detect malaria at high frequencies. At timescales associated with rapid assays, however, we observe that the inelastic response shows significant changes and can be used as a reliable indicator of infection, establishing the dynamic viscoelasticity as a basis for nondestructive mechanical analogs of current high-throughput cell classification methods.
Collapse
Affiliation(s)
- Tobias Sawetzki
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| | | | | | | |
Collapse
|
27
|
Zipprer EM, Neggers M, Kushwaha A, Rayavara K, Desai SA. A kinetic fluorescence assay reveals unusual features of Ca⁺⁺ uptake in Plasmodium falciparum-infected erythrocytes. Malar J 2014; 13:184. [PMID: 24885754 PMCID: PMC4078004 DOI: 10.1186/1475-2875-13-184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 05/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background To facilitate development within erythrocytes, malaria parasites increase their host cell uptake of diverse solutes including Ca++. The mechanism and molecular basis of increased Ca++ permeability remains less well studied than that of other solutes. Methods Based on an appropriate Ca++ affinity and its greater brightness than related fluorophores, Fluo-8 was selected and used to develop a robust fluorescence-based assay for Ca++ uptake by human erythrocytes infected with Plasmodium falciparum. Results Both uninfected and infected cells exhibited a large Ca++-dependent fluorescence signal after loading with the Fluo-8 dye. Probenecid, an inhibitor of erythrocyte organic anion transporters, abolished the fluorescence signal in uninfected cells; in infected cells, this agent increased fluorescence via mechanisms that depend on parasite genotype. Kinetic fluorescence measurements in 384-well microplates revealed that the infected cell Ca++ uptake is not mediated by the plasmodial surface anion channel (PSAC), a parasite nutrient channel at the host membrane; it also appears to be distinct from mammalian Ca++ channels. Imaging studies confirmed a low intracellular Ca++ in uninfected cells and higher levels in both the host and parasite compartments of infected cells. Parasite growth inhibition studies revealed a conserved requirement for extracellular Ca++. Conclusions Nondestructive loading of Fluo-8 into human erythrocytes permits measurement of Ca++ uptake kinetics. The greater Ca++ permeability of cells infected with malaria parasites is apparent when probenecid is used to inhibit Fluo-8 efflux at the host membrane. This permeability is mediated by a distinct pathway and may be essential for intracellular parasite development. The miniaturized assay presented here should help clarify the precise transport mechanism and may identify inhibitors suitable for antimalarial drug development.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Nguitragool W, Rayavara K, Desai SA. Proteolysis at a specific extracellular residue implicates integral membrane CLAG3 in malaria parasite nutrient channels. PLoS One 2014; 9:e93759. [PMID: 24699906 PMCID: PMC3974804 DOI: 10.1371/journal.pone.0093759] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/09/2014] [Indexed: 11/24/2022] Open
Abstract
The plasmodial surface anion channel mediates uptake of nutrients and other solutes into erythrocytes infected with malaria parasites. The clag3 genes of P. falciparum determine this channel’s activity in human malaria, but how the encoded proteins contribute to transport is unknown. Here, we used proteases to examine the channel’s composition and function. While proteases with distinct specificities all cleaved within an extracellular domain of CLAG3, they produced differing degrees of transport inhibition. Chymotrypsin-induced inhibition depended on parasite genotype, with channels induced by the HB3 parasite affected to a greater extent than those of the Dd2 clone. Inheritance of functional proteolysis in the HB3×Dd2 genetic cross, DNA transfection, and gene silencing experiments all pointed to the clag3 genes, providing independent evidence for a role of these genes. Protease protection assays with a Dd2-specific inhibitor and site-directed mutagenesis revealed that a variant L1115F residue on a CLAG3 extracellular loop contributes to inhibitor binding and accounts for differences in functional proteolysis. These findings indicate that surface-exposed CLAG3 is the relevant pool of this protein for channel function. They also suggest structural models for how exposed CLAG3 domains contribute to pore formation and parasite nutrient uptake.
Collapse
Affiliation(s)
- Wang Nguitragool
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (WN); (SAD)
| | - Kempaiah Rayavara
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sanjay A. Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (WN); (SAD)
| |
Collapse
|
29
|
Why do malaria parasites increase host erythrocyte permeability? Trends Parasitol 2014; 30:151-9. [PMID: 24507014 DOI: 10.1016/j.pt.2014.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
Abstract
Malaria parasites increase erythrocyte permeability to diverse solutes including anions, some cations, and organic solutes, as characterized with several independent methods. Over the past decade, patch-clamp studies have determined that the permeability results from one or more ion channels on the infected erythrocyte host membrane. However, the biological role(s) served by these channels, if any, remain controversial. Recent studies implicate the plasmodial surface anion channel (PSAC) and a role in parasite nutrient acquisition. A debated alternative role in remodeling host ion composition for the benefit of the parasite appears to be nonessential. Because both channel activity and the associated clag3 genes are strictly conserved in malaria parasites, channel-mediated permeability is an attractive target for development of new therapies.
Collapse
|
30
|
Insights gained from P. falciparum cultivation in modified media. ScientificWorldJournal 2013; 2013:363505. [PMID: 23956690 PMCID: PMC3727134 DOI: 10.1155/2013/363505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/23/2013] [Indexed: 11/17/2022] Open
Abstract
In vitro cultivation of Plasmodium falciparum, the agent of severe human malaria, has enabled advances in basic research and accelerated the development of new therapies. Since the introduction of in vitro parasite culture nearly 40 years ago, most workers have used a medium consisting of RPMI 1640 medium supplemented with lipids and hypoxanthine. While these standardized conditions yield robust parasite growth and facilitate comparison of results from different studies, they may also lead to implicit assumptions that limit future advances. Here, I review recent studies that used modified culture conditions to challenge these assumptions and explore parasite physiology. The findings are relevant to understanding in vivo parasite phenotypes and the prioritization of antimalarial targets.
Collapse
|
31
|
Sharma P, Wollenberg K, Sellers M, Zainabadi K, Galinsky K, Moss E, Nguitragool W, Neafsey D, Desai SA. An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake. J Biol Chem 2013; 288:19429-40. [PMID: 23720749 DOI: 10.1074/jbc.m113.468371] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.
Collapse
Affiliation(s)
- Paresh Sharma
- Laboratory of Malaria and Vector Research, Office of Cyber Infrastructure and Computational Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bilsland E, Sparkes A, Williams K, Moss HJ, de Clare M, Pir P, Rowland J, Aubrey W, Pateman R, Young M, Carrington M, King RD, Oliver SG. Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol 2013; 3:120158. [PMID: 23446112 PMCID: PMC3603448 DOI: 10.1098/rsob.120158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have developed a robust, fully automated anti-parasitic drug-screening method that selects compounds specifically targeting parasite enzymes and not their host counterparts, thus allowing the early elimination of compounds with potential side effects. Our yeast system permits multiple parasite targets to be assayed in parallel owing to the strains’ expression of different fluorescent proteins. A strain expressing the human target is included in the multiplexed screen to exclude compounds that do not discriminate between host and parasite enzymes. This form of assay has the advantages of using known targets and not requiring the in vitro culture of parasites. We performed automated screens for inhibitors of parasite dihydrofolate reductases, N-myristoyltransferases and phosphoglycerate kinases, finding specific inhibitors of parasite targets. We found that our ‘hits’ have significant structural similarities to compounds with in vitro anti-parasitic activity, validating our screens and suggesting targets for hits identified in parasite-based assays. Finally, we demonstrate a 60 per cent success rate for our hit compounds in killing or severely inhibiting the growth of Trypanosoma brucei, the causative agent of African sleeping sickness.
Collapse
Affiliation(s)
- Elizabeth Bilsland
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pillai AD, Nguitragool W, Lyko B, Dolinta K, Butler MM, Nguyen ST, Peet NP, Bowlin TL, Desai SA. Solute restriction reveals an essential role for clag3-associated channels in malaria parasite nutrient acquisition. Mol Pharmacol 2012; 82:1104-14. [PMID: 22949525 PMCID: PMC3502622 DOI: 10.1124/mol.112.081224] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/04/2012] [Indexed: 11/22/2022] Open
Abstract
The plasmodial surface anion channel (PSAC) increases erythrocyte permeability to many solutes in malaria but has uncertain physiological significance. We used a PSAC inhibitor with different efficacies against channels from two Plasmodium falciparum parasite lines and found concordant effects on transport and in vitro parasite growth when external nutrient concentrations were reduced. Linkage analysis using this growth inhibition phenotype in the Dd2 × HB3 genetic cross mapped the clag3 genomic locus, consistent with a role for two clag3 genes in PSAC-mediated transport. Altered inhibitor efficacy, achieved through allelic exchange or expression switching between the clag3 genes, indicated that the inhibitor kills parasites through direct action on PSAC. In a parasite unable to undergo expression switching, the inhibitor selected for ectopic homologous recombination between the clag3 genes to increase the diversity of available channel isoforms. Broad-spectrum inhibitors, which presumably interact with conserved sites on the channel, also exhibited improved efficacy with nutrient restriction. These findings indicate that PSAC functions in nutrient acquisition for intracellular parasites. Although key questions regarding the channel and its biological role remain, antimalarial drug development targeting PSAC should be pursued.
Collapse
Affiliation(s)
- Ajay D Pillai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
A high-throughput method to detect Plasmodium falciparum clones in limiting dilution microplates. Malar J 2012; 11:124. [PMID: 22531353 PMCID: PMC3352123 DOI: 10.1186/1475-2875-11-124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 04/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Molecular and cellular studies of Plasmodium falciparum require cloning of parasites by limiting dilution cultivation, typically performed in microplates. The parasite's slow replication rate combined with laborious methods for identification of positive wells has limited these studies. A new high-throughput method for detecting growth without compromising parasite viability is reported. Methods In vitro parasite cultivation is associated with extracellular acidification. A survey of fluorescent pH indicators identified 5-(and-6)-carboxy SNARF-1 as a membrane-impermeant dye with a suitable pKa value. Conditions for facile detection of viable parasites in 96-well microplates were optimized and used for limiting dilution cloning of genetic cross progeny and transfected parasites. Results 5-(and-6)-carboxy SNARF-1 is a two-emission wavelength dye that accurately reported extracellular pH in parasite cultures. It readily detected parasite growth in microplate wells and yielded results comparable to labour-intensive examination of Giemsa-stained smears. The dye is non-toxic, allowing parasite detection without transfer of culture material to additional plates for separate assays. This dye was used with high-throughput limiting dilution culture to generate additional progeny clones from the HB3 × Dd2 genetic cross. Conclusions This fluorescence-based assay represents a low-cost, efficient method for detection of viable parasites in microplate wells; it can be easily expanded by automation.
Collapse
|
35
|
Abstract
Erythrocytes infected with malaria parasites have increased permeability to diverse organic and inorganic solutes. While these permeability changes have been known for decades, the molecular basis of transport was unknown and intensively debated. CLAG3, a parasite protein previously thought to function in cytoadherence, has recently been implicated in formation of the plasmodial surface anion channel (PSAC), an unusual small conductance ion channel that mediates uptake of most solutes. Consistent with transport studies, the clag genes are conserved in all plasmodia but are absent from other genera. The encoded protein is integral to the host membrane, as also predicted by electrophysiology. An important question is whether functional channels are formed by CLAG3 alone or through interactions with other proteins. In either case, gene identification should advance our understanding of parasite biology and may lead to new therapeutics.
Collapse
Affiliation(s)
- Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
36
|
Alkhalil A, Hong L, Nguitragool W, Desai SA. Voltage-dependent inactivation of the plasmodial surface anion channel via a cleavable cytoplasmic component. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:367-74. [PMID: 22115742 DOI: 10.1016/j.bbamem.2011.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 01/21/2023]
Abstract
Erythrocytes infected with malaria parasites have increased permeability to ions and various nutrient solutes, mediated by a parasite ion channel known as the plasmodial surface anion channel (PSAC). The parasite clag3 gene family encodes PSAC activity, but there may also be additional unidentified components of this channel. Consistent with a lack of clag3 homology to genes of other ion channels, PSAC has a number of unusual functional properties. Here, we report that PSAC exhibits an unusual form of voltage-dependent inactivation. Inactivation was readily detected in the whole-cell patch-clamp configuration after steps to negative membrane potentials. The fraction of current that inactivates, its kinetics, and the rate of recovery were all voltage-dependent, though with a modest effective valence (0.7±0.1 elementary charges). These properties were not affected by solution composition or charge carrier, suggesting inactivation intrinsic to the channel protein. Intriguingly, inactivation was absent in cell-attached recordings and took several minutes to appear after obtaining the whole-cell configuration, suggesting interactions with soluble cytosolic components. Inactivation could also be largely abolished by application of intracellular, but not extracellular protease. The findings implicate inactivation via a charged cytoplasmic channel domain. This domain may be tethered to one or more soluble intracellular components under physiological conditions.
Collapse
|
37
|
Bilsland E, Pir P, Gutteridge A, Johns A, King RD, Oliver SG. Functional expression of parasite drug targets and their human orthologs in yeast. PLoS Negl Trop Dis 2011; 5:e1320. [PMID: 21991399 PMCID: PMC3186757 DOI: 10.1371/journal.pntd.0001320] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents. Methodology/Principal Findings Using pyrimethamine/dihydrofolate reductase (DHFR) as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi) to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p) expressing yeast (ScDFR1), human (HsDHFR), Schistosoma (SmDHFR), and Trypanosoma (TbDHFR and TcDHFR) DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium (PfDHFR and PvDHFR) DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR (Pfdhfr51I,59R,108N) are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs) and N-myristoyl transferases (NMTs). Conclusions/Significance We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents. Parasites kill millions of people every year and leave countless others with chronic debilitating disease. These diseases, which include malaria and sleeping sickness, mainly affect people in developing countries. For this reason, few drugs have been developed to treat them. To make matters worse, many parasites are developing resistance to the drugs that are available. Thus, there is an urgent need to develop new drugs, but this is hampered by the fact that most parasites are difficult or impossible to grow in the laboratory. To address this, we have engineered baker's yeast to be dependent on the function of enzymes from either parasites or humans. In all, our engineered yeast constructs encompass six parasites (causing malaria, schistosomiasis, leishmaniasis, sleeping sickness, and Chagas disease) and three different enzymes that are known or potential drug targets. Further, we have increased yeast's sensitivity to drugs by deleting the gene for its major drug efflux pump. Because yeast is robust and easy to grow in the laboratory, we can use a robot to screen for drugs that will kill yeast dependent on a parasite enzyme, but not touch yeast dependent on the equivalent human enzyme.
Collapse
Affiliation(s)
- Elizabeth Bilsland
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, Turpin B, Aravind L, Desai SA. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 2011; 145:665-77. [PMID: 21620134 PMCID: PMC3105333 DOI: 10.1016/j.cell.2011.05.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/21/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022]
Abstract
Development of malaria parasites within vertebrate erythrocytes requires nutrient uptake at the host cell membrane. The plasmodial surface anion channel (PSAC) mediates this transport and is an antimalarial target, but its molecular basis is unknown. We report a parasite gene family responsible for PSAC activity. We used high-throughput screening for nutrient uptake inhibitors to identify a compound highly specific for channels from the Dd2 line of the human pathogen P. falciparum. Inheritance of this compound's affinity in a Dd2 × HB3 genetic cross maps to a single parasite locus on chromosome 3. DNA transfection and in vitro selections indicate that PSAC-inhibitor interactions are encoded by two clag3 genes previously assumed to function in cytoadherence. These genes are conserved in plasmodia, exhibit expression switching, and encode an integral protein on the host membrane, as predicted by functional studies. This protein increases host cell permeability to diverse solutes.
Collapse
Affiliation(s)
- Wang Nguitragool
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Abdullah A.B. Bokhari
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ajay D. Pillai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kempaiah Rayavara
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Paresh Sharma
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Brad Turpin
- National Instruments, Inc., Austin, TX 78730, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjay A. Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
39
|
Lisk G, Pain M, Sellers M, Gurnev PA, Pillai AD, Bezrukov SM, Desai SA. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:1679-88. [PMID: 20451492 PMCID: PMC2906662 DOI: 10.1016/j.bbamem.2010.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/21/2010] [Accepted: 04/26/2010] [Indexed: 11/26/2022]
Abstract
Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used to select mutant parasites with altered PSAC activities, suggesting acquired resistance via reduced channel-mediated toxin uptake. Surprisingly, although these toxins have similar structures and charge, we now show that reduced permeability of one does not protect the intracellular parasite from the other. Leupeptin accumulation in the blasticidin S-resistant mutant was relatively preserved, consistent with retained in vitro susceptibility to leupeptin. Subsequent in vitro selection with both toxins generated a double mutant parasite having additional changes in PSAC, implicating an antimalarial resistance mechanism for water-soluble drugs requiring channel-mediated uptake at the erythrocyte membrane. Characterization of these mutants revealed a single conserved channel on each mutant, albeit with distinct gating properties. These findings are consistent with a shared channel that mediates uptake of ions, nutrients and toxins. This channel's gating and selectivity properties can be modified in response to in vitro selective pressure.
Collapse
Affiliation(s)
- Godfrey Lisk
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Margaret Pain
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Morgan Sellers
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Philip A. Gurnev
- The Laboratory of Physical and Structural Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Ajay D. Pillai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Sergey M. Bezrukov
- The Laboratory of Physical and Structural Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Sanjay A. Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
40
|
Exploiting the therapeutic potential of Plasmodium falciparum solute transporters. Trends Parasitol 2010; 26:284-96. [DOI: 10.1016/j.pt.2010.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/02/2010] [Accepted: 03/05/2010] [Indexed: 01/16/2023]
|