1
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
2
|
Fujie Y, Liu G, Ozoe F, Ozoe Y. Structural insights into the interaction between gabazine (SR-95531) and Laodelphax striatellus GABA receptors. JOURNAL OF PESTICIDE SCIENCE 2022; 47:78-85. [PMID: 35800394 PMCID: PMC9184248 DOI: 10.1584/jpestics.d22-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
γ-Aminobutyric acid receptors (GABARs) mediate fast inhibitory neurotransmission and are targets for insecticides. GABARs are composed of five subunits, the composition of which dictates the pharmacological characteristics of GABARs. Both competitive and noncompetitive GABAR antagonists can be used as insecticides. Gabazine is a potent competitive antagonist of mammalian α1β2γ2 GABARs; however, it is less potent against insect GABARs. To explore how gabazine interacts with GABARs, we examined whether the sensitivity of the small brown planthopper (Laodelphax striatellus) RDL GABAR (LsRDLR) to gabazine is increased when its amino acid residues are substituted with α1β2γ2 GABAR residues. In the results, two of the generated mutants showed enhanced gabazine sensitivity. Docking simulations of gabazine using LsRDLR homology models and an α1β2γ2 GABAR cryo-EM structure revealed that the accommodation of gabazine into the "aromatic box" in the orthosteric site lowered the binding energy. This information may help in designing GABAR-targeting insecticides with novel modes of action.
Collapse
Affiliation(s)
- Yuki Fujie
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690–8504, Japan
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People’s Republic of China
| | - Fumiyo Ozoe
- Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690–8504, Japan
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690–8504, Japan
- Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690–8504, Japan
| |
Collapse
|
3
|
Karunanithy G, Reinstein J, Hansen DF. Multiquantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains. J Phys Chem Lett 2020; 11:5649-5654. [PMID: 32543198 PMCID: PMC7370295 DOI: 10.1021/acs.jpclett.0c01322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) NMR experiments have emerged as a powerful tool for characterizing dynamics in proteins. We show here that the CEST approach can be extended to systems with symmetrical exchange, where the NMR signals of all exchanging species are severely broadened. To achieve this, multiquantum CEST (MQ-CEST) is introduced, where the CEST pulse is applied to a longitudinal multispin order density element and the CEST profiles are encoded onto nonbroadened nuclei. The MQ-CEST approach is demonstrated on the restricted rotation of guanidinium groups in arginine residues within proteins. These groups and their dynamics are essential for many enzymes and for noncovalent interactions through the formation of hydrogen bonds, salt-bridges, and π-stacking interactions, and their rate of rotation is highly indicative of the extent of interactions formed. The MQ-CEST method is successfully applied to guanidinium groups in the 19 kDa L99A mutant of T4 lysozyme.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Reinstein
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - D. Flemming Hansen
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Brodzki M, Michałowski MA, Gos M, Mozrzymas JW. Mutations of α 1F45 residue of GABA A receptor loop G reveal its involvement in agonist binding and channel opening/closing transitions. Biochem Pharmacol 2020; 177:113917. [PMID: 32194055 DOI: 10.1016/j.bcp.2020.113917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
GABAA receptors (GABAARs) mediate inhibitory neurotransmission in the mammalian brain. Recently, numerous GABAAR static structures have been published, but the molecular mechanisms of receptor activation remain elusive. Loop G is a rigid β-strand belonging to an extensive β-sheet that spans the regions involved in GABA binding and the interdomain interface which is important in receptor gating. It has been reported that loop G participates in ligand binding and gating of GABAARs, however, it remains unclear which specific gating transitions are controlled by this loop. Analysis of macroscopic responses revealed that mutation at the α1F45 residue (loop G midpoint) resulted in slower macroscopic desensitization and accelerated deactivation. Single-channel analysis revealed that these mutations also affected open and closed times distributions and reduced open probability. Kinetic modeling demonstrated that mutations affected primarily channel opening/closing and ligand binding with a minor effect on preactivation. Thus, α1F45 residue, in spite of its localization close to binding site, affects late gating transitions. In silico structural analysis suggested an important role of α1F45 residue in loop G stability and rigidity as well as in general structure of the binding site. We propose that the rigid β-sheet comprising loop G is well suited for long range communication within GABAAR but this mechanism becomes impaired when α1F45 is mutated. In conclusion, we demonstrate that loop G is crucial in controlling both binding and gating of GABAARs. These data shed new light on GABAAR activation mechanism and may also be helpful in designing clinically relevant modulators.
Collapse
Affiliation(s)
- Marek Brodzki
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| | - Michał A Michałowski
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| | - Michalina Gos
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Jerzy W Mozrzymas
- Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| |
Collapse
|
5
|
Xu T, Yuchi Z. Crystal structure of diamondback moth ryanodine receptor Repeat34 domain reveals insect-specific phosphorylation sites. BMC Biol 2019; 17:77. [PMID: 31597572 PMCID: PMC6784350 DOI: 10.1186/s12915-019-0698-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/02/2019] [Indexed: 01/23/2023] Open
Abstract
Background Ryanodine receptor (RyR), a calcium-release channel located in the sarcoplasmic reticulum membrane of muscles, is the target of insecticides used against a wide range of agricultural pests. Mammalian RyRs have been shown to be under the regulatory control of several kinases and phosphatases, but little is known about the regulation of insect RyRs by phosphorylation. Results Here we present the crystal structures of wild-type and phospho-mimetic RyR Repeat34 domain containing PKA phosphorylation sites from diamondback moth (DBM), a major lepidopteran pest of cruciferous vegetables. The structure has unique features, not seen in mammalian RyRs, including an additional α-helix near the phosphorylation loop. Using tandem mass spectrometry, we identify several PKA sites clustering in the phosphorylation loop and the newly identified α-helix. Bioinformatics analysis shows that this α-helix is only present in Lepidoptera, suggesting an insect-specific regulation. Interestingly, the specific phosphorylation pattern is temperature-dependent. The thermal stability of the DBM Repeat34 domain is significantly lower than that of the analogous domain in the three mammalian RyR isoforms, indicating a more dynamic domain structure that can be partially unfolded to facilitate the temperature-dependent phosphorylation. Docking the structure into the cryo-electron microscopy model of full-length RyR reveals that the interface between the Repeat34 and neighboring HD1 domain is more conserved than that of the phosphorylation loop region that might be involved in the interaction with SPRY3 domain. We also identify an insect-specific glycerol-binding pocket that could be potentially targeted by novel insecticides to fight the current resistance crisis. Conclusions The crystal structures of the DBM Repeat34 domain reveals insect-specific temperature-dependent phosphorylation sites that may regulate insect ryanodine receptor function. It also reveals insect-specific structural features and a potential ligand-binding site that could be targeted in an effort to develop green pesticides with high species-specificity.
Collapse
Affiliation(s)
- Tong Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Liao VWY, Chua HC, Kowal NM, Chebib M, Balle T, Ahring PK. Concatenated γ-aminobutyric acid type A receptors revisited: Finding order in chaos. J Gen Physiol 2019; 151:798-819. [PMID: 30988061 PMCID: PMC6572006 DOI: 10.1085/jgp.201812133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Subunit concatenation is a powerful technique used to control the assembly of structurally diverse heteromeric receptors such as GABAARs. Liao et al. find that existing GABAAR concatemers do not assemble as expected and describe refinements that allow expression of uniform receptor populations. γ-aminobutyric acid type A receptors (GABAARs), the major inhibitory neurotransmitter receptors in the mammalian central nervous system, are arguably the most challenging member of the pentameric Cys-loop receptors to study due to their heteromeric structure. When two or more subunits are expressed together in heterologous systems, receptors of variable subunit type, ratio, and orientation can form, precluding accurate interpretation of data from functional studies. Subunit concatenation is a technique that involves the linking of individual subunits and in theory allows the precise control of the uniformity of expressed receptors. In reality, the resulting concatemers from widely used constructs are flexible in their orientation and may therefore assemble with themselves or free GABAAR subunits in unexpected ways. In this study, we examine functional responses of receptors from existing concatenated constructs and describe refinements necessary to allow expression of uniform receptor populations. We find that dimers from two commonly used concatenated constructs, β-23-α and α-10-β, assemble readily in both the clockwise and the counterclockwise orientations when coexpressed with free subunits. Furthermore, we show that concatemers formed from new tetrameric α-10-β-α-β and α-10-β-α-γ constructs also assemble in both orientations with free subunits to give canonical αβγ receptors. To restrict linker flexibility, we systematically shorten linker lengths of dimeric and pentameric constructs and find optimized constructs that direct the assembly of GABAARs only in one orientation, thus eliminating the ambiguity associated with previously described concatemers. Based on our data, we revisit some noncanonical GABAAR configurations proposed in recent years and explain how the use of some concatenated constructs may have led to wrong conclusions. Our results help clarify current contradictions in the literature regarding GABAAR subunit stoichiometry and arrangement. The lessons learned from this study may guide future efforts in understanding other related heteromeric receptors.
Collapse
Affiliation(s)
- Vivian Wan Yu Liao
- The University of Sydney, Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
| | - Han Chow Chua
- The University of Sydney, Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
| | - Natalia Magdalena Kowal
- The University of Sydney, Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, Camperdown, New South Wales, Australia.,Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Mary Chebib
- The University of Sydney, Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
| | - Thomas Balle
- The University of Sydney, Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
| | - Philip Kiær Ahring
- The University of Sydney, Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Hernandez CC, Macdonald RL. A structural look at GABA A receptor mutations linked to epilepsy syndromes. Brain Res 2019; 1714:234-247. [PMID: 30851244 DOI: 10.1016/j.brainres.2019.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Understanding the genetic variation in GABAA receptor subunit genes (GABRs), GABRA1-6, GABRB1-3, GABRG1-3 and GABRD, in individuals affected by epilepsy may improve the diagnosis and treatment of epilepsy syndromes through identification of disease-associated variants. However, the lack of functional analysis and validation of many novel and previously reported familial and de novo mutations have made it challenging to address meaningful gene associations with epilepsy syndromes. GABAA receptors belong to the Cys-loop receptor family. Even though GABAA receptor mutant residues are widespread among different GABRs, their frequent occurrence in important structural domains that share common functional features suggests associations between structure and function.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Payghan PV, Nath Roy S, Bhattacharyya D, Ghoshal N. Cross-talk between allosteric and orthosteric binding sites of γ-amino butyric acid type A receptors (GABAA-Rs): A computational study revealing the structural basis of selectivity. J Biomol Struct Dyn 2019; 37:3065-3080. [DOI: 10.1080/07391102.2018.1508367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pavan V. Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Payghan PV, Bera I, Bhattacharyya D, Ghoshal N. Computational Studies for Structure-Based Drug Designing Against Transmembrane Receptors: pLGICs and Class A GPCRs. FRONTIERS IN PHYSICS 2018; 6. [DOI: 10.3389/fphy.2018.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE. Structure of a human synaptic GABA A receptor. Nature 2018; 559:67-72. [PMID: 29950725 PMCID: PMC6220708 DOI: 10.1038/s41586-018-0255-3] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/17/2018] [Indexed: 11/08/2022]
Abstract
Fast inhibitory neurotransmission in the brain is principally mediated by the neurotransmitter GABA (γ-aminobutyric acid) and its synaptic target, the type A GABA receptor (GABAA receptor). Dysfunction of this receptor results in neurological disorders and mental illnesses including epilepsy, anxiety and insomnia. The GABAA receptor is also a prolific target for therapeutic, illicit and recreational drugs, including benzodiazepines, barbiturates, anaesthetics and ethanol. Here we present high-resolution cryo-electron microscopy structures of the human α1β2γ2 GABAA receptor, the predominant isoform in the adult brain, in complex with GABA and the benzodiazepine site antagonist flumazenil, the first-line clinical treatment for benzodiazepine overdose. The receptor architecture reveals unique heteromeric interactions for this important class of inhibitory neurotransmitter receptor. This work provides a template for understanding receptor modulation by GABA and benzodiazepines, and will assist rational approaches to therapeutic targeting of this receptor for neurological disorders and mental illness.
Collapse
Affiliation(s)
- Shaotong Zhu
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Colleen M Noviello
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinfeng Teng
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard M Walsh
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeong Joo Kim
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan E Hibbs
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Callau-Vázquez D, Pless SA, Lynagh T. Investigation of Agonist Recognition and Channel Properties in a Flatworm Glutamate-Gated Chloride Channel. Biochemistry 2018; 57:1360-1368. [PMID: 29411605 DOI: 10.1021/acs.biochem.7b01245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamate-gated chloride channels (GluCls) are neurotransmitter receptors that mediate crucial inhibitory signaling in invertebrate neuromuscular systems. Their role in invertebrate physiology and their absence from vertebrates make GluCls a prime target for antiparasitic drugs. GluCls from flatworm parasites are substantially different from and are much less understood than those from roundworm and insect parasites, hindering the development of potential therapeutics targeting GluCls in flatworm-related diseases such as schistosomiasis. Here, we sought to dissect the molecular and chemical basis for ligand recognition in the extracellular glutamate binding site of SmGluCl-2 from Schistosoma mansoni, using site-directed mutagenesis, noncanonical amino acid incorporation, and electrophysiological recordings. Our results indicate that aromatic residues in ligand binding loops A, B, and C are important for SmGluCl-2 function. Loop C, which differs in length compared to other pentameric ligand-gated ion channels (pLGICs), contributes to ligand recognition through both an aromatic residue and two vicinal threonine residues. We also show that, in contrast to other pLGICs, the hydrophobic channel gate in SmGluCl-2 extends from the 9' position to the 6' position in the channel-forming M2 helix. The 6' and 9' positions also seem to control sensitivity to the pore blocker picrotoxin.
Collapse
Affiliation(s)
- Daniel Callau-Vázquez
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 160, 2100 Copenhagen, Denmark
| | - Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 160, 2100 Copenhagen, Denmark
| | - Timothy Lynagh
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 160, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Mackenzie HW, Hansen DF. A 13C-detected 15N double-quantum NMR experiment to probe arginine side-chain guanidinium 15N η chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2017; 69:123-132. [PMID: 29127559 PMCID: PMC5711973 DOI: 10.1007/s10858-017-0137-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 05/25/2023]
Abstract
Arginine side-chains are often key for enzyme catalysis, protein-ligand and protein-protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ-Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.
Collapse
Affiliation(s)
- Harold W Mackenzie
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Baptista-Hon DT, Gulbinaite S, Hales TG. Loop G in the GABA A receptor α1 subunit influences gating efficacy. J Physiol 2017; 595:1725-1741. [PMID: 27981574 DOI: 10.1113/jp273752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional importance of residues in loop G of the GABAA receptor has not been investigated. D43 and T47 in the α1 subunit are of particular significance as their structural modification inhibits activation by GABA. While the T47C substitution had no significant effect, non-conservative substitution of either residue (D43C or T47R) reduced the apparent potency of GABA. Propofol potentiated maximal GABA-evoked currents mediated by α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. Non-stationary variance analysis revealed a reduction in maximal GABA-evoked Popen , suggesting impaired agonist efficacy. Further analysis of α1(T47R)β2γ2 receptors revealed that the efficacy of the partial agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol) relative to GABA was impaired. GABA-, THIP- and propofol-evoked currents mediated by α1(T47R)β2γ2 receptors deactivated faster than those mediated by α1β2γ2 receptors, indicating that the mutation impairs agonist-evoked gating. Spontaneous gating caused by the β2(L285R) mutation was also reduced in α1(T47R)β2(L285R)γ2 compared to α1β2(L285R)γ2 receptors, confirming that α1(T47R) impairs gating independently of agonist activation. ABSTRACT The modification of cysteine residues (substituted for D43 and T47) by 2-aminoethyl methanethiosulfonate in the GABAA α1 subunit loop G is known to impair activation of α1β2γ2 receptors by GABA and propofol. While the T47C substitution had no significant effect, non-conservative substitution of either residue (D43C or T47R) reduced the apparent potency of GABA. Propofol (1 μm), which potentiates sub-maximal but not maximal GABA-evoked currents mediated by α1β2γ2 receptors, also potentiated maximal currents mediated by α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. Furthermore, the peak open probabilities of α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors were reduced. The kinetics of macroscopic currents mediated by α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors were characterised by slower desensitisation and faster deactivation. Similar changes in macroscopic current kinetics, together with a slower activation rate, were observed with the loop D α1(F64C) substitution, known to impair both efficacy and agonist binding, and when the partial agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol) was used to activate WT or α1(T47R)β2γ2 receptors. Propofol-evoked currents mediated by α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors also exhibited faster deactivation than their WT counterparts, revealing that these substitutions impair gating through a mechanism independent of orthosteric binding. Spontaneous gating caused by the introduction of the β2(L285R) mutation was also reduced in α1(T47R)β2(L285R)γ2 compared to α1β2(L285R)γ2 receptors, confirming that α1(T47R) impairs gating independently of activation by any agonist. These findings implicate movement of the GABAA receptor α1 subunit's β1 strand during agonist-dependent and spontaneous gating. Immobilisation of the β1 strand may provide a mechanism for the inhibition of gating by inverse agonists such as bicuculline.
Collapse
Affiliation(s)
- Daniel T Baptista-Hon
- The Institute of Academic Anaesthesia, Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Simona Gulbinaite
- The Institute of Academic Anaesthesia, Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Tim G Hales
- The Institute of Academic Anaesthesia, Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
14
|
Michałowski MA, Kraszewski S, Mozrzymas JW. Binding site opening by loop C shift and chloride ion-pore interaction in the GABAAreceptor model. Phys Chem Chem Phys 2017; 19:13664-13678. [DOI: 10.1039/c7cp00582b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molecular dynamics simulations of the shut α1β2γ2GABAAheteropentamer receptor homology model reveal significant differences between intersubunit interfaces (ligand binding G1, G2 and non-binding) compared to homomeric receptor assemblies and possible ion interaction sites in the top part of the transmembrane domain (TMD).
Collapse
Affiliation(s)
- M. A. Michałowski
- Laboratory of Neuroscience
- Department of Biophysics
- Wrocław Medical University
- ul. Chałubińskiego 3a
- 50-358 Wrocław
| | - S. Kraszewski
- Department of Biomedical Engineering
- Faculty of Fundamental Problems of Technology
- Wroclaw University of Science and Technology
- Wyb. Wyspiańskiego 27
- 50-370 Wrocław
| | - J. W. Mozrzymas
- Laboratory of Neuroscience
- Department of Biophysics
- Wrocław Medical University
- ul. Chałubińskiego 3a
- 50-358 Wrocław
| |
Collapse
|
15
|
Baptista-Hon DT, Krah A, Zachariae U, Hales TG. A role for loop G in the β1 strand in GABAA receptor activation. J Physiol 2016; 594:5555-71. [PMID: 27195487 PMCID: PMC5043033 DOI: 10.1113/jp272463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS The role of the β1 strand in GABAA receptor function is unclear. It lies anti-parallel to the β2 strand, which is known to participate in receptor activation. Molecular dynamics simulation revealed solvent accessible residues within the β1 strand of the GABAA β3 homopentamer that might be amenable to analysis using the substituted Cys accessibility method. Cys substitutions from Asp43 to Thr47 in the GABAA α1 subunit showed that D43C and T47C reduced the apparent potency of GABA. F45C caused a biphasic GABA concentration-response relationship and increased spontaneous gating. Cys43 and Cys47 were accessible to 2-aminoethyl methanethiosulphonate (MTSEA) modification, whereas Cys45 was not. Both GABA and the allosteric agonist propofol reduced MTSEA modification of Cys43 and Cys47. By contrast, modification of Cys64 in the β2 strand loop D was impeded by GABA but unaffected by propofol. These data reveal movement of β1 strand loop G residues during agonist activation of the GABAA receptor. ABSTRACT The GABAA receptor α subunit β1 strand runs anti-parallel to the β2 strand, which contains loop D, known to participate in receptor activation and agonist binding. However, a role for the β1 strand has yet to be established. We used molecular dynamics simulation to quantify the solvent accessible surface area (SASA) of β1 strand residues in the GABAA β3 homopentamer structure. Residues in the complementary interface equivalent to those between Asp43 and Thr47 in the α1 subunit have an alternating pattern of high and low SASA consistent with a β strand structure. We investigated the functional role of these β1 strand residues in the α1 subunit by individually replacing them with Cys residues. D43C and T47C substitutions reduced the apparent potency of GABA at α1β2γ2 receptors by 50-fold and eight-fold, respectively, whereas the F45C substitution caused a biphasic GABA concentration-response relationship and increased spontaneous gating. Receptors with D43C or T47C substitutions were sensitive to 2-aminoethyl methanethiosulphonate (MTSEA) modification. However, GABA-evoked currents mediated by α1(F45C)β2γ2 receptors were unaffected by MTSEA, suggesting that this residue is inaccessible. Both GABA and the allosteric agonist propofol reduced MTSEA modification of α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors, indicating movement of the β1 strand even during allosteric activation. This is in contrast to α1(F64C)β2γ2 receptors, where only GABA, but not propofol, reduced MTSEA modification. These findings provide the first functional evidence for movement of the β1 strand during gating of the receptor and identify residues that are critical for maintaining GABAA receptor function.
Collapse
Affiliation(s)
- Daniel T Baptista-Hon
- The Institute of Academic Anaesthesia, Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Alexander Krah
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tim G Hales
- The Institute of Academic Anaesthesia, Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK.
| |
Collapse
|
16
|
Janve VS, Hernandez CC, Verdier KM, Hu N, Macdonald RL. Epileptic encephalopathy de novo GABRB mutations impair γ-aminobutyric acid type A receptor function. Ann Neurol 2016; 79:806-825. [PMID: 26950270 PMCID: PMC5014730 DOI: 10.1002/ana.24631] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The Epi4K Consortium recently identified 4 de novo mutations in the γ-aminobutyric acid type A (GABAA ) receptor β3 subunit gene GABRB3 and 1 in the β1 subunit gene GABRB1 in children with one of the epileptic encephalopathies (EEs) Lennox-Gastaut syndrome (LGS) and infantile spasms (IS). Because the etiology of EEs is often unknown, we determined the impact of GABRB mutations on GABAA receptor function and biogenesis. METHODS GABAA receptor α1 and γ2L subunits were coexpressed with wild-type and/or mutant β3 or β1 subunits in HEK 293T cells. Currents were measured using whole cell and single channel patch clamp techniques. Surface and total expression levels were measured using flow cytometry. Potential structural perturbations in mutant GABAA receptors were explored using structural modeling. RESULTS LGS-associated GABRB3(D120N, E180G, Y302C) mutations located at β+ subunit interfaces reduced whole cell currents by decreasing single channel open probability without loss of surface receptors. In contrast, IS-associated GABRB3(N110D) and GABRB1(F246S) mutations at β- subunit interfaces produced minor changes in whole cell current peak amplitude but altered current deactivation by decreasing or increasing single channel burst duration, respectively. GABRB3(E180G) and GABRB1(F246S) mutations also produced spontaneous channel openings. INTERPRETATION All 5 de novo GABRB mutations impaired GABAA receptor function by rearranging conserved structural domains, supporting their role in EEs. The primary effect of LGS-associated mutations was reduced GABA-evoked peak current amplitudes, whereas the major impact of IS-associated mutations was on current kinetic properties. Despite lack of association with epilepsy syndromes, our results suggest GABRB1 as a candidate human epilepsy gene. Ann Neurol 2016;79:806-825.
Collapse
Affiliation(s)
- Vaishali S Janve
- Graduate Program of Neuroscience, Vanderbilt University, Nashville, TN
| | | | | | - Ningning Hu
- Department of Neurology, Vanderbilt University, Nashville, TN
| | | |
Collapse
|
17
|
Payghan PV, Bera I, Bhattacharyya D, Ghoshal N. Capturing state-dependent dynamic events of GABAA-receptors: a microscopic look into the structural and functional insights. J Biomol Struct Dyn 2016; 34:1818-37. [DOI: 10.1080/07391102.2015.1094410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pavan V. Payghan
- Structural Biology and Bioinformatics Division, CSIR – Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Indrani Bera
- Structural Biology and Bioinformatics Division, CSIR – Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR – Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
18
|
Liu G, Frølund B, Ozoe F, Ozoe Y. Differential interactions of 5-(4-piperidyl)-3-isoxazolol analogues with insect γ-aminobutyric acid receptors leading to functional selectivity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:64-71. [PMID: 26453818 DOI: 10.1016/j.ibmb.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors (GABARs) mediate fast inhibitory synaptic transmission and are also targets for drugs and insecticides. To better understand the molecular interactions of ligands with the orthosteric sites of GABARs, we examined 4-aryl/arylalkyl-5-(4-piperidyl)-3-isoxazolol, 4-aryl-5-(4-piperidyl)-3-isothiazolol, and 5-aryl-4-(4-piperidyl)-1-hydroxypyrazole for their antagonism with regard to three insect GABARs. The 3-isoxazolol was preferable to the 3-isothiazolol and 1-hydroxypyrazole in antagonism to common cutworm and housefly GABARs. Of the tested analogues, 4-(3-biphenylyl)-5-(4-piperidyl)-3-isoxazolol (2a) displayed the greatest antagonism for common cutworm and housefly GABARs, with IC50 values of 3.4 and 10.2 μM, respectively. In contrast to the antagonism of the two GABARs, 2a showed partial agonism for the case of small brown planthopper GABARs, with an EC50 value of 31.3 μM. Homology models and docking simulations revealed that a cation-π interaction between an analogue and an Arg residue in loop C or E of the orthosteric site is a key component of antagonism. This specific phenomenon was lacking in the interactions between 2a and the orthosteric site of small brown planthopper GABARs. These findings provide important insights into designing and developing novel drugs and insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Division of Bioscience and Biotechnology, Course of Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Φ, Denmark
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yoshihisa Ozoe
- Division of Bioscience and Biotechnology, Course of Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan; Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
19
|
Goldschen-Ohm MP, Haroldson A, Jones MV, Pearce RA. A nonequilibrium binary elements-based kinetic model for benzodiazepine regulation of GABAA receptors. ACTA ACUST UNITED AC 2015; 144:27-39. [PMID: 24981228 PMCID: PMC4076519 DOI: 10.1085/jgp.201411183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A nonequilibrium kinetic model that explicitly treats the energetics of interactions between structural domains is used to describe positive modulation of the GABAA receptor by benzodiazepines. Ion channels, like many other proteins, are composed of multiple structural domains. A stimulus that impinges on one domain, such as binding of a ligand to its recognition site, can influence the activity of another domain, such as a transmembrane channel gate, through interdomain interactions. Kinetic schemes that describe the function of interacting domains typically incorporate a minimal number of states and transitions, and do not explicitly model interactions between domains. Here, we develop a kinetic model of the GABAA receptor, a ligand-gated ion channel modulated by numerous compounds including benzodiazepines, a class of drugs used clinically as sedatives and anxiolytics. Our model explicitly treats both the kinetics of distinct functional domains within the receptor and the interactions between these domains. The model describes not only how benzodiazepines that potentiate GABAA receptor activity, such as diazepam, affect peak current dose–response relationships in the presence of desensitization, but also their effect on the detailed kinetics of current activation, desensitization, and deactivation in response to various stimulation protocols. Finally, our model explains positive modulation by benzodiazepines of receptor currents elicited by either full or partial agonists, and can resolve conflicting observations arguing for benzodiazepine modulation of agonist binding versus channel gating.
Collapse
Affiliation(s)
- Marcel P Goldschen-Ohm
- Department of Neuroscience and Department of Anesthesiology, University of Wisconsin, Madison, WI 53706
| | - Alexander Haroldson
- Department of Neuroscience and Department of Anesthesiology, University of Wisconsin, Madison, WI 53706
| | - Mathew V Jones
- Department of Neuroscience and Department of Anesthesiology, University of Wisconsin, Madison, WI 53706
| | - Robert A Pearce
- Department of Neuroscience and Department of Anesthesiology, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
20
|
Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels. Sci Rep 2015; 5:8558. [PMID: 25708000 PMCID: PMC4338433 DOI: 10.1038/srep08558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling.
Collapse
|
21
|
Competitive antagonism of insect GABA receptors by 4-substituted 5-(4-piperidyl)-3-isothiazolols. Bioorg Med Chem 2014; 22:4637-45. [PMID: 25112550 DOI: 10.1016/j.bmc.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors are important targets of parasiticides/insecticides. Several 4-substituted analogs of the partial GABAA receptor agonist 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) were synthesized and examined for their antagonism of insect GABA receptors expressed in Drosophila S2 cells or Xenopus oocytes. Thio-4-PIOL showed weak antagonism of three insect GABA receptors. The antagonistic activity of Thio-4-PIOL was enhanced by introducing bicyclic aromatic substituents into the 4-position of the isothiazole ring. The 2-naphthyl and the 3-biphenylyl analogs displayed antagonist potencies with half maximal inhibitory concentrations in the low micromolar range. The 2-naphthyl analog induced a parallel rightward shift of the GABA concentration-response curve, suggesting competitive antagonism by these analogs. Both compounds exhibited weak insecticidal activities against houseflies. Thus, the orthosteric site of insect GABA receptors might be a potential target site of insecticides.
Collapse
|
22
|
Lynagh T, Pless SA. Principles of agonist recognition in Cys-loop receptors. Front Physiol 2014; 5:160. [PMID: 24795655 PMCID: PMC4006026 DOI: 10.3389/fphys.2014.00160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term "chemoreceptor" emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.
Collapse
Affiliation(s)
| | - Stephan A. Pless
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
23
|
α1F64 Residue at GABA(A) receptor binding site is involved in gating by influencing the receptor flipping transitions. J Neurosci 2014; 34:3193-209. [PMID: 24573278 DOI: 10.1523/jneurosci.2533-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA receptors (GABAARs) mediate inhibition in the adult brain. These channels are heteropentamers and their ligand binding sites are localized at the β+ / α- interfaces. As expected, mutations of binding-site residues affect binding kinetics but accumulating evidence indicates that gating is also altered, although the underlying mechanisms are unclear. We investigated the impact of the hydrophobic box residue localized at α1(-), F64 (α1F64), on the binding and gating of rat recombinant α1β1γ2 receptors. The analysis of current responses to rapid agonist applications confirmed a marked effect of α1F64 mutations on agonist binding and revealed surprisingly strong effects on gating, including the disappearance of rapid desensitization, the slowing of current onset, and accelerated deactivation. Moreover, nonstationary variance analysis revealed that the α1F64C mutation dramatically reduced the maximum open probability without altering channel conductance. Interestingly, for wild-type receptors, responses to saturating concentration of a partial agonist, P4S, showed no rapid desensitization, similar to GABA-evoked responses mediated by α1F64C mutants. For the α1F64L mutation, the application of the high-affinity agonist muscimol partially rescued rapid desensitization compared with responses evoked by GABA. These findings suggest that α1F64 mutations do not disrupt desensitization mechanisms but rather affect other gating features that obscure it. Model simulations indicated that all of our observations related to α1F64 mutations could be properly reproduced by altering the flipped state transitions that occurred after agonist binding but preceded opening. In conclusion, we propose that the α1F64 residue may participate in linking binding and gating by influencing flipping kinetics.
Collapse
|
24
|
Laha KT, Tran PN. Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor. J Neurochem 2012; 124:200-9. [PMID: 23121119 DOI: 10.1111/jnc.12083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 10/23/2012] [Accepted: 10/28/2012] [Indexed: 01/25/2023]
Abstract
The prevalence of aromatic residues in the ligand binding site of the GABA(A) receptor, as with other cys-loop ligand-gated ion channels, is undoubtedly important for the ability of neurotransmitters to bind and trigger channel opening. Here, we have examined three conserved tyrosine residues at the GABA binding pocket (β(2) Tyr97, β(2) Tyr157, and β(2) Tyr205), making mutations to alanine and phenylalanine. We fully characterized the effects each mutation had on receptor function using heterologous expression in HEK-293 cells, which included examining surface expression, kinetics of macroscopic currents, microscopic binding and unbinding rates for an antagonist, and microscopic binding rates for an agonist. The assembly or trafficking of GABA(A) receptors was disrupted when tyrosine mutants were expressed as αβ receptors, but interestingly not when expressed as αβγ receptors. Mutation of each tyrosine accelerated deactivation and slowed GABA binding. This provides strong evidence that these residues influence the binding of GABA. Qualitatively, mutation of each tyrosine has a very similar effect on receptor function; however, mutations at β(2) Tyr157 and β(2) Tyr205 are more detrimental than β(2) Tyr97 mutations, particularly to the GABA binding rate. Overall, the results suggest that interactions involving multiple tyrosine residues are likely during the binding process.
Collapse
Affiliation(s)
- Kurt T Laha
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| | | |
Collapse
|
25
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 782] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
26
|
Vijayan RSK, Trivedi N, Roy SN, Bera I, Manoharan P, Payghan PV, Bhattacharyya D, Ghoshal N. Modeling the Closed and Open State Conformations of the GABAA Ion Channel - Plausible Structural Insights for Channel Gating. J Chem Inf Model 2012; 52:2958-69. [DOI: 10.1021/ci300189a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R. S. K. Vijayan
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | - Neha Trivedi
- National Institute of Pharmaceutical Education and Research, Kolkata −700
032, India
| | - Sudipendra Nath Roy
- National Institute of Pharmaceutical Education and Research, Kolkata −700
032, India
| | - Indrani Bera
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | - Prabu Manoharan
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | - Pavan V. Payghan
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| |
Collapse
|
27
|
Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proc Natl Acad Sci U S A 2012; 109:E3028-34. [PMID: 23035248 DOI: 10.1073/pnas.1208208109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GABA(A) receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA(A) receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their concentration, occupy two possible sites in ELIC. An intrasubunit site is adjacent to the GABA-recognition site but faces the channel vestibule. A second intersubunit site partially overlaps with the GABA site and likely corresponds to a low-affinity benzodiazepine-binding site in GABA(A) receptors that mediates inhibitory effects of the benzodiazepine flurazepam. Our study offers a structural view how GABA and benzodiazepines are recognized at a GABA-activated ion channel.
Collapse
|