1
|
de Campos EG, de Almeida OGG, De Martinis BS, De Martinis ECP. Cocaine esterase occurrence in global wastewater microbiomes and potential for biotransformation of novel psychoactive substances. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:96-109. [PMID: 34761870 DOI: 10.1111/1758-2229.13020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The analysis of drugs in wastewater for forensic purposes has been constantly increasing and the investigation of the potential interaction between drugs or metabolites and sewage microbiota is important. The results demonstrated that cocaine esterase genes were widely distributed in 1142 global wastewater samples collected from 64 countries and linked to several bacterial species. In addition, in silico predictions indicated that carfentanil, 4F-MDMB-BINACA, 5F-MDMB-PICA, MDMB-4en-PINACA and mitragynine might also undergo microbial hydrolysis, in a similar fashion of cocaine degradation by cocaine esterase. In conclusion, it was demonstrated the microbial potential to hydrolyze drugs of abuse in wastewater environments, contributing to the critical evaluation of potential metabolites as biomarkers for microbial and human transformation of drugs in wastewater.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, SP, 14040-903, Brazil
| | - Otávio G G de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, SP, 14040-903, Brazil
| | - Bruno S De Martinis
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, SP, 14040-901, Brazil
| | - Elaine C P De Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, SP, 14040-903, Brazil
| |
Collapse
|
2
|
Cai Y, Zhou S, Jin Z, Wei H, Shang L, Deng J, Zhan CG, Zheng F. Reengineering of Albumin-Fused Cocaine Hydrolase CocH1 (TV-1380) to Prolong Its Biological Half-Life. AAPS JOURNAL 2019; 22:5. [PMID: 31754920 DOI: 10.1208/s12248-019-0377-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Therapeutic treatment of cocaine toxicity or addiction is a grand medical challenge. As a promising therapeutic strategy for treatment of cocaine toxicity and addiction to develop a highly efficient cocaine hydrolase (CocH) capable of accelerating cocaine metabolism to produce physiologically/biologically inactive metabolites, our previously designed A199S/S287G/A328W/Y332G mutant of human butyrylcholinesterase (BChE), known as cocaine hydrolase-1 (CocH1), possesses the desirably high catalytic activity against cocaine. The C-terminus of CocH1, truncated after amino acid #529, was fused to human serum albumin (HSA) to extend the biological half-life. The C-terminal HSA-fused CocH1 (CocH1-HSA), known as Albu-CocH1, Albu-CocH, AlbuBChE, Albu-BChE, or TV-1380 in literature, has shown favorable preclinical and clinical profiles. However, the actual therapeutic value of TV-1380 for cocaine addiction treatment is still limited by the short half-life. In this study, we designed and tested a new type of HSA-fused CocH1 proteins, i.e., N-terminal HSA-fused CocH1, with or without a linker between the HSA and CocH1 domains. It has been demonstrated that the catalytic activity of these new fusion proteins against cocaine is similar to that of TV-1380. However, HSA-CocH1 (without a linker) has a significantly longer biological half-life (t1/2 = 14 ± 2 h) compared to the corresponding C-terminal HSA-fused CocH1, i.e., CocH1-HSA (TV-1380 with t1/2 = 5-8 h), in rats. Further, the N-terminal HSA-fused CocH1 proteins with a linker have further prolonged biological half-lives: t1/2 = 17 ± 2 h for both HSA-EAAAK-CocH1 and HSA-PAPAP-CocH1, and t1/2 = 18 ± 3 h for HSA-(PAPAP)2-CocH1. These N-terminal HSA-fused CocH1 proteins may serve as more promising protein drug candidates for cocaine addiction treatment.
Collapse
Affiliation(s)
- Yingting Cai
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Zhenyu Jin
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Huimei Wei
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Linyue Shang
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Jing Deng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
3
|
Hou S, Zhang Y, Zhu Y, Zhang C, Kong Y, Chen X, Chen R, Yin X, Xie T, Chen X. Evaluation of the cholinesterase activity of a potential therapeutic cocaine esterase for cocaine overdose. Drug Alcohol Depend 2019; 202:168-171. [PMID: 31352306 DOI: 10.1016/j.drugalcdep.2019.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/06/2019] [Accepted: 04/30/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cocaine is a commonly abused drug and there is no approved medication specifically to treat its addiction or overdose. Bacterial cocaine esterase (CocE)-derived RBP-8000 is currently under clinical development for cocaine overdose treatment. It is proven to be effective for human use to accelerate cocaine metabolism into physiologically inactive products. Besides cocaine, RBP-8000 may hydrolyze the neurotransmitter acetylcholine (ACh), however, no study has reported its cholinesterase activity. The present study aims to examine RBP-8000's cholinesterase activity and substrate selectivity to address the potential concern that this enzyme therapy might produce cholinergic side-effects. METHODS Both computational modeling and experimental kinetic analysis were carried out to characterize the potential cholinesterase activity of RBP-8000. Substrates interacting with RBP-8000 were modeled for their enzyme-substrate binding complexes. In vitro enzymatic kinetic parameters were measured using Ellman's colorimetric assay and analyzed by Michaelis-Menten kinetics. RESULTS It is the first demonstration that RBP-8000 catalyzes the hydrolysis of acetylthiocholine (ATC). However, its catalytic efficiency (kcat/KM) against ATC is 1000-fold and 5000-fold lower than it against cocaine at 25 °C and 37 °C, respectively, suggesting RBP-8000 has the desired substrate selectivity for cocaine over ACh. CONCLUSION Given the fact that clinically relevant dose of RBP-8000 displays insignificant cholinesterase activity relative to endogenous cholinesterases in human, administration of RBP-8000 is unlikely to produce any significant cholinergic side-effects. This study provides supplemental evidences in support of further development of RBP-8000 towards a clinically used pharmacotherapy for cocaine overdose.
Collapse
Affiliation(s)
- Shurong Hou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Yun Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Yao Zhu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Chao Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Yichao Kong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Xiaoling Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Rong Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Xiaopu Yin
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China.
| | - Xiabin Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University. 2318 Yuhangtang Rd, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
de Lima Feltraco Lizot L, da Silva ACC, Bastiani MF, Hahn RZ, Bulcão R, Perassolo MS, Antunes MV, Linden R. Simultaneous determination of cocaine, ecgonine methyl ester, benzoylecgonine, cocaethylene and norcocaine in dried blood spots by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Forensic Sci Int 2019; 298:408-416. [DOI: 10.1016/j.forsciint.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/29/2022]
|
5
|
Moretti M, Visonà SD, Freni F, Tomaciello I, Vignali C, Groppi A, Tajana L, Osculati AMM, Morini L. A liquid chromatography-tandem mass spectrometry method for the determination of cocaine and metabolites in blood and in dried blood spots collected from postmortem samples and evaluation of the stability over a 3-month period. Drug Test Anal 2018; 10:1430-1437. [DOI: 10.1002/dta.2399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/30/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Matteo Moretti
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Francesca Freni
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Ilaria Tomaciello
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Claudia Vignali
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Angelo Groppi
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Luca Tajana
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Antonio Marco Maria Osculati
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| | - Luca Morini
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; via Forlanini 12 27100 Pavia Italy
| |
Collapse
|
6
|
Chen X, Deng J, Cui W, Hou S, Zhang J, Zheng X, Ding X, Wei H, Zhou Z, Kim K, Zhan CG, Zheng F. Development of Fc-Fused Cocaine Hydrolase for Cocaine Addiction Treatment: Catalytic and Pharmacokinetic Properties. AAPS JOURNAL 2018; 20:53. [PMID: 29556863 DOI: 10.1208/s12248-018-0214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Abstract
Cocaine abuse is a worldwide public health and social problem without a US Food and Drug Administration (FDA)-approved medication. Accelerating cocaine metabolism that produces biologically inactive metabolites by administration of an efficient cocaine hydrolase (CocH) has been recognized as a promising strategy for cocaine abuse treatment. However, the therapeutic effects of CocH are limited by its short biological half-life (e.g., 8 h or shorter in rats). In this study, we designed and prepared a set of Fc-fusion proteins constructed by fusing Fc(M3) with CocH3 at the N-terminus of CocH3. A linker between the two protein domains was optimized to improve both the biological half-life and catalytic activity against cocaine. It has been concluded that Fc(M3)-G6S-CocH3 not only has fully retained the catalytic efficiency of CocH3 against cocaine but also has the longest biological half-life (e.g., ∼ 136 h in rats) among all of the long-acting CocHs identified so far. A single dose (0.2 mg/kg, IV) of Fc(M3)-G6S-CocH3 was able to significantly attenuate 15 mg/kg cocaine-induced hyperactivity for at least 11 days (268 h) after the Fc(M3)-G6S-CocH3 administration.
Collapse
Affiliation(s)
- Xiabin Chen
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jing Deng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Wenpeng Cui
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Shurong Hou
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jinling Zhang
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Xin Ding
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Huimei Wei
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
7
|
Chen X, Zheng X, Zhan M, Zhou Z, Zhan CG, Zheng F. Metabolic Enzymes of Cocaine Metabolite Benzoylecgonine. ACS Chem Biol 2016; 11:2186-94. [PMID: 27224254 DOI: 10.1021/acschembio.6b00277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cocaine is one of the most addictive drugs without a U.S. Food and Drug Administration (FDA)-approved medication. Enzyme therapy using an efficient cocaine-metabolizing enzyme is recognized as the most promising approach to cocaine overdose treatment. The actual enzyme, known as RBP-8000, under current clinical development for cocaine overdose treatment is our previously designed T172R/G173Q mutant of bacterial cocaine esterase (CocE). The T172R/G173Q mutant is effective in hydrolyzing cocaine but inactive against benzoylecgonine (a major, biologically active metabolite of cocaine). Unlike cocaine itself, benzoylecgonine has an unusually stable zwitterion structure resistant to further hydrolysis in the body and environment. In fact, benzoylecgonine can last in the body for a very long time (a few days) and, thus, is responsible for the long-term toxicity of cocaine and a commonly used marker for drug addiction diagnosis in pre-employment drug tests. Because CocE and its mutants are all active against cocaine and inactive against benzoylecgonine, one might simply assume that other enzymes that are active against cocaine are also inactive against benzoylecgonine. Here, through combined computational modeling and experimental studies, we demonstrate for the first time that human butyrylcholinesterase (BChE) is actually active against benzoylecgonine, and that a rationally designed BChE mutant can not only more efficiently accelerate cocaine hydrolysis but also significantly hydrolyze benzoylecgonine in vitro and in vivo. This sets the stage for advanced studies to design more efficient mutant enzymes valuable for the development of an ideal cocaine overdose enzyme therapy and for benzoylecgonine detoxification in the environment.
Collapse
Affiliation(s)
- Xiabin Chen
- Molecular Modeling and Biopharmaceutical
Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical
Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Max Zhan
- Molecular Modeling and Biopharmaceutical
Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical
Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical
Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical
Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
8
|
Assessing cocaine abuse using LC-MS/MS measurements in biological specimens. Bioanalysis 2016; 7:1497-525. [PMID: 26168256 DOI: 10.4155/bio.15.72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cocaine use is still a problem in today's world, and this has several implications on human activities. Indeed, important problems related to cocaine derive from its use in situations where concentration and focus skills are necessary, namely while driving and/or working. The need of analytical methods for drug analysis in specimens of biological origin for proper documentation of human exposure is increasing. While GC-MS-based procedures represented the state-of-the-art of analytical techniques a few years ago, there is a growing trend for their replacement by LC-MS/MS, which can be justified by the increased sensitivity presented by these new technologies. This paper will review recently published papers on the use of LC-MS/MS-based procedures for cocaine measurement in biological specimens.
Collapse
|
9
|
The effects of a humanized recombinant anti-cocaine monoclonal antibody on the disposition of cocaethylene in mice. Int Immunopharmacol 2015; 23:387-90. [PMID: 25445957 DOI: 10.1016/j.intimp.2014.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/06/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022]
Abstract
The chimeric human/mouse anti-cocaine monoclonal antibody (mAb) 2E2 and its further humanized variant h2E2 have been reported to sequester a significant portion of cocaine in plasma and decrease cocaine concentrations in the brain in mice and rats. However, many cocaine users co-abuse alcohol, leading to the formation of the centrally active metabolite cocaethylene. This potentially compromises the efficacy of a cocaine-specific immunotherapy. Because h2E2 has high affinity for cocaethylene as well as cocaine, the ability of h2E2 to prevent cocaethylene entry into the brain was investigated. Mice were infused with h2E2 (1.6 μmol/kg i.v.) or vehicle and after one hour were injected with cocaethylene fumarate (1.2 μmol/kg i.v.). At times from 45 s to 60 min, brain and plasma were collected and cocaethylene concentrations were measured using GC/MS. In control mice, a two-compartment pharmacokinetic model generated values for cocaethylene distribution and terminal elimination half-lives of 0.5 and 8.1 min respectively. Initial plasma cocaethylene concentrations increased 13-fold from controls in the presence of h2E2. In brain, h2E2 produced a 92% decrease in the area under the time-concentration curve for cocaethylene. The pharmacokinetics of h2E2 was also characterized in detail. A three-compartment model resolved an initial distribution half-life of 4.4 min and a second distribution half-life of 4.2 h, and a terminal elimination half-life of 7.8 days. The ability of h2E2 to protect the brain from both cocaine and cocaethylene predicts that the clinical efficacy of h2E2 will be retained in cocaine users who co-abuse alcohol.
Collapse
|
10
|
Liquid chromatography/tandem mass spectrometry method for simultaneous determination of cocaine and its metabolite (−)ecgonine methyl ester in human acidified stabilized plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 961:77-85. [DOI: 10.1016/j.jchromb.2014.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
|
11
|
Collins GT, Brim RL, Noon KR, Narasimhan D, Lukacs NW, Sunahara RK, Woods JH, Ko MC. Repeated administration of a mutant cocaine esterase: effects on plasma cocaine levels, cocaine-induced cardiovascular activity, and immune responses in rhesus monkeys. J Pharmacol Exp Ther 2012; 342:205-13. [PMID: 22518021 PMCID: PMC3383034 DOI: 10.1124/jpet.112.194639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/18/2012] [Indexed: 11/22/2022] Open
Abstract
Previous studies have demonstrated the capacity of a long-acting mutant form of a naturally occurring bacterial double mutant cocaine esterase (DM CocE) to antagonize the reinforcing, discriminative, convulsant, and lethal effects of cocaine in rodents and reverse the increases in mean arterial pressure (MAP) and heart rate (HR) produced by cocaine in rhesus monkeys. This study was aimed at characterizing the immunologic responses to repeated dosing with DM CocE and determining whether the development of anti-CocE antibodies altered the capacity of DM CocE to reduce plasma cocaine levels and ameliorate the cardiovascular effects of cocaine in rhesus monkeys. Under control conditions, intravenous administration of cocaine (3 mg/kg) resulted in a rapid increase in the plasma concentration of cocaine (n = 2) and long-lasting increases in MAP and HR (n = 3). Administration of DM CocE (0.32 mg/kg i.v.) 10 min after cocaine resulted in a rapid hydrolysis of cocaine with plasma levels below detection limits within 5 to 8 min. Elevations in MAP and HR were significantly reduced within 25 and 50 min of DM CocE administration, respectively. Although slight (10-fold) increases in anti-CocE antibodies were observed after the fourth administration of DM CocE, these antibodies did not alter the capacity of DM CocE to reduce plasma cocaine levels or ameliorate cocaine's cardiovascular effects. Anti-CocE titers were transient and generally dissipated within 8 weeks. Together, these results suggest that highly efficient cocaine esterases, such as DM CocE, may provide a novel and effective therapeutic for the treatment of acute cocaine intoxication in humans.
Collapse
Affiliation(s)
- Gregory T Collins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Brim RL, Noon KR, Collins GT, Stein A, Nichols J, Narasimhan D, Ko MC, Woods JH, Sunahara RK. The fate of bacterial cocaine esterase (CocE): an in vivo study of CocE-mediated cocaine hydrolysis, CocE pharmacokinetics, and CocE elimination. J Pharmacol Exp Ther 2012; 340:83-95. [PMID: 21990608 PMCID: PMC3251018 DOI: 10.1124/jpet.111.186049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022] Open
Abstract
Cocaine abuse and toxicity remain widespread problems in the United States. Currently cocaine toxicity is treated only symptomatically, because there is no Food and Drug Administration-approved pharmacotherapy for this indication. To address the unmet need, a stabilized mutant of bacterial cocaine esterase [T172R/G173Q-CocE (DM-CocE)], which hydrolyzes cocaine into inactive metabolites and has low immunogenic potential, has been developed and previously tested in animal models of cocaine toxicity. Here, we document the rapid cocaine hydrolysis by low doses of DM-CocE in vitro and in vivo, as well as the pharmacokinetics and distribution of the DM-CocE protein in rats. DM-CocE at 50.5 μg/kg effectively eliminated 4 mg/kg cocaine within 2 min in both male and female rats as measured by mass spectrometry. We expanded on these findings by using a pharmacologically relevant dose of DM-CocE (0.32 mg/kg) in rats and monkeys to hydrolyze convulsant doses of cocaine. DM-CocE reduced cocaine to below detection limits rapidly after injection; however, elimination of DM-CocE resulted in peripheral cocaine redistribution by 30 to 60 min. Elimination of DM-CocE was quantified by using [³⁵S] labeling of the enzyme and was found to have a half-life of 2.1 h in rats. Minor urinary output of DM-CocE was also observed. Immunohistochemistry, Western blotting, and radiography all were used to elucidate the mechanism of DM-CocE elimination, rapid proteolysis, and recycling of amino acids into all tissues. This rapid elimination of DM-CocE is a desirable property of a therapeutic for cocaine toxicity and should reduce the likelihood of immunogenic or adverse reactions as DM-CocE moves toward clinical use.
Collapse
Affiliation(s)
- Remy L Brim
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|