1
|
Atale N, Wells A. Statins as Secondary Preventive Agent to Limit Breast Cancer Metastatic Outgrowth. Int J Mol Sci 2025; 26:1300. [PMID: 39941069 PMCID: PMC11818786 DOI: 10.3390/ijms26031300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Metastasis is a leading cause of mortality in breast cancer, as metastatic disease is often aggressive and resistant to conventional treatments. Cancer cells that spread to distant organs can enter a dormant phase for extended periods, sometimes years or decades. During this dormant phase, cancer cells avoid immune and pharmacological response. Thus, new approaches are needed to prevent these disseminated cells from becoming lethal cancers. Statins are known inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase that have been extensively used in patients with cardiovascular diseases to lower cholesterol. However, recent research has demonstrated their potential in anticancer therapies. Epidemiological evidence suggests that statins are associated with a reduction in breast cancer-specific mortality, although they do not appear to affect the incidence of primary tumors. In this review, we discuss the role of statins in metastasis and dormancy, their cytocidal and cytostatic effects and their interactions with different cell types in the tumor microenvironment. The exact mechanisms by which statins reduce mortality without influencing primary tumor growth remain unclear, also warranting further investigation into their potential role in metastasis and tumor dormancy, which could ultimately help patients to improve survival and quality of life.
Collapse
Affiliation(s)
- Neha Atale
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Alan Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Research and Development Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
- Cell Biology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Liu Q, Yang R, Wang D, Liu Q. Role of low-density cholesterol and Interleukin-17 interaction in breast cancer pathogenesis and treatment. Cell Biol Int 2025; 49:139-153. [PMID: 39318044 DOI: 10.1002/cbin.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.
Collapse
Affiliation(s)
- Qingqing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Rongyuan Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Dawei Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
- The 1st Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 510405, China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
3
|
Xu WH, Zhang T, Zhou Y, Mao Y. Fluvastatin prevents lung metastasis in triple-negative breast cancer by triggering autophagy via the RhoB/PI3K/mTOR pathway. Exp Cell Res 2024; 435:113893. [PMID: 38123008 DOI: 10.1016/j.yexcr.2023.113893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Triple-negative breast cancer is more common among younger than older women and is associated with the poorest survival outcomes of all breast cancer types. Fluvastatin inhibits tumour progression and induces the autophagy of breast cancer cells; however, the role of autophagy in fluvastatin-induced inhibition of breast cancer metastasis is unknown. Therefore, this study aimed to determine this mechanism. The effect of fluvastatin on human hormone receptor-negative breast cancer cells was evaluated in vitro via migration and wound healing assays, western blotting, and morphological measurements, as well as in vivo using a mouse xenograft model. Chloroquine, a prophylactic medication used to prevent malaria in humans was used as an autophagy inhibitor. We found that fluvastatin administration effectively prevented the migration/invasion of triple-negative breast cancer cells, an effect that was largely dependent on the induction of autophagy. Administration of the autophagy inhibitor chloroquine prevented the fluvastatin-induced suppression of lung metastasis in the nude mouse model. Furthermore, fluvastatin increased Ras homolog family member B (RhoB) expression, and the autophagy and anti-metastatic activity induced by fluvastatin were predominantly dependent on the regulation of RhoB through the protein kinase B-mammalian target of rapamycin (Akt-mTOR) signaling pathway. These results suggest that fluvastatin inhibits the metastasis of triple-negative breast cancer cells by modulating autophagy via the up regulation of RhoB through the AKT-mTOR signaling pathway. Fluvastatin may be a promising therapeutic option for patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Wen-Huan Xu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Hefeng road 1000, Wuxi, 214062, China
| | - Ting Zhang
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Hefeng road 1000, 214062, China
| | - Yunhai Zhou
- Department of General Surgery, Wuxi No.2 People's Hospital, Nanjing Medical University, Zhongshan road 68, Wuxi, 214000, China
| | - Yong Mao
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Hefeng road 1000, Wuxi, 214062, China.
| |
Collapse
|
4
|
Watson R, Tulk A, Erdrich J. The Link Between Statins and Breast Cancer in Mouse Models: A Systematic Review. Cureus 2022; 14:e31893. [PMID: 36579200 PMCID: PMC9790759 DOI: 10.7759/cureus.31893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, have consistently demonstrated pleiotropic effects in both preclinical and clinical studies. Outside of inhibiting the production of cholesterol in cells, statins have shown antineoplastic properties most commonly in breast cancer. Clinical and epidemiological studies, however, are less definitive than preclinical studies regarding statins as potential adjuvant oncologic therapy. Our objective is to summarize mouse model studies that investigate the link between statins and breast cancer using a cancer care continuum framework to provide a clinically relevant picture of the potential use of statins in breast cancer. A systematic review of the PubMed database was performed to identify studies published between January 2007 and July 2022 that investigated the effects of statins on breast cancer prevention, treatment, and survivorship in mouse models. Overall, 58 studies were identified using our search strategy. Based on our inclusion and exclusion criteria, 26 mouse model studies were eligible to be included in our systematic review. In breast cancer mouse models, statins alone and in combination with anti-cancer therapies demonstrate proven antineoplastic effects across the cancer care continuum. The antineoplastic benefit of statins as single agents in mouse model studies helps inform their synergistic benefit that future clinical studies can test. Parameters such as statin timing, dose, and breast cancer subtype are key stepping stones in defining how statins could be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Raj Watson
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Angela Tulk
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| |
Collapse
|
5
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
6
|
Cedó L, Reddy ST, Mato E, Blanco-Vaca F, Escolà-Gil JC. HDL and LDL: Potential New Players in Breast Cancer Development. J Clin Med 2019; 8:jcm8060853. [PMID: 31208017 PMCID: PMC6616617 DOI: 10.3390/jcm8060853] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most prevalent cancer and primary cause of cancer-related mortality in women. The identification of risk factors can improve prevention of cancer, and obesity and hypercholesterolemia represent potentially modifiable breast cancer risk factors. In the present work, we review the progress to date in research on the potential role of the main cholesterol transporters, low-density and high-density lipoproteins (LDL and HDL), on breast cancer development. Although some studies have failed to find associations between lipoproteins and breast cancer, some large clinical studies have demonstrated a direct association between LDL cholesterol levels and breast cancer risk and an inverse association between HDL cholesterol and breast cancer risk. Research in breast cancer cells and experimental mouse models of breast cancer have demonstrated an important role for cholesterol and its transporters in breast cancer development. Instead of cholesterol, the cholesterol metabolite 27-hydroxycholesterol induces the proliferation of estrogen receptor-positive breast cancer cells and facilitates metastasis. Oxidative modification of the lipoproteins and HDL glycation activate different inflammation-related pathways, thereby enhancing cell proliferation and migration and inhibiting apoptosis. Cholesterol-lowering drugs and apolipoprotein A-I mimetics have emerged as potential therapeutic agents to prevent the deleterious effects of high cholesterol in breast cancer.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
| | - Eugènia Mato
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Francisco Blanco-Vaca
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, 08193 Cerdanyola del Vallès, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
7
|
Atorvastatin Inhibits Breast Cancer Cells by Downregulating PTEN/AKT Pathway via Promoting Ras Homolog Family Member B (RhoB). BIOMED RESEARCH INTERNATIONAL 2019; 2019:3235021. [PMID: 31011573 PMCID: PMC6442491 DOI: 10.1155/2019/3235021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
Background Breast cancer (BC) is one of the most common malignant tumors in women around the world. Atorvastatin (ATO) was found to be associated with a decreased risk of recurrence and mortality in cancer. But the exact mechanism of its carcinostatic effects is unclear. The expression level of Ras homolog family member B (RhoB) in breast cancer cells was found to be upregulated after being treated with ATO. Thus, we conjecture that altered expression of RhoB induced by ATO may be decisive for the migration and progression of breast cancer. Methods The effects of ATO on breast tumor cells in vivo and in vitro were detected by clone formation assay, CCK-8 assay, flow cytometry, wound healing, transwell assays, tumor xenograft model, and immunohistochemistry. Distribution of RhoB in different breast cancer tissues and its influence on prognosis were analyzed using the data from TCGA or GEO databases. The relationship between RhoB and PTEN/AKT pathway was detected by Western blotting and RT-qPCR. Results ATO inhibits proliferation, invasion, EMT, and PTEN/AKT pathway and promotes apoptosis in breast tumor cells. In addition, ATO inhibits the volume and weight of breast tumor in tumor-bearing mice and upregulated RhoB in tumor tissues. The expression of RhoB in mRNA and protein level was upregulated in statin-treated breast cancer cells and downregulated in cancer tissues. Low expression of RhoB links with poor prognosis in patients with breast cancer (HR = 0.74[0.66-0.83], p =7e-8, log-rank test). Further research found that RhoB inhibits the proliferation, invasion, EMT, and PTEN/AKT signal pathway in breast tumor cells. Conclusions The exact mechanism of ATO's carcinostatic effects in breast cancer is related to downregulating PTEN/AKT pathway via promoting RhoB. Our study also demonstrates the potential applicability of RhoB as a therapeutic target for breast cancer.
Collapse
|
8
|
Cao Q, Chen X, Wu X, Liao R, Huang P, Tan Y, Wang L, Ren G, Huang J, Dong C. Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-αVβ5 axis. J Exp Med 2018; 215:1679-1692. [PMID: 29728441 PMCID: PMC5987921 DOI: 10.1084/jem.20172048] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
Cao et al. show that UGT8 promotes BLBC progression through activating sulfatide–αVβ5 axis. ZA is identified as a direct inhibitor of UGT8 and suppresses BLBC progression, suggesting that inhibition of UGT8 offers a promising opportunity for treating BLBC. Basal-like breast cancer (BLBC) is associated with a poor clinical outcome as a result of the few treatment options and poor therapeutic response. Here, we report that elevated expression of urine diphosphate–galactose ceramide galactosyltransferase (UGT8) specifically occurs in BLBC and predicts poor prognosis in breast cancer patients. UGT8 expression is transcriptionally up-regulated by Sox10, triggering the sulfatide biosynthetic pathway; increased sulfatide activates integrin αVβ5-mediated signaling that contributes to BLBC progression. UGT8 expression promotes, whereas UGT8 knockdown suppresses tumorigenicity and metastasis. Importantly, we identify that zoledronic acid (ZA), a marketed drug for treating osteoporosis and bone metastasis, is a direct inhibitor of UGT8, which blocks the sulfatide biosynthetic pathway. Significantly, a clinically achievable dosage of ZA exhibits apparent inhibitory effect on migration, invasion, and lung metastasis of BLBC cells. Together, our study suggests that UGT8 is a potential prognostic indicator and druggable target of BLBC and that pharmacologic inhibition of UGT8 by ZA offers a promising opportunity for treating this challenging disease.
Collapse
Affiliation(s)
- Qianhua Cao
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuebiao Wu
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruocen Liao
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Panpan Huang
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjia Tan
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology and Department of Surgical Oncology (Breast Center), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China .,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Kapoor S. Neoplastic Growth-Restricting Effects of Fluvastatin in Systemic Malignancies. J Surg Res 2017; 237:76-77. [PMID: 29183627 DOI: 10.1016/j.jss.2017.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/21/2017] [Accepted: 10/19/2017] [Indexed: 11/30/2022]
|
10
|
Pu H, Zhang Q, Zhao C, Shi L, Wang Y, Wang J, Zhang M. VEGFA Involves in the Use of Fluvastatin and Zoledronate Against Breast Cancer. Pathol Oncol Res 2017; 24:557-565. [PMID: 28744693 DOI: 10.1007/s12253-017-0277-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 07/12/2017] [Indexed: 12/19/2022]
Abstract
Our study aimed to identify key genes involved in the use of fluvastatin and zoledronate against breast cancer, as well as to investigate the roles of vascular endothelial growth factor A (VEGFA) in the malignant behaviors of breast cancer cells. The expression data GSE33552 was downloaded from Gene Expression Omnibus database, including mocked-, fluvastatin- and zoledronate-treated MDA-MB-231 cells. Differentially expressed genes (DEGs) were identified in fluvastatin- and zoledronate-treated cells using limma package, respectively. Pathway enrichment analysis and protein-protein interaction (PPI) network analysis were then performed. Then we used shRNA specifically targeting VEGFA (shVEGFA) to knock down the expression of VEGFA in MDA-MB-231 cells. Cell viability assay, scratch wound healing assay, Transwell invasion assay and flow cytometry were performed to explore the effects of VEGFA knockdown on the malignant behaviors of breast cancer cells. VEGFA was up-regulated in both fluvastatin- and zoledronate-treated breast cancer cells. Moreover, VEGFA was a hub node in PPI network. In addition, VEGFA was successfully knocked down in MDA-MB-231 cells by shVEGFA. Suppression of VEGFA promoted the migration and invasion of breast cancer MDA-MB-231 cells. Suppression of VEGFA inhibited the apoptosis of MDA-MB-231 cells. Our results indicate that up-regulation of VEGFA may prevent the progression of breast cancer after fluvastatin and zoledronate treatment via inducing cell apoptosis and inhibiting migration and invasion. VEGFA may serve as a potential prognostic indicator for clinical outcome in the management of breast cancer.
Collapse
Affiliation(s)
- Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China.
| | - Chunbo Zhao
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, Heilongjiang Province, China
| | - Lei Shi
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150086, China
| |
Collapse
|
11
|
Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A 2017; 114:5503-5508. [PMID: 28500274 PMCID: PMC5448170 DOI: 10.1073/pnas.1702942114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common vascular anomalies that develop in the central nervous system and, more rarely, the retina. The lesions can cause headache, seizures, focal neurological deficits, and hemorrhagic stroke. Symptomatic lesions are treated according to their presentation; however, targeted pharmacological therapies that improve the outcome of CCM disease are currently lacking. We performed a high-throughput screen to identify Food and Drug Administration-approved drugs or other bioactive compounds that could effectively suppress hyperproliferation of mouse brain primary astrocytes deficient for CCM3. We demonstrate that fluvastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase and the N-bisphosphonate zoledronic acid monohydrate, an inhibitor of protein prenylation, act synergistically to reverse outcomes of CCM3 loss in cultured mouse primary astrocytes and in Drosophila glial cells in vivo. Further, the two drugs effectively attenuate neural and vascular deficits in chronic and acute mouse models of CCM3 loss in vivo, significantly reducing lesion burden and extending longevity. Sustained inhibition of the mevalonate pathway represents a potential pharmacological treatment option and suggests advantages of combination therapy for CCM disease.
Collapse
|
12
|
Kobayashi H. Cancer Chemotherapy Specific to Acidic Nests. Cancers (Basel) 2017; 9:cancers9040036. [PMID: 28425953 PMCID: PMC5406711 DOI: 10.3390/cancers9040036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
The realization of cancer therapeutics specific to cancer cells with less of an effect on normal tissues is our goal. Many trials have been carried out for this purpose, but this goal is still far from being realized. It was found more than 80 years ago that solid cancer nests are acidified, but in vitro studies under acidic conditions have not been extensively studied. Recently, in vitro experiments under acidic conditions were started and anti-cancer drugs specific to acidic areas have been identified. Many genes have been reported to be expressed at a high level under acidic conditions, and such genes may be potent targets for anti-cancer drugs specific to acidic nests. In this review article, recent in vitro, in vivo, and clinical achievements in anti-cancer drugs with marked efficacy under acidic conditions are summarized, and the clinical use of anti-cancer drugs specific to acidic nests is discussed.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
13
|
Garnett DJ. Caveolae as a target to quench autoinduction of the metastatic phenotype in lung cancer. J Cancer Res Clin Oncol 2015; 142:611-8. [PMID: 26573510 PMCID: PMC4751176 DOI: 10.1007/s00432-015-2074-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Purpose Mevalonate pathway inhibitors are potentially useful chemotherapeutic agents showing growth inhibition and pro-apoptotic effects in cancer cells. The effects of statins and bisphosphonates on cancer growth are attributed to a reduction in protein isoprenylation. Post-translational modification and activation of GTPase binding Ras superfamily permit the recruitment of these signal proteins to membranes where they mediate the cancer phenotype. Here, the effects of three inhibitors of the mevalonate pathway and one specific inhibitor of sterol regulatory element-binding proteins were studied in both an ER-negative, Ras-inactive breast (MDA-MB-231) and lung adenocarcinoma (CaLu-1) cells in vitro. Methods Treated cells were subject to genome-wide gene expression profiling. A gene subset was established so that the epithelial to mesenchymal transition (EMT) could be observed and compared with signalling protein shifts. Results Within the subset, some genes normally up-regulated during EMT were asymmetrically reduced by a Δ-24 DHCR inhibitor in the lung cells. Signalling proteins associated with caveolae were down-regulated by this oxidoreductase inhibitor, while those associated with membrane rafts were up-regulated. Conclusions This study decouples isoprenylation effects from cholesterol events per se. The data support a hypothesis that caveolae are abolished by Δ-24 DHCR intervention and it is revealed that these microdomains are vital EMT signalling structures for lung cells but not ER- and Ras-negative breast cells. When signalling by extracellular signals is quenched by removal of the hydrophilic conduit provided by caveolae, the transcriptome responds by moving the cellular identity towards quiescence. Electronic supplementary material The online version of this article (doi:10.1007/s00432-015-2074-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David John Garnett
- Institute of Science Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|