1
|
Baldo BA. Opioid-induced respiratory depression: clinical aspects and pathophysiology of the respiratory network effects. Am J Physiol Lung Cell Mol Physiol 2025; 328:L267-L289. [PMID: 39726397 DOI: 10.1152/ajplung.00314.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Important insights and consensus remain lacking for risk prediction of opioid-induced respiratory depression (OIRD), reversal of respiratory depression (RD), the pathophysiology of OIRD, and which sites make the most significant contribution to its induction. The ventilatory response to inhaled carbon dioxide is the most sensitive biomarker of OIRD. To accurately predict respiratory depression (RD), a multivariant RD prospective trial using continuous capnography and oximetry examining five independent variables, age ≥60, sex, opioid naivety, sleep disorders, and chronic heart failure (PRODIGY trial), were undertaken. Intermittent oximetry alone substantially underestimates the incidence of RD. Naloxone, with an elimination half-life of ∼33 min (cf. morphine 2-3 h; fentanyl and congeners only 5-15 min), has limitations for the rescue of patients with severe OIRD. Buprenorphine is potentially valuable in patients being treated long term since its high µ-receptor (MOR) affinity makes it difficult for an opioid of lower affinity (e.g., fentanyl) to displace it from the receptor. In the last decade, synthetic opioids, for example, fentanyl, its potent analogs such as carfentanil, and the benzimidazole derivative nitazene "superagonists" have contributed to the exponential growth in opioid deaths due to RD. The MOR, encoded by gene Oprm1, is widely expressed in the central and peripheral nervous systems, including centers that modulate breathing. Opioids bind to the receptors, but consensus is lacking on which site(s) makes the most significant contribution to the induction of OIRD. Both the preBötzinger complex (preBötC), the inspiratory rhythm generator, and the Kölliker-Fuse nucleus (KFN), the respiratory modulator, contribute to RD, but receptor binding is not restricted to a single site. Breathing is composed of three phases, inspiration, postinspiration, and active expiration, each generated by distinct rhythm-generating networks: the preBötC, the postinspiratory complex (PiCo), and the lateral parafacial nucleus (pFL), respectively. Somatostatin-expressing mouse cells involved in breathing regulation are not involved in opioid-induced RD.
Collapse
Affiliation(s)
- Brian A Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Davis MP, DiScala S, Davis A. Respiratory Depression Associated with Opioids: A Narrative Review. Curr Treat Options Oncol 2024; 25:1438-1450. [PMID: 39432171 DOI: 10.1007/s11864-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
OPINION All opioids have a risk of causing respiratory depression and reduced cerebral circulation. Fentanyl has the greatest risk of causing both. This is particularly a concern when combined with illicit opioids such as diamorphine (also known as heroin). Fentanyl should not be used as a frontline potent opioid due its significant risks. Buprenorphine, a schedule III opioid, morphine, or hydromorphone is preferred, followed by oxycodone, which has a significant risk of abuse relative to buprenorphine and morphine. Although all opioids were equally effective in producing analgesia, the relative safety of each opioid is no longer a secondary concern when prescribing. In the face of an international opioid epidemic, clinicians need to choose opioid analgesics safely, wisely, and carefully.
Collapse
Affiliation(s)
| | - Sandra DiScala
- West Palm Beach VA Healthcare System, West Palm Beach, Florida, USA
| | - Amy Davis
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
4
|
Jaeckel ER, Arias-Hervert ER, Perez-Medina AL, Schulz S, Birdsong WT. Chronic morphine treatment induces sex- and synapse-specific cellular tolerance on thalamo-cortical mu opioid receptor signaling. J Neurophysiol 2024; 132:968-978. [PMID: 39110512 PMCID: PMC11427077 DOI: 10.1152/jn.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprising both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole cell patch-clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine-treated mice. We found that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.NEW & NOTEWORTHY Opioid signaling within the anterior cingulate cortex (ACC) is important for opioid modulation of affective pain. Glutamatergic medial thalamus (MThal) neurons synapse in the ACC and opioids, acting through mu opioid receptors (MORs), acutely inhibit synaptic transmission from MThal synapses. However, the effect of chronic opioid exposure on MThal-ACC synaptic transmission is not known. Here, we demonstrate that chronic morphine treatment induces cellular tolerance at these synapses in a sex-specific and phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| | - Erwin R Arias-Hervert
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
Kuo CC, McCall JG. Neural circuit-selective, multiplexed pharmacological targeting of prefrontal cortex-projecting locus coeruleus neurons drives antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598059. [PMID: 38895281 PMCID: PMC11185789 DOI: 10.1101/2024.06.08.598059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Selective manipulation of neural circuits using optogenetics and chemogenetics holds great translational potential but requires genetic access to neurons. Here, we demonstrate a general framework for identifying genetic tool-independent, pharmacological strategies for neural circuit-selective modulation. We developed an economically accessible calcium imaging-based approach for large-scale pharmacological scans of endogenous receptor-mediated neural activity. As a testbed for this approach, we used the mouse locus coeruleus due to the combination of its widespread, modular efferent neural circuitry and its wide variety of endogenously expressed GPCRs. Using machine learning-based action potential deconvolution and retrograde tracing, we identified an agonist cocktail that selectively inhibits medial prefrontal cortex-projecting locus coeruleus neurons. In vivo, this cocktail produces synergistic antinociception, consistent with selective pharmacological blunting of this neural circuit. This framework has broad utility for selective targeting of other neural circuits under different physiological and pathological states, facilitating non-genetic translational applications arising from cell type-selective discoveries.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Jaeckel ER, Herrera YN, Schulz S, Birdsong WT. Chronic Morphine Induces Adaptations in Opioid Receptor Signaling in a Thalamostriatal Circuit That Are Location Dependent, Sex Specific, and Regulated by μ-Opioid Receptor Phosphorylation. J Neurosci 2024; 44:e0293232023. [PMID: 37985179 PMCID: PMC10860620 DOI: 10.1523/jneurosci.0293-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at μ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knock-in mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry, and sex.
Collapse
Affiliation(s)
- Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yoani N Herrera
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, D-07747 Jena, Germany
| | - William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
7
|
Bateman JT, Saunders SE, Levitt ES. Understanding and countering opioid-induced respiratory depression. Br J Pharmacol 2023; 180:813-828. [PMID: 34089181 PMCID: PMC8997313 DOI: 10.1111/bph.15580] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory depression is the proximal cause of death in opioid overdose, yet the mechanisms underlying this potentially fatal outcome are not well understood. The goal of this review is to provide a comprehensive understanding of the pharmacological mechanisms of opioid-induced respiratory depression, which could lead to improved therapeutic options to counter opioid overdose, as well as other detrimental effects of opioids on breathing. The development of tolerance in the respiratory system is also discussed, as are differences in the degree of respiratory depression caused by various opioid agonists. Finally, potential future therapeutic agents aimed at reversing or avoiding opioid-induced respiratory depression through non-opioid receptor targets are in development and could provide certain advantages over naloxone. By providing an overview of mechanisms and effects of opioids in the respiratory network, this review will benefit future research on countering opioid-induced respiratory depression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Jordan T Bateman
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Sandy E Saunders
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Erica S Levitt
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Kourosh-Arami M, Gholami M, Alavi-Kakhki SS, Komaki A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides 2022; 95:102259. [PMID: 35714437 DOI: 10.1016/j.npep.2022.102259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023]
Abstract
The orexin (hypocretin) is one of the hypothalamic neuropeptides that plays a critical role in some behaviors including feeding, sleep, arousal, reward processing, and drug addiction. This variety of functions can be described by a united function for orexins in translating states of heightened motivation, for example during physiological requirement states or following exposure to reward opportunities, into planned goal-directed behaviors. An addicted state is characterized by robust activation of orexin neurons from the environment, which triggers downstream circuits to facilitate behavior directed towards obtaining the drug. Two orexin receptors 1 (OX1R) and 2 (OX2R) are widely distributed in the brain. Here, we will introduce and describe the cortical and subcortical brain areas involved in addictive-like behaviors and the impact of orexin on addiction.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Sajjad Alavi-Kakhki
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Maletz SN, Reid BT, Varga AG, Levitt ES. Nucleus Tractus Solitarius Neurons Activated by Hypercapnia and Hypoxia Lack Mu Opioid Receptor Expression. Front Mol Neurosci 2022; 15:932189. [PMID: 35898697 PMCID: PMC9309891 DOI: 10.3389/fnmol.2022.932189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Impaired chemoreflex responses are a central feature of opioid-induced respiratory depression, however, the mechanism through which mu opioid receptor agonists lead to diminished chemoreflexes is not fully understood. One brainstem structure involved in opioid-induced impairment of chemoreflexes is the nucleus of the solitary tract (NTS), which contains a population of neurons that express mu opioid receptors. Here, we tested whether caudal NTS neurons activated during the chemoreflex challenge express mu opioid receptors and overlap with neurons activated by opioids. Using genetic labeling of mu opioid receptor-expressing neurons and cFos immunohistochemistry as a proxy for neuronal activation, we examined the distribution of activated NTS neurons following hypercapnia, hypoxia, and morphine administration. The main finding was that hypoxia and hypercapnia primarily activated NTS neurons that did not express mu opioid receptors. Furthermore, concurrent administration of morphine with hypercapnia induced cFos expression in non-overlapping populations of neurons. Together these results suggest an indirect effect of opioids within the NTS, which could be mediated through mu opioid receptors on afferents and/or inhibitory interneurons.
Collapse
Affiliation(s)
- Sebastian N. Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Brandon T. Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Adrienn G. Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
| | - Erica S. Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
- *Correspondence: Erica S. Levitt ; orcid.org/0000-0002-3634-6594
| |
Collapse
|
10
|
Adhikary S, Williams JT. Cellular Tolerance Induced by Chronic Opioids in the Central Nervous System. Front Syst Neurosci 2022; 16:937126. [PMID: 35837149 PMCID: PMC9273719 DOI: 10.3389/fnsys.2022.937126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023] Open
Abstract
Opioids are powerful analgesics that elicit acute antinociceptive effects through their action the mu opioid receptor (MOR). However opioids are ineffective for chronic pain management, in part because continuous activation of MORs induces adaptive changes at the receptor level and downstream signaling molecules. These adaptations include a decrease in receptor-effector coupling and changes to second messenger systems that can counteract the persistent activation of MORs by opioid agonists. Homeostatic regulation of MORs and downstream signaling cascades are viewed as precursors to developing tolerance. However, despite numerous studies identifying crucial mechanisms that contribute to opioid tolerance, no single regulatory mechanism that governs tolerance in at the cellular and systems level has been identified. Opioid tolerance is a multifaceted process that involves both individual neurons that contain MORs and neuronal circuits that undergo adaptations following continuous MOR activation. The most proximal event is the agonist/receptor interaction leading to acute cellular actions. This review discusses our understanding of mechanisms that mediate cellular tolerance after chronic opioid treatment that, in part, is mediated by agonist/receptor interaction acutely.
Collapse
|
11
|
Adhikary S, Koita O, Lebowitz JJ, Birdsong WT, Williams JT. Agonist-Specific Regulation of G Protein-Coupled Receptors after Chronic Opioid Treatment. Mol Pharmacol 2022; 101:300-308. [PMID: 35193934 PMCID: PMC9092468 DOI: 10.1124/molpharm.121.000453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/16/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic treatment of animals with morphine results in a long lasting cellular tolerance in the locus coeruleus and alters the kinase dependent desensitization of opioid and nonopioid G protein-coupled receptors (GPCRs). This study examined the development of tolerance and altered regulation of kinase activity after chronic treatment of animals with clinically relevant opioids that differ in efficacy at the µ-opioid receptors (MOR). In slices from oxycodone treated animals, no tolerance to opioids was observed when measuring the MOR induced increase in potassium conductance, but the G protein receptor kinase 2/3 blocker, compound 101, no longer inhibited desensitization of somatostatin (SST) receptors. Chronic fentanyl treatment induced a rightward shift in the concentration response to [Met5]enkephalin, but there was no change in the kinase regulation of desensitization of the SST receptor. When total phosphorylation deficient MORs that block desensitization, internalization, and tolerance were virally expressed, chronic treatment with fentanyl resulted in the altered kinase regulation of SST receptors. The results suggest that sustained opioid receptor signaling initiates the process that results in altered kinase regulation of not only opioid receptors, but also other GPCRs. This study highlights two very distinct downstream adaptive processes that are specifically regulated by an agonist dependent mechanism. SIGNIFICANCE STATEMENT: Persistent signaling of MORs results in altered kinase regulation of nonopioid GPCRs after chronic treatment with morphine and oxycodone. Profound tolerance develops after chronic treatment with fentanyl without affecting kinase regulation. The homeostatic change in the kinase regulation of nonopioid GPCRs could account for the systems level in vivo development of tolerance that is seen with opioid agonists, such as morphine and oxycodone, that develop more rapidly than the tolerance induced by efficacious agonists, such as fentanyl and etorphine.
Collapse
Affiliation(s)
- Sweta Adhikary
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - Omar Koita
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - Joseph J Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - William T Birdsong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| |
Collapse
|
12
|
Palkovic B, Marchenko V, Zuperku EJ, Stuth EAE, Stucke AG. Multi-Level Regulation of Opioid-Induced Respiratory Depression. Physiology (Bethesda) 2021; 35:391-404. [PMID: 33052772 DOI: 10.1152/physiol.00015.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioids depress minute ventilation primarily by reducing respiratory rate. This results from direct effects on the preBötzinger Complex as well as from depression of the Parabrachial/Kölliker-Fuse Complex, which provides excitatory drive to preBötzinger Complex neurons mediating respiratory phase-switch. Opioids also depress awake drive from the forebrain and chemodrive.
Collapse
Affiliation(s)
- Barbara Palkovic
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | | - Edward J Zuperku
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Eckehard A E Stuth
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Astrid G Stucke
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Baser T, Ozdemir E, Filiz AK, Taskiran AS, Gursoy S. Ghrelin receptor agonist hexarelin attenuates antinociceptive tolerance to morphine in rats. Can J Physiol Pharmacol 2021; 99:461-467. [PMID: 32893668 DOI: 10.1139/cjpp-2020-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ghrelin, a peptide hormone released from the gastric endocrine glands, shows analgesic activity apart from its various physiological effects. Nevertheless, the effects of ghrelin receptor (GHS-R) agonists on morphine analgesia and tolerance have not yet been elucidated. The purpose of this study was to evaluate the effects of the ghrelin receptor agonist hexarelin and antagonist [d-Lys3]-GHRP-6 on morphine antinociception and tolerance in rats. A total of 104 Wistar albino male adult rats (weighing approximately 220-240 g) were used in the experiments. To induce morphine tolerance, a three-day cumulative dose regimen was used in the rats. Then, randomly selected rats were evaluated for morphine tolerance on day 4. The analgesic effects of hexarelin (0.2 mg·kg-1), [d-Lys3]-GHRP-6 (10 mg·kg-1), and morphine (5 mg·kg-1) were measured at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. The findings suggest that hexarelin in combination with morphine attenuates analgesic tolerance to morphine. On the other hand, ghrelin receptor antagonist [d-Lys3]-GHRP-6 has no significant analgesic activity on the morphine tolerance in analgesia tests. Furthermore, co-administration of hexarelin and morphine increases the analgesic effect. In conclusion, these data indicate that administration of GHS-R agonist hexarelin with morphine enhances the antinociception and attenuates morphine tolerance.
Collapse
Affiliation(s)
- Tayfun Baser
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sinan Gursoy
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| |
Collapse
|
14
|
Sadat-Shirazi MS, Soltani H, Nikpour N, Haghshenas M, Khalifeh S, Mokri A, Zarrindast MR. Alteration of orexin-A and PKCα in the postmortem brain of pure-opioid and multi-drug abusers. Neuropeptides 2020; 83:102074. [PMID: 32741526 DOI: 10.1016/j.npep.2020.102074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 02/09/2023]
Abstract
Finding changes induced by the drug of abuse is one of the most important approaches to design new drugs for the treatment of substance use disorders (SUD). Postmortem study is the most reliable method for detecting alteration in the brain of SUD patients. Recently, the role of orexinergic system in SUD is in consideration. In the current study, we evaluated the level of orexin-A in the CSF and protein kinase Cα (PKCα) in the brain of pure-opioid (POA) and multi-drug abusers (MDA). A total of 56 POA, 45 MDA, and 13 matched control brains were collected from the legal medicine center, Tehran, Iran. The CSF was gathered from the third ventricle immediately after opening the skull and kept at -80 °C. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), orbitofrontal cortex (OFC), nucleus accumbens (NAc), and amygdala were dissected from fresh brain, frozen with liquid nitrogen and kept at -80 °C. The level of orexin-A evaluated in the CSF. Using western blotting, the level of PKCα assessed in the brain. Obtained data revealed that the level of orexin-A increased in POA and MDA compared with the control group (p < 0.05). In addition, the level of PKCα increased in the prefrontal cortex and amygdala of the abusers compared with the control group, although we did not detect changes in the level of PKCα in the NAc. Along with animal studies, the current results showed that the level of orexin increased in the CSF of drug abusers, which might be related to increases in the activation of lateral hypothalamic orexinergic neurons faced with the drug of abuse. Enhancement in the level of PKCα in the drug reward circuits might be adaptational changes induced by orexin and drugs of abuse.
Collapse
Affiliation(s)
| | - Haniyeh Soltani
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Nikpour
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Haghshenas
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran
| | - Azarakhsh Mokri
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
15
|
Birdsong WT, Williams JT. Recent Progress in Opioid Research from an Electrophysiological Perspective. Mol Pharmacol 2020; 98:401-409. [PMID: 32198208 PMCID: PMC7562972 DOI: 10.1124/mol.119.119040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological approaches provide powerful tools to further our understanding of how different opioids affect signaling through opioid receptors; how opioid receptors modulate circuitry involved in processes such as pain, respiration, addiction, and feeding; and how receptor signaling and circuits are altered by physiologic challenges, such as injury, stress, and chronic opioid treatment. The use of genetic manipulations to alter or remove μ-opioid receptors (MORs) with anatomic and cell type specificity and the ability to activate or inhibit specific circuits through opto- or chemogenetic approaches are being used in combination with electrophysiological, pharmacological, and systems-level physiology experiments to expand our understanding of the beneficial and maladaptive roles of opioids and opioid receptor signaling. New approaches for studying endogenous opioid peptide signaling and release and the dynamics of these systems in response to chronic opioid use, pain, and stress will add another layer to our understanding of the intricacies of opioid modulation of brain circuits. This understanding may lead to new targets or approaches for drug development or treatment regimens that may affect both acute and long-term effects of manipulating the activity of circuits involved in opioid-mediated physiology and behaviors. This review will discuss recent advancements in our understanding of the role of phosphorylation in regulating MOR signaling, as well as our understanding of circuits and signaling pathways mediating physiologic behaviors such as respiratory control, and discuss how electrophysiological tools combined with new technologies have and will continue to advance the field of opioid research. SIGNIFICANCE STATEMENT: This review discusses recent advancements in our understanding of μ-opioid receptor (MOR) function and regulation and the role of electrophysiological approaches combined with new technologies in pushing the field of opioid research forward. This covers regulation of MOR at the receptor level, adaptations induced by chronic opioid treatment, sites of action of MOR modulation of specific brain circuits, and the role of the endogenous opioid system in driving physiology and behavior through modulation of these brain circuits.
Collapse
Affiliation(s)
- William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
16
|
Leff ER, Arttamangkul S, Williams JT. Chronic Treatment with Morphine Disrupts Acute Kinase-Dependent Desensitization of GPCRs. Mol Pharmacol 2020; 98:497-507. [PMID: 32362586 PMCID: PMC7562982 DOI: 10.1124/mol.119.119362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/24/2020] [Indexed: 11/22/2022] Open
Abstract
Based on studies using mutations of the µ-opioid receptor (MOR), phosphorylation of multiple sites on the C-terminus has been recognized as a critical step underlying acute desensitization and the development of cellular tolerance. The aim of this study is to explore which kinases mediate desensitization of MOR in brain slices from drug-naïve and morphine-treated animals. Whole-cell recordings from locus coeruleus neurons were made, and the agonist-induced increase in potassium conductance was measured. In slices from naïve animals, pharmacological inhibition of G-protein receptor kinase (GRK2/3) with compound 101 blocked acute desensitization. Following chronic treatment with morphine, compound 101 was less effective at blocking acute desensitization. Compound 101 blocked receptor internalization in tissue from both naïve and morphine-treated animals, suggesting that GRK2/3 remained active. Kinase inhibitors aimed at blocking protein kinase C and c-Jun N-terminal kinase had no effect on desensitization in tissue taken from naïve animals. However, in slices taken from morphine-treated animals, the combination of these blockers along with compound 101 was required to block acute desensitization. Acute desensitization of the potassium conductance induced by the somatostatin receptor was also blocked by compound 101 in slices from naïve but not morphine-treated animals. As was observed with MOR, it was necessary to use the combination of kinase inhibitors to block desensitization of the somatostatin receptor in slices from morphine-treated animals. The results show that chronic treatment with morphine results in a surprising and heterologous adaptation in kinase-dependent desensitization. SIGNIFICANCE STATEMENT: The results show that chronic treatment with morphine induced heterologous adaptations in kinase regulation of G protein coupled receptor (GPCR) desensitization. Although the canonical mechanism for acute desensitization through phosphorylation by G protein-coupled receptor kinase is supported in tissue taken from naïve animals, following chronic treatment with morphine, the acute kinase-dependent desensitization of GPCRs is disrupted such that additional kinases, including protein kinase C and c-Jun N-terminal kinase, contribute to desensitization.
Collapse
Affiliation(s)
- Emily R Leff
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | | | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
17
|
Lemos Duarte M, Devi LA. Post-translational Modifications of Opioid Receptors. Trends Neurosci 2020; 43:417-432. [PMID: 32459993 PMCID: PMC7323054 DOI: 10.1016/j.tins.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) are key events in signal transduction since they affect protein function by regulating their abundance and/or activity. PTMs involve the covalent attachment of functional groups to specific amino acids. Since they tend to be generally reversible, PTMs serve as regulators of signal transduction pathways. G-protein-coupled receptors (GPCRs) are major signaling proteins that undergo multiple types of PTMs. In this Review, we focus on the opioid receptors, members of GPCR family A, and highlight recent advances in the field that have underscored the importance of PTMs in the functional regulation of these receptors. Since opioid receptor activity plays a central role in the development of tolerance and addiction to morphine and other drugs of abuse, understanding the molecular mechanisms regulating receptor activity is of fundamental importance.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Ozdemir E. The Role of the Cannabinoid System in Opioid Analgesia and Tolerance. Mini Rev Med Chem 2020; 20:875-885. [DOI: 10.2174/1389557520666200313120835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
Opioid receptor agonist drugs, such as morphine, are very effective for treating chronic and severe pain; but, tolerance can develop with long-term use. Although there is a lot of information about the pathophysiological mechanisms of opioid tolerance, it is still not fully clarified. Suggested mechanisms for opioid tolerance include opioid receptor desensitisation, reduction of sensitivity G-proteins, activation of Mitogen-Activated Protein Kinase (MAPK), altered intracellular signaling pathway including nitric oxide, and activation of mammalian Target of Rapamycin (mTOR). One way to reduce opioid tolerance and increase the analgesic potential is to use low doses. Combination of cannabinoids with opioids has been shown to manifest the reduction of the opioid dose. Experimental studies revealed an interaction of the endocannabinoid system and opioid antinociception. Cannabinoid and opioid receptor systems use common pathways in the formation of analgesic effect and demonstrate their activity via G Protein Coupled Receptors (GPCR). Cannabinoid drugs modulate opioid analgesic activity at a number of distinct levels within the cell, ranging from direct receptor associations to post-receptor interactions through shared signal transduction pathways. This review summarizes the data indicating that with combining cannabinoids and opioids drugs may be able to produce long-term analgesic effects, while preventing the opioid analgesic tolerance.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, School of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
19
|
Fernandez TJ, De Maria M, Lobingier BT. A cellular perspective of bias at G protein-coupled receptors. Protein Sci 2020; 29:1345-1354. [PMID: 32297394 DOI: 10.1002/pro.3872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) modulate cell function over short- and long-term timescales. GPCR signaling depends on biochemical parameters that define the what, when, and where of receptor function: what proteins mediate and regulate receptor signaling, where within the cell these interactions occur, and how long these interactions persist. These parameters can vary significantly depending on the activating ligand. Collectivity, differential agonist activity at a GPCR is called bias or functional selectivity. Here we review agonist bias at GPCRs with a focus on ligands that show dramatically different cellular responses from their unbiased counterparts.
Collapse
Affiliation(s)
- Thomas J Fernandez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
20
|
Arttamangkul S, Plazek A, Platt EJ, Jin H, Murray TF, Birdsong WT, Rice KC, Farrens DL, Williams JT. Visualizing endogenous opioid receptors in living neurons using ligand-directed chemistry. eLife 2019; 8:49319. [PMID: 31589142 PMCID: PMC6809603 DOI: 10.7554/elife.49319] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Identifying neurons that have functional opioid receptors is fundamental for the understanding of the cellular, synaptic and systems actions of opioids. Current techniques are limited to post hoc analyses of fixed tissues. Here we developed a fluorescent probe, naltrexamine-acylimidazole (NAI), to label opioid receptors based on a chemical approach termed ‘traceless affinity labeling’. In this approach, a high affinity antagonist naltrexamine is used as the guide molecule for a transferring reaction of acylimidazole at the receptor. This reaction generates a fluorescent dye covalently linked to the receptor while naltrexamine is liberated and leaves the binding site. The labeling induced by this reagent allowed visualization of opioid-sensitive neurons in rat and mouse brains without loss of function of the fluorescently labeled receptors. The ability to locate endogenous receptors in living tissues will aid considerably in establishing the distribution and physiological role of opioid receptors in the CNS of wild type animals.
Collapse
Affiliation(s)
- Seksiri Arttamangkul
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Andrew Plazek
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, United States
| | - Emily J Platt
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, United States
| | - Haihong Jin
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, United States
| | - Thomas F Murray
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, United States
| | - William T Birdsong
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Intramural Research Program, NIDA and NIAAA, Bethesda, United States
| | - David L Farrens
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, United States
| | - John T Williams
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
21
|
Arttamangkul S, Leff ER, Koita O, Birdsong WT, Williams JT. Separation of Acute Desensitization and Long-Term Tolerance of µ-Opioid Receptors Is Determined by the Degree of C-Terminal Phosphorylation. Mol Pharmacol 2019; 96:505-514. [PMID: 31383769 PMCID: PMC6750191 DOI: 10.1124/mol.119.117358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023] Open
Abstract
Phosphorylation of sites on the C terminus of the μ-opioid receptor (MOR) results in the induction of acute desensitization that is thought to be a precursor for the development of long-term tolerance. Alanine mutations of all 11 phosphorylation sites on the C terminus of MORs almost completely abolished desensitization and one measure of tolerance in locus coeruleus neurons when these phosphorylation-deficient MORs were virally expressed in MOR knockout rats. In the present work, we identified specific residues that underlie acute desensitization, receptor internalization, and tolerance and examined four MOR variants with different alanine or glutamate mutations in the C terminus. Alanine mutations in the sequence between amino acids 375 and 379 (STANT-3A) and the sequence between amino acids 363 and 394 having four additional alanine substitutions (STANT + 7A) reduced desensitization and two measures of long-term tolerance. After chronic morphine treatment, alanine mutations in the sequence between 354 and 357 (TSST-4A) blocked one measure of long-term tolerance (increased acute desensitization and slowed recovery from desensitization) but did not change a second (decreased sensitivity to morphine). With the expression of receptors having glutamate substitutions in the TSST sequence (TSST-4E), an increase in acute desensitization was present after chronic morphine treatment, but the sensitivity to morphine was not changed. The results show that all 11 phosphorylation sites contribute, in varying degrees, to acute desensitization and long-term tolerance. That acute desensitization and tolerance are not necessarily linked illustrates the complexity of events that are triggered by chronic treatment with morphine. SIGNIFICANCE STATEMENT: In this work, we showed that the degree of phosphorylation on the C terminus of the μ-opioid receptor alters acute desensitization and internalization, and in measures of long-term tolerance to morphine. The primary conclusion is that the degree of phosphorylation on the 11 possible sites of the C terminus has different roles for expression of the multiple adaptive mechanisms that follow acute and long-term agonist activation. Although the idea that acute desensitization and tolerance are intimately linked is generally supported, these results indicate that disruption of one phosphorylation cassette of the C terminus TSST (354-357) distinguishes the two processes.
Collapse
Affiliation(s)
| | - Emily R Leff
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Omar Koita
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | | | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
22
|
Wang D, Stoveken HM, Zucca S, Dao M, Orlandi C, Song C, Masuho I, Johnston C, Opperman KJ, Giles AC, Gill MS, Lundquist EA, Grill B, Martemyanov KA. Genetic behavioral screen identifies an orphan anti-opioid system. Science 2019; 365:1267-1273. [PMID: 31416932 DOI: 10.1126/science.aau2078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/22/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Opioids target the μ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in Caenorhabditis elegans, we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of C. elegans as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Caitlin Johnston
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Matthew S Gill
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
23
|
Hill R, Dewey WL, Kelly E, Henderson G. Oxycodone-induced tolerance to respiratory depression: reversal by ethanol, pregabalin and protein kinase C inhibition. Br J Pharmacol 2018; 175:2492-2503. [PMID: 29574756 PMCID: PMC5980627 DOI: 10.1111/bph.14219] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxycodone, a prescription opioid, is a major drug of abuse, especially in the USA, and contributes significantly to opioid overdose deaths each year. Overdose deaths result primarily from respiratory depression. We have studied respiratory depression by oxycodone and have characterized how tolerance develops on prolonged exposure to the drug. We have investigated the role of PKC in maintaining tolerance and have examined whether ethanol or pregabalin reverses oxycodone-induced tolerance. EXPERIMENTAL APPROACH Respiration was measured in male CD-1 mice by whole-body plethysmography. Mice were preinjected with oxycodone then implanted with mini-pumps (s.c.) delivering 20, 45 or 120 mg·kg-1 ·day-1 oxycodone for 6 days and subsequently challenged with oxycodone (3 mg·kg-1 , i.p.) or morphine (10 mg·kg-1 , i.p.) to assess the level of tolerance. KEY RESULTS Oxycodone-treated mice developed tolerance to oxycodone and cross tolerance to morphine-induced respiratory depression. Tolerance was less with 20 mg·kg-1 ·day-1 than with 45 or 120 mg·kg-1 ·day-1 oxycodone treatment. At doses that do not depress respiration, ethanol (0.3 g·kg-1 ), pregabalin (20 mg·kg-1 ) and calphostin C (45 μg·kg-1 ) all reversed oxycodone-induced tolerance resulting in significant respiratory depression. Reversal of tolerance was less in mice treated with oxycodone (120 mg·kg-1 ·day-1 ). In mice receiving ethanol and calphostin C or ethanol and pregabalin, there was no greater reversal of tolerance than seen with either drug alone. CONCLUSION AND IMPLICATIONS These data suggest that oxycodone-induced tolerance is mediated by PKC and that reversal of tolerance by ethanol or pregabalin may be a contributory factor in oxycodone overdose deaths.
Collapse
Affiliation(s)
- Rob Hill
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | - William L Dewey
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVA23298‐0613USA
| | - Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
24
|
Arttamangkul S, Heinz DA, Bunzow JR, Song X, Williams JT. Cellular tolerance at the µ-opioid receptor is phosphorylation dependent. eLife 2018; 7:34989. [PMID: 29589831 PMCID: PMC5873894 DOI: 10.7554/elife.34989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Phosphorylation of the μ-opioid receptor (MOR) is known as a key step in desensitization and internalization but the role in the development of long-term tolerance at the cellular level is not known. Viral expression of wild type (exWT) and mutant MORs, where all phosphorylation sites on the C-terminus (Total Phosphorylation Deficient (TPD)) were mutated to alanine, were examined in locus coeruleus neurons in a MOR knockout rat. Both receptors activated potassium conductance similar to endogenous receptors in wild type animals. The exWT receptors, like endogenous receptors, acutely desensitized, internalized and, after chronic morphine treatment, displayed signs of tolerance. However, TPD receptors did not desensitize or internalize with agonist treatment. In addition the TPD receptors did not develop cellular tolerance following chronic morphine treatment. Thus C-terminal phosphorylation is necessary for the expression of acute desensitization, trafficking and one sign of long-term tolerance to morphine at the cellular level.
Collapse
Affiliation(s)
- Seksiri Arttamangkul
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - Daniel A Heinz
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - James R Bunzow
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - Xianqiang Song
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - John T Williams
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| |
Collapse
|
25
|
Levitt ES, Williams JT. Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons. Mol Pharmacol 2018; 93:8-13. [PMID: 29097440 PMCID: PMC5708089 DOI: 10.1124/mol.117.109603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-cell voltage-clamp recordings from KF and locus coeruleus (LC) neurons contained in acute rat brain slices. A saturating concentration of the opioid agonist [Met5]-enkephalin (ME) caused significantly less desensitization in KF neurons compared with LC neurons. In contrast to LC, desensitization in KF neurons was not enhanced by activation of protein kinase C or in slices from morphine-treated rats. Cellular tolerance to ME and morphine was also lacking in KF neurons from morphine-treated rats. The lack of cellular tolerance in KF neurons correlates with the relative lack of tolerance to the respiratory depressant effect of opioids.
Collapse
Affiliation(s)
- Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida (E.S.L.) and Vollum Institute, Oregon Health and Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida (E.S.L.) and Vollum Institute, Oregon Health and Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
26
|
Mohammad Ahmadi Soleimani S, Azizi H, Pachenari N, Mirnajafi-Zadeh J, Semnanian S. Enhancement of μ-opioid receptor desensitization by orexin-A in rat locus coeruleus neurons. Neuropeptides 2017; 63:28-36. [PMID: 28385341 DOI: 10.1016/j.npep.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/05/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
Opioids have always been used in clinical practice for pain management. However, development of tolerance to their effects following long term administration, seriously restricts further clinical use of these drugs. In this regard, μ-opioid receptor (MOR) desensitization, as an initial step in development of opioid tolerance, is of particular significance. Previous studies support the involvement of orexinergic system in development of opioid tolerance. Locus coeruleus (LC) nucleus has been shown to modulate pain and development of tolerance. Opioid receptors (particularly μ) are densely expressed within the LC. Moreover, it receives widespread orexinergic inputs and orexin type 1 receptors (OX1Rs) are also highly expressed in this brain region. In the present study, the effect of orexin-A (OXA) on met-enkephalin (ME)-induced MOR desensitization was investigated in locus coeruleus neurons of male Wistar rats (2-3weeks of age). ME (30μM), as a potent MOR agonist, was applied for 10min and the outward K+ current was recorded using whole cell patch clamp recording. The percentage of decrease in ME-induced K+ current was considered as the degree of MOR desensitization. Results indicated that OXA (100nM) enhances ME-induced MOR desensitization via affecting OX1Rs in rat locus coeruleus neurons and this effect is mediated by a protein kinase C dependent mechanism within the LC. The activity of orexinergic system might potentiate the signaling pathways underlying opioid-induced receptor desensitization.
Collapse
Affiliation(s)
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
27
|
Withey SL, Hill R, Lyndon A, Dewey WL, Kelly E, Henderson G. Effect of Tamoxifen and Brain-Penetrant Protein Kinase C and c-Jun N-Terminal Kinase Inhibitors on Tolerance to Opioid-Induced Respiratory Depression in Mice. J Pharmacol Exp Ther 2017; 361:51-59. [PMID: 28130265 PMCID: PMC5363774 DOI: 10.1124/jpet.116.238329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine.
Collapse
Affiliation(s)
- Sarah L Withey
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Rob Hill
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Abigail Lyndon
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - William L Dewey
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Eamonn Kelly
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Graeme Henderson
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| |
Collapse
|
28
|
Kibaly C, Lin HY, Loh HH, Law PY. Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacol Res 2017; 119:153-168. [PMID: 28179123 DOI: 10.1016/j.phrs.2017.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
The development of tolerance to morphine, one of the most potent analgesics, in the management of chronic pain is a significant clinical problem and its mechanisms are poorly understood. Morphine exerts its pharmacological effects via the μ-opioid receptor (MOR). Tolerance is highly connected to G-protein-coupled receptors (GPCR) phosphorylation and desensitization increase. Because morphine desensitization previously has been shown to be MOR phosphorylation- and ß-arrestin2-independent (in contrast to agonists such as fentanyl), we examined the contribution of phosphorylation of the entire C-terminus to the development of antinociceptive tolerance to the partial (morphine) and full (fentanyl) MOR agonists in vivo. In MOR knockout (MORKO) mice, we delivered via lentivirus the genes encoding the wild-type MOR (WTMOR) or a phosphorylation-deficient MOR (Cterm(-S/T)MOR) in which all of the serine and threonine residues were mutated to alanine into the ventrolateral periaqueductal grey matter (vlPAG) or lumbar spinal cord (SC), structures that are involved in nociception. We compared the analgesic ED50 in WTMOR- and Cterm(-S/T)MOR-expressing MORKO mice before and after morphine or fentanyl tolerance was induced. Morphine acute antinociception was partially restored in WTMOR- or Cterm(-S/T)MOR-transferred MORKO mice. Fentanyl acute antinociception was observed only in MORKO mice with the transgenes expressed in the SC. Morphine antinociceptive tolerance was not affected by expressing Cterm(-S/T)MOR in the vlPAG or SC of MORKO mice. Fentanyl-induced tolerance in MORKO mice expressing WTMOR or Cterm(-S/T)MOR, is greater than morphine-induced tolerance. Thus, MOR C-terminus phosphorylation does not appear to be critical for morphine tolerance in vivo.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Hong-Yiou Lin
- Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI 48073, USA
| | - Horace H Loh
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Tolerance to the antinociceptive and hypothermic effects of morphine is mediated by multiple isoforms of c-Jun N-terminal kinase. Neuroreport 2016; 27:392-6. [PMID: 26914092 DOI: 10.1097/wnr.0000000000000551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The abuse and overdose of opioid drugs are growing public health problems worldwide. Although progress has been made toward understanding the mechanisms governing tolerance to opioids, the exact cellular machinery involved remains unclear. However, there is growing evidence to suggest that c-Jun N-terminal kinases (JNKs) play a major role in mu-opioid receptor regulation and morphine tolerance. In this study, we aimed to determine the potential roles of different JNK isoforms in the development of tolerance to the antinociceptive and hypothermic effects of morphine. We used the hot-plate and tail-flick tests for thermal pain to measure tolerance to the antinociceptive effects of once-daily subcutaneous injections with 10 mg/kg morphine. Body temperature was also measured to determine tolerance to the hypothermic effects of morphine. Tolerance to morphine was assessed in wild-type mice and compared with single knockout mice each lacking the JNK isoforms (JNK1, JNK2, or JNK3). We found that loss of each individual JNK isoform causes impairment in tolerance for the antinociceptive and hypothermic effects of daily morphine. However, disruption of JNK2 seems to have the most profound effect on morphine tolerance. These results indicate a clear role for JNK signaling pathways in morphine tolerance. This complements previous studies suggesting that the JNK2 isoform is required for morphine tolerance, but additionally presents novel data suggesting that additional JNK isoforms also contribute toward this process.
Collapse
|
30
|
Cheppudira BP, Trevino AV, Petz LN, Christy RJ, Clifford JL. Anti-nerve growth factor antibody attenuates chronic morphine treatment-induced tolerance in the rat. BMC Anesthesiol 2016; 16:73. [PMID: 27596139 PMCID: PMC5011970 DOI: 10.1186/s12871-016-0242-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022] Open
Abstract
Background Nerve growth factor (NGF) is known to induce inflammation and pain; however its role in opioid-induced tolerance has not been studied. This study investigated the effects of an anti-NGF neutralizing antibody on the development of tolerance following chronic morphine treatment in naïve rats. Methods Four groups of rats were used in this study; one treated with saline alone, one with 10 mg/kg of morphine, one with 10 μg of anti-NGF and the other with 10 mg/kg of morphine + 10 μg of anti-NGF, twice per day for 5 days. The route of treatment was subcutaneous (S.C.) for morphine and saline, and intraperitoneal (i.p.) for anti-NGF. Response to a noxious thermal stimulus during the course of drug treatment was assessed (Hargreaves’ test). Further, the change in the NGF levels in the lumbar spinal cord was measured by ELISA. Results Our results showed that repeated administration of morphine produced an apparent tolerance which was significantly attenuated by co-administration of anti-NGF (P < 0.001). Additionally, the area under the curve (AUC) of the analgesic effect produced by the combination of morphine and anti-NGF was significantly (P < 0.001) greater than for saline controls and chronic morphine treated rats. Moreover, the level of NGF in the spinal cord of chronic morphine treated rats was significantly higher (P < 0.05) than in both the saline control group and the group receiving simultaneous administration of anti-NGF with morphine. These results indicate that anti-NGF has the potential to attenuate morphine-induced tolerance behavior by attenuating the effects of NGF at the spinal level. Conclusion Taken together, our study strongly suggests that the NGF signaling system is a potential novel target for treating opioid-induced tolerance.
Collapse
Affiliation(s)
- Bopaiah P Cheppudira
- Burn Injuries Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, Texas, 78234, USA.
| | - Alex V Trevino
- Burn Injuries Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, Texas, 78234, USA
| | - Lawrence N Petz
- Department of Clinical Investigation, United States Army Institute of Surgical Research, 3698 Chambers Pass, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, Texas, 78234, USA
| | - Robert J Christy
- Burn Injuries Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, Texas, 78234, USA
| | - John L Clifford
- Burn Injuries Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, Texas, 78234, USA
| |
Collapse
|
31
|
Zitnik GA. Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Res 2016; 1641:338-50. [DOI: 10.1016/j.brainres.2015.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
|
32
|
Gourévitch B, Cai J, Mellen N. Cellular and network-level adaptations to in utero methadone exposure along the ventral respiratory column in the neonate rat. Exp Neurol 2016; 287:S0014-4886(16)30063-2. [PMID: 27009496 DOI: 10.1016/j.expneurol.2016.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/15/2022]
Abstract
Neonatal abstinence syndrome (NAS) occurs in babies chronically exposed to opioids during pregnancy. NAS shares features with opioid withdrawal symptoms seen in adults, including autonomic dysregulation. Here, the effect of low-dose in utero methadone (MTD) exposure on respiration-modulated networks along the ventral respiratory column (VRC) in ventrolateral medulla was investigated in the neonate Sprague-Dawley rat. MTD was administered via drinking water (3mg/kg/day in drinking water of the mother E7-E21). Lower expression levels of myelin-associated proteins phosphorylated axonal neurofilament subunit H (pNFH), 2',3'-Cyclicnucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP), in MTD-exposed pups compared to controls at P3, P6 and P10 indicated MTD transport across the placenta. We investigated whether in utero MTD exposure led to network-level excitability changes consistent with tolerance, and also probed for changes in endogenous opioid modulation of respiratory networks. To this end, high-speed (45.5Hz) optical recordings of respiratory network activity in control and MTD-exposed neonate (P0-P2) pups before and during administration of the μ-opioid receptor antagonist naloxone (NAL; 10μM) were carried out. Spike rate was estimated from optical traces via deconvolution, and coupling between all neuron pairs in recorded networks was quantified using the normalized transfer entropy (NTE). Recordings of local networks along the VRC, together with recordings of respiratory output from ventral root C1 did not reveal changes in respiratory activity at the system level, but cellular and network changes in MTD-exposed pups were consistent with the development of opioid tolerance. MTD-exposed pups were found to have i. higher neuronal firing rates; ii. higher covariance between neuronal activity and motor output; iii. more bidirectionally and unidirectionally coupled neurons, and fewer uncoupled neurons; iv. stronger coupling and shorter integration times between network constituents. The μ-opioid receptor antagonist NAL did not alter system-level function. The correlation between the activity of neurons caudal to -400μm and motor output was significantly reduced in control animals following NAL. In both control and MTD-exposed pups, the relative number of neurons whose correlation with motor output increased following NAL followed a rostrocaudal gradient along the VRC, with fewer neurons caudally, and more neurons rostrally. The up-regulation of coupling strength, firing rate and coefficient of variation between neurons and motor output following in utero opioid exposure suggests that these networks may contribute to NAS in infants born to opioid-dependent mothers.
Collapse
Affiliation(s)
- Boris Gourévitch
- NeuroPSI, UMR CNRS 8195, Bâtiment 446, 91405 Orsay cedex, France; Université Paris-Sud, Bâtiment 446, 91405 Orsay cedex, France
| | - Jun Cai
- Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40206, USA
| | - Nicholas Mellen
- Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40206, USA.
| |
Collapse
|
33
|
Mohammad Ahmadi Soleimani S, Azizi H, Mirnajafi-Zadeh J, Semnanian S. Orexin type 1 receptor antagonism in rat locus coeruleus prevents the analgesic effect of intra-LC met-enkephalin microinjection. Pharmacol Biochem Behav 2015. [DOI: 10.1016/j.pbb.2015.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Levitt ES, Abdala AP, Paton JFR, Bissonnette JM, Williams JT. μ opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive. J Physiol 2015; 593:4453-69. [PMID: 26175072 DOI: 10.1113/jp270822] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In addition to reductions in respiratory rate, opioids also cause aspiration and difficulty swallowing, indicating impairment of the upper airways. The Kölliker-Fuse (KF) maintains upper airway patency and a normal respiratory pattern. In this study, activation of μ opioid receptors in the KF reduced respiratory frequency and tidal volume in anaesthetized rats. Nerve recordings in an in situ preparation showed that activation of μ opioid receptors in the KF eliminated the post-inspiration phase of the respiratory cycle. In brain slices, μ opioid agonists hyperpolarized a distinct population (61%) of KF neurons by activation of an inwardly rectifying potassium conductance. These results suggest that KF neurons that are hyperpolarized by opioids could contribute to opioid-induced respiratory disturbances, particularly the impairment of upper airways. ABSTRACT Opioid-induced respiratory effects include aspiration and difficulty swallowing, suggesting impairment of the upper airways. The pontine Kölliker-Fuse nucleus (KF) controls upper airway patency and regulates respiration, in particular the inspiratory/expiratory phase transition. Given the importance of the KF in coordinating respiratory pattern, the mechanisms of μ opioid receptor activation in this nucleus were investigated at the systems and cellular level. In anaesthetized, vagi-intact rats, injection of opioid agonists DAMGO or [Met(5) ]enkephalin (ME) into the KF reduced respiratory frequency and amplitude. The μ opioid agonist DAMGO applied directly into the KF of the in situ arterially perfused working heart-brainstem preparation of rat resulted in robust apneusis (lengthened low amplitude inspiration due to loss of post-inspiratory drive) that was rapidly reversed by the opioid antagonist naloxone. In brain slice preparations, activation of μ opioid receptors on KF neurons hyperpolarized a distinct population (61%) of neurons. As expected, the opioid-induced hyperpolarization reduced the excitability of the neuron in response to either current injection or local application of glutamate. In voltage-clamp recordings the outward current produced by the opioid agonist ME was concentration dependent, reversed at the potassium equilibrium potential and was blocked by BaCl2 , characteristics of a G protein-coupled inwardly rectifying potassium (GIRK) conductance. The clinically used drug morphine produced an outward current in KF neurons with similar potency to morphine-mediated currents in locus coeruleus brain slice preparations. Thus, the population of KF neurons that are hyperpolarized by μ opioid agonists are likely mediators of the opioid-induced loss of post-inspiration and induction of apneusis.
Collapse
Affiliation(s)
- Erica S Levitt
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ana P Abdala
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | - Julian F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | - John M Bissonnette
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
35
|
Marcus DJ, Zee M, Hughes A, Yuill MB, Hohmann AG, Mackie K, Guindon J, Morgan DJ. Tolerance to the antinociceptive effects of chronic morphine requires c-Jun N-terminal kinase. Mol Pain 2015; 11:34. [PMID: 26065412 PMCID: PMC4465461 DOI: 10.1186/s12990-015-0031-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/01/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Morphine and fentanyl are opioid analgesics in wide clinical use that act through the μ-opioid receptor (MOR). However, one limitation of their long-term effectiveness is the development of tolerance. Receptor desensitization has been proposed as a putative mechanism driving tolerance to G protein-coupled receptor (GPCR) agonists. Recent studies have found that tolerance to morphine is mediated by the c-Jun N-terminal Kinase (JNK) signaling pathway. The goal of the present study was to test the hypotheses that: 1) JNK inhibition will be antinociceptive on its own; 2) JNK inhibition will augment morphine antinociception and; 3) JNK mediates chronic tolerance for the antinociceptive effects of morphine using acute (hotplate and tail-flick), inflammatory (10 μl of formalin 2.5%) and chemotherapy (cisplatin 5 mg/kg ip once weekly)-induced neuropathic pain assays. RESULTS We found that JNK inhibition by SP600125 (3 mg/kg) produces a greater antinociceptive effect than morphine (6 mg/kg) alone in the formalin test. Moreover, co-administration of morphine (6 mg/kg) with SP600125 (3 mg/kg) produced a sub-additive antinociceptive effect in the formalin test. We also show that pre-treatment with SP600125 (3 or 10 mg/kg), attenuates tolerance to the antinociceptive effects of morphine (10 mg/kg), but not fentanyl (0.3 mg/kg), in the tail-flick and hotplate tests. Pre-treatment with SP600125 also attenuates tolerance to the hypothermic effects of both morphine and fentanyl. We also examined the role of JNK in morphine tolerance in a cisplatin-induced model of neuropathic pain. Interestingly, treatment with SP600125 (3 mg/kg) alone attenuated mechanical and cold allodynia in a chemotherapy-induced pain model using cisplatin. Strikingly, SP600125 (3 mg/kg) pre-treatment prolonged the anti-allodynic effect of morphine by several days (5 and 7 days for mechanical and cold, respectively). CONCLUSIONS These results demonstrate that JNK signaling plays a crucial role in mediating antinociception as well as chronic tolerance to the antinociceptive effects of morphine in acute, inflammatory, and neuropathic pain states. Thus, inhibition of JNK signaling pathway, via SP600125, represents an efficacious pharmacological approach to delay tolerance to the antinociceptive effects of chronic morphine in diverse pain models.
Collapse
Affiliation(s)
- David J Marcus
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA.,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Michael Zee
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA.,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Alex Hughes
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Matthew B Yuill
- Department of Pharmacology, Penn State College of Medicine, 17033, Hershey, PA, USA
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Josée Guindon
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA. .,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA. .,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, 79430, Lubbock, TX, USA.
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA. .,Department of Pharmacology, Penn State College of Medicine, 17033, Hershey, PA, USA. .,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA. .,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA.
| |
Collapse
|
36
|
Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms. Cell Signal 2015; 27:1799-806. [PMID: 26056051 DOI: 10.1016/j.cellsig.2015.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptor desensitization is typically mediated by receptor phosphorylation by G protein-coupled receptor kinase (GRK) and subsequent arrestin binding; morphine, however, was previously found to activate a c-Jun N-terminal kinase (JNK)-dependent, GRK/arrestin-independent pathway to produce mu opioid receptor (MOR) inactivation in spinally-mediated, acute anti-nociceptive responses [Melief et al.] [1]. In the current study, we determined that JNK2 was also required for centrally-mediated analgesic tolerance to morphine using the hotplate assay. We compared JNK activation by morphine and fentanyl in JNK1(-/-), JNK2(-/-), JNK3(-/-), and GRK3(-/-) mice and found that both compounds specifically activate JNK2 in vivo; however, fentanyl activation of JNK2 was GRK3-dependent, whereas morphine activation of JNK2 was GRK3-independent. In MOR-GFP expressing HEK293 cells, treatment with either arrestin siRNA, the Src family kinase inhibitor PP2, or the protein kinase C (PKC) inhibitor Gö6976 indicated that morphine activated JNK2 through an arrestin-independent Src- and PKC-dependent mechanism, whereas fentanyl activated JNK2 through a Src-GRK3/arrestin-2-dependent and PKC-independent mechanism. This study resolves distinct ligand-directed mechanisms of JNK activation by mu opioid agonists and understanding ligand-directed signaling at MOR may improve opioid therapeutics.
Collapse
|
37
|
Arttamangkul S, Birdsong W, Williams JT. Does PKC activation increase the homologous desensitization of μ opioid receptors? Br J Pharmacol 2015; 172:583-92. [PMID: 24697621 PMCID: PMC4292970 DOI: 10.1111/bph.12712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE This study examined the role of agents known to activate PKC on morphine-induced desensitization of μ-opioid receptors (MOP receptors) in brain slices containing locus coeruleus neurons. EXPERIMENTAL APPROACH Intracellular recordings were obtained from rat locus coeruleus neurons. Two measurements were used to characterize desensitization, the decline in hyperpolarization induced by application of a saturating concentration of agonist (acute desensitization) and the decrease in hyperpolarization induced by a subsaturating concentration of [Met](5) enkephalin (ME) following washout of the saturating concentration (sustained desensitization). Internalization of MOP receptors was studied in brain slices prepared from transgenic mice expressing Flag-MOP receptors. The subcellular distribution of activated PKC was examined using a novel fluorescent sensor of PKC in HEK293 cells. KEY RESULTS The phorbol esters (PMA and PDBu) and muscarine increased acute desensitization induced by a saturating concentration of morphine and ME. These effects were not sensitive to staurosporine. Staurosporine did not block the decline in hyperpolarization induced by muscarine. PDBu and muscarine did not affect sustained desensitization induced by ME nor did phorbol esters or muscarine change the trafficking of MOP receptors induced by morphine or ME. The distribution of activated PKC measured in HEK293 cells differed depending on which phorbol ester was applied. CONCLUSIONS AND IMPLICATIONS This study demonstrates a distinct difference in two measurements that are often used to evaluate desensitization. The measure of decline correlated well with the reduction in peak amplitudes caused by PKC activators implicating the modification of other factors rather than MOP receptors. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
|
38
|
Allouche S, Noble F, Marie N. Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol 2014; 5:280. [PMID: 25566076 PMCID: PMC4270172 DOI: 10.3389/fphar.2014.00280] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 02/04/2023] Open
Abstract
Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor.
Collapse
Affiliation(s)
- Stéphane Allouche
- Laboratoire de Signalisation, Électrophysiologie et Imagerie des Lésions D'ischémie-Reperfusion Myocardique, Université de Caen, UPRES EA 4650, IFR 146 ICORE Caen, France
| | - Florence Noble
- Centre National de la Recherche Scientifique, ERL 3649 Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1124 Paris, France ; Université Paris Descartes, Neuroplasticité et Thérapies des Addictions Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, ERL 3649 Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1124 Paris, France ; Université Paris Descartes, Neuroplasticité et Thérapies des Addictions Paris, France
| |
Collapse
|
39
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
40
|
Lamberts JT, Traynor JR. Opioid receptor interacting proteins and the control of opioid signaling. Curr Pharm Des 2014; 19:7333-47. [PMID: 23448476 DOI: 10.2174/138161281942140105160625] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
Abstract
Opioid receptors are seven-transmembrane domain receptors that couple to intracellular signaling molecules by activating heterotrimeric G proteins. However, the receptor and G protein do not function in isolation but their activities are modulated by several accessory and scaffolding proteins. Examples include arrestins, kinases, and regulators of G protein signaling proteins. Accessory proteins contribute to the observed potency and efficacy of agonists, but also to the direction of signaling and the phenomenon of biased agonism. This review will present current knowledge of such proteins and how they may provide targets for future drug design.
Collapse
Affiliation(s)
| | - John R Traynor
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5632, USA.
| |
Collapse
|
41
|
Henderson G. The μ-opioid receptor: an electrophysiologist's perspective from the sharp end. Br J Pharmacol 2014; 172:260-7. [PMID: 24640948 DOI: 10.1111/bph.12633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Morphine, the prototypical opioid analgesic drug, produces its behavioural effects primarily through activation of μ-opioid receptors expressed in neurones of the central and peripheral nervous systems. This perspective provides a historical view of how, over the past 40 years, the use of electrophysiological recording techniques has helped to reveal the molecular mechanisms by which acute and chronic activation of μ-opioid receptors by morphine and other opioid drugs modify neuronal function. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Graeme Henderson
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
42
|
Williams JT. Desensitization of functional µ-opioid receptors increases agonist off-rate. Mol Pharmacol 2014; 86:52-61. [PMID: 24748657 PMCID: PMC4054003 DOI: 10.1124/mol.114.092098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
Desensitization of µ-opioid receptors (MORs) develops over 5-15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein-coupled K(+) channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu(5)]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity.
Collapse
Affiliation(s)
- John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
43
|
Lowe JD, Bailey CP. Functional selectivity and time-dependence of μ-opioid receptor desensitization at nerve terminals in the mouse ventral tegmental area. Br J Pharmacol 2014; 172:469-81. [PMID: 24467517 PMCID: PMC4292961 DOI: 10.1111/bph.12605] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/08/2014] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The majority of studies examining desensitization of the μ-opioid receptor (MOR) have examined those located at cell bodies. However, MORs are extensively expressed at nerve terminals throughout the mammalian nervous system. This study is designed to investigate agonist-induced MOR desensitization at nerve terminals in the mouse ventral tegmental area (VTA). EXPERIMENTAL APPROACH MOR function was measured in mature mouse brain slices containing the VTA using whole-cell patch-clamp electrophysiology. Presynaptic MOR function was isolated from postsynaptic function and the functional selectivity, time-dependence and mechanisms of agonist-induced MOR desensitization were examined. KEY RESULTS MORs located at GABAergic nerve terminals in the VTA were completely resistant to rapid desensitization induced by the high-efficacy agonists DAMGO and Met-enkephalin. MORs located postsynaptically on GABAergic cell bodies readily underwent rapid desensitization in response to DAMGO. However, after prolonged (>7 h) treatment with Met-enkephalin, profound homologous MOR desensitization was observed. Morphine could induce rapid MOR desensitization at nerve terminals when PKC was activated. CONCLUSIONS AND IMPLICATIONS Agonist-induced MOR desensitization in GABAergic neurons in the VTA is compartment-selective as well as agonist-selective. When MORs are located at cell bodies, higher-efficacy agonists induce greater levels of rapid desensitization than lower-efficacy agonists. However, the converse is true at nerve terminals where agonists that induce MOR desensitization via PKC are capable of rapid agonist-induced desensitization while higher-efficacy agonists are not. MOR desensitization induced by higher-efficacy agonists at nerve terminals only takes place after prolonged receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2
Collapse
Affiliation(s)
- J D Lowe
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK; School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
44
|
Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 2014; 82:1346-56. [PMID: 24857021 DOI: 10.1016/j.neuron.2014.04.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 01/01/2023]
Abstract
GABA release from interneurons in VTA, projections from the nucleus accumbens (NAc), and rostromedial tegmental nucleus (RMTg) was selectively activated in rat brain slices. The inhibition induced by μ-opioid agonists was pathway dependent. Morphine induced a 46% inhibition of IPSCs evoked from the RMTg, 18% from NAc, and IPSCs evoked from VTA interneurons were almost insensitive (11% inhibition). In vivo morphine treatment resulted in tolerance to the inhibition of RMTg, but not local interneurons or NAc, inputs. One common sign of opioid withdrawal is an increase in adenosine-dependent inhibition. IPSCs evoked from the NAc were potently inhibited by activation of presynaptic adenosine receptors, whereas IPSCs evoked from RMTg were not changed. Blockade of adenosine receptors selectively increased IPSCs evoked from the NAc during morphine withdrawal. Thus, the acute action of opioids, the development of tolerance, and the expression of withdrawal are mediated by separate GABA afferents to dopamine neurons.
Collapse
Affiliation(s)
- Aya Matsui
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brooke C Jarvie
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brooks G Robinson
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
45
|
Li G, Ma F, Gu Y, Huang LYM. Analgesic tolerance of opioid agonists in mutant mu-opioid receptors expressed in sensory neurons following intrathecal plasmid gene delivery. Mol Pain 2013; 9:63. [PMID: 24304623 PMCID: PMC3906983 DOI: 10.1186/1744-8069-9-63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 11/22/2013] [Indexed: 11/12/2022] Open
Abstract
Background Phosphorylation sites in the C-terminus of mu-opioid receptors (MORs) are known to play critical roles in the receptor functions. Our understanding of their participation in opioid analgesia is mostly based on studies of opioid effects on mutant receptors expressed in in vitro preparations, including cell lines, isolated neurons and brain slices. The behavioral consequences of the mutation have not been fully explored due to the complexity in studies of mutant receptors in vivo. To facilitate the determination of the contribution of phosphorylation sites in MOR to opioid-induced analgesic behaviors, we expressed mutant and wild-type human MORs (hMORs) in sensory dorsal root ganglion (DRG) neurons, a major site for nociceptive (pain) signaling and determined morphine- and the full MOR agonist, DAMGO,-induced effects on heat-induced hyperalgesic behaviors and potassium current (IK) desensitization in these rats. Findings A mutant hMOR DNA with the putative phosphorylation threonine site at position 394 replaced by an alanine (T394A), i.e., hMOR-T, or a plasmid containing wild type hMOR (as a positive control) was intrathecally delivered. The plasmid containing GFP or saline was used as the negative control. To limit the expression of exogenous DNA to neurons of DRGs, a neuron-specific promoter was included in the plasmid. Following a plasmid injection, hMOR-T or hMOR receptors were expressed in small and medium DRG neurons. Compared with saline or GFP rats, the analgesic potency of morphine was increased to a similar extent in hMOR-T and hMOR rats. Morphine induced minimum IK desensitization in both rat groups. In contrast, DAMGO increased analgesic potency and elicited IK desensitization to a significantly less extent in hMOR-T than in hMOR rats. The development and extent of acute and chronic tolerance induced by repeated morphine or DAMGO applications were not altered by the T394A mutation. Conclusions These results indicate that phosphorylation of T394 plays a critical role in determining the potency of DAMGO-induced analgesia and IK desensitization, but has limited effect on morphine-induced responses. On the other hand, the mutation contributes minimally to both DAMGO- and morphine-induced behavioral tolerance. Furthermore, the study shows that plasmid gene delivery of mutant receptors to DRG neurons is a useful strategy to explore nociceptive behavioral consequences of the mutation.
Collapse
Affiliation(s)
- Guangwen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.
| | | | | | | |
Collapse
|
46
|
Llorente J, Withey S, Rivero G, Cunningham M, Cooke A, Saxena K, McPherson J, Oldfield S, Dewey WL, Bailey CP, Kelly E, Henderson G. Ethanol reversal of cellular tolerance to morphine in rat locus coeruleus neurons. Mol Pharmacol 2013; 84:252-60. [PMID: 23716621 PMCID: PMC3716327 DOI: 10.1124/mol.113.085936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/28/2013] [Indexed: 12/16/2022] Open
Abstract
Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala(2),N-MePhe(4),Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5'-O-(3-[(35)S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance.
Collapse
Affiliation(s)
- Javier Llorente
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|