1
|
Bauer CK, Bilet A, Harms FL, Bähring R. KCNH3 Loss-of-Function Variant Associated with Epilepsy and Neurodevelopmental Delay Enhances Kv12.2 Channel Inactivation. Int J Mol Sci 2025; 26:4631. [PMID: 40429775 PMCID: PMC12111102 DOI: 10.3390/ijms26104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/06/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
A de novo missense variant in KCNH3 has been identified in a patient with neurological symptoms including seizures. Here, we confirm the previously reported loss-of-function features for the associated Kv12.2 mutant A371V and investigate the underlying mechanism. Loss of function was not rescued by low temperature during channel biogenesis. Elevated external K+ reduced the rectification of Kv12.2 conductance as predicted by the GHK current equation, allowing the detection of currents mediated by homomeric A371V Kv12.2 channels and a detailed biophysical analysis of the mutant. Compared to wild-type, the voltage dependences of activation and deactivation of A371V Kv12.2 channels were shifted in the positive direction by 15 to 20 mV. Moreover, A371V Kv12.2 channels exhibited accelerated inactivation kinetics combined with a dramatic negative shift in the voltage dependence of inactivation by more than 100 mV. Even in heteromeric wild-type + A371V Kv12.2 channels, inactivation was enhanced, leading to a significant current reduction at physiological potentials. Our Kv12.2 data show similarities to Kv11 channels regarding C-type inactivation and differences regarding the sensitivity to external K+ and pharmacological inhibition of inactivation. The gating modification caused by the A371V amino acid substitution in Kv12.2 renders loss of function voltage-dependent, with a possible impact on neuronal excitability and firing behavior.
Collapse
Affiliation(s)
- Christiane K. Bauer
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arne Bilet
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frederike L. Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Robert Bähring
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Kumawat A, Tavazzani E, Lentini G, Trancuccio A, Kukavica D, Oldani A, Denegri M, Priori SG, Camilloni C. Molecular insights into the rescue mechanism of an HERG activator against severe LQT2 mutations. J Biomed Sci 2025; 32:40. [PMID: 40197385 PMCID: PMC11974032 DOI: 10.1186/s12929-025-01134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Mutations in the HERG potassium channel are a major cause of long QT syndrome type 2 (LQT2), which can lead to sudden cardiac death. The HERG channel plays a critical role in the repolarization of the myocardial action potential, and loss-of-function mutations prolong cardiac repolarization. METHODS In this study, we investigated the efficacy and underlying molecular mechanism of ICA-105574, an HERG activator, in shortening the duration of cardiac repolarization in severe LQT2 variants. We characterized the efficacy of ICA-105574 in vivo, using an animal model to assess its ability to shorten the QT interval and in vitro, in cellular models mimicking severe HERG channel mutations (A561V, G628S, and L779P) to evaluate its impact in enhancing IKr current. Additionally, molecular dynamics simulations were used to investigate the molecular mechanism of ICA-105574 action. RESULTS In vivo, ICA-105574 significantly shortened the QT interval. LQT2 mutations drastically reduced IKr amplitude and suppressed tail currents in cellular models. ICA-105574 restored IKr in A561V and G628S. Finally, in silico data showed that ICA-105574 stabilizes a pattern of interactions similar to gain-of-function SQT1 mutations and can reverse the G628S modifications, through an allosteric network linking the binding site to the selectivity filter and the S5P turret helix, thereby restoring its K+ ion permeability. CONCLUSIONS Our results support the development of HERG activators like ICA-105574 as promising pharmacological molecules against some severe LQT2 mutations and suggest that molecular dynamics simulations can be used to test the ability of molecules to modulate HERG function in silico, paving the way for the rational design of new HERG activators.
Collapse
Affiliation(s)
- Amit Kumawat
- Department of Biosciences, University of Milan, Milan, Italy
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Elisa Tavazzani
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Trancuccio
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Deni Kukavica
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Amanda Oldani
- Centro Grandi Strumenti of the University of Pavia, Pavia, Italy
| | - Marco Denegri
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Silvia G Priori
- IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy.
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| | - Carlo Camilloni
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Kodirov SA. Adam, amigo, brain, and K channel. Biophys Rev 2023; 15:1393-1424. [PMID: 37975011 PMCID: PMC10643815 DOI: 10.1007/s12551-023-01163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels are diverse, comprising the classical Shab - Kv2, Shaker - Kv1, Shal - Kv4, and Shaw - Kv3 families. The Shaker family alone consists of Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, and Kv1.7. Moreover, the Shab family comprises two functional (Kv2.1 and Kv2.2) and several "silent" alpha subunits (Kv2.3, Kv5, Kv6, Kv8, and Kv9), which do not generate K current. However, e.g., Kv8.1, via heteromerization, inhibits outward currents of the same family or even that of Shaw. This property of Kv8.1 is similar to those of designated beta subunits or non-selective auxiliary elements, including ADAM or AMIGO proteins. Kv channels and, in turn, ADAM may modulate the synaptic long-term potentiation (LTP). Prevailingly, Kv1.1 and Kv1.5 are attributed to respective brain and heart pathologies, some of which may occur simultaneously. The aforementioned channel proteins are apparently involved in several brain pathologies, including schizophrenia and seizures.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520 USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
4
|
Kim HJ, Li M, Erlich EC, Randolph GJ, Davis MJ. ERG K + channels mediate a major component of action potential repolarization in lymphatic muscle. Sci Rep 2023; 13:14890. [PMID: 37689781 PMCID: PMC10492848 DOI: 10.1038/s41598-023-41995-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
Smooth muscle cells in the walls of collecting lymphatic vessels fire spontaneous action potentials (APs), which conduct rapidly over the muscle layer to initiate contractions that propel lymph. Several ion channels have been implicated in the currents underlying the AP spike and the preceding diastolic depolarization, but the molecular identities of K+ channels involved in AP repolarization are unknown. Based on previous studies of other rhythmically active smooth muscles, we hypothesized that ether-a-go-go related gene (ERG) K+ channels (Kv11) play an important role in repolarization of the AP in lymphatic muscle. Message for one or more ERG channel isoforms was detected by RT-PCR analysis of lymphatic vessels from mice, rats and humans. Membrane potential recordings in smooth muscle cells of rat and human lymphatics revealed that nanomolar concentrations of ERG-1 inhibitors (E-4031 and BeKm-1) prolonged the duration of the AP plateau (normally ~ 1 s in duration) and induced multiple spikes, whereas ERG-1 activators (ICA-105574 and RPR-260243) shortened the plateau and could completely inhibit spontaneous APs. At relatively high inhibitor concentrations, the AP plateau duration lasted as long as 24 s. ERG activators reversed the effects of ERG inhibitors and vice-versa. In pressure myograph studies, ERG channel inhibition prolonged the diastolic repolarization phase of the contraction cycle and reduced the frequency of spontaneous contractions. This is the first evidence for a specific K+ channel contributing to the AP in lymphatic muscle. Our results imply that lymphatic contractile dysfunction may occur in long QT type II patients with mutations that result in ERG channel loss-of-function or impaired trafficking of the channel to the cell membrane.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA
| | - Min Li
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA
| | - Emma C Erlich
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Michael J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Kodirov SA, Brachmann J, Safonova TA, Zhuravlev VL. Inactivation of Native K Channels. J Membr Biol 2021; 255:13-31. [PMID: 34383081 DOI: 10.1007/s00232-021-00195-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023]
Abstract
We have experimented with isolated cardiomyocytes of mollusks Helix. During the whole-cell patch-clamp recordings of K+ currents a considerable decrease in amplitude was observed upon repeated voltage steps at 0.96 Hz. For these experiments, ventricular cells were depolarized to identical + 20 mV from a holding potential of - 50 mV. The observed spontaneous inhibition of outward currents persisted in the presence of 4-aminopyridine, tetraethylammonium chloride or E-4031, the selective class III antiarrhythmic agent that blocks HERG channels. Similar tendency was retained when components of currents sensitive to either 4-AP or TEA were mathematically subtracted. Waveforms of currents sensitive to 1 and 10 micromolar concentration of E-4031 were distinct comprising prevailingly those activated during up to 200 ms pulses. The outward current activated by a voltage ramp at 60 mV x s-1 rate revealed an inward rectification around + 20 mV. This feature closely resembles those of the mammalian cardiac delayed rectifier IKr.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany. .,Department of General Physiology, Saint Petersburg University, 199034, Saint Petersburg, Russia. .,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Biophysics, Saint Petersburg University, 199034, Saint Petersburg, Russia. .,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Johannes Brachmann
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Tatiana A Safonova
- Department of General Physiology, Saint Petersburg University, 199034, Saint Petersburg, Russia
| | - Vladimir L Zhuravlev
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,Department of General Physiology, Saint Petersburg University, 199034, Saint Petersburg, Russia
| |
Collapse
|
6
|
Zequn Z, Jiangfang L. Molecular Insights Into the Gating Kinetics of the Cardiac hERG Channel, Illuminated by Structure and Molecular Dynamics. Front Pharmacol 2021; 12:687007. [PMID: 34168566 PMCID: PMC8217747 DOI: 10.3389/fphar.2021.687007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The rapidly activating delayed rectifier K+ current generated by the cardiac hERG potassium channel encoded by KCNH2 is the most important reserve current for cardiac repolarization. The unique inward rectification characteristics of the hERG channel depend on the gating regulation, which involves crucial structural domains and key single amino acid residues in the full-length hERG channel. Identifying critical molecules involved in the regulation of gating kinetics for the hERG channel requires high-resolution structures and molecular dynamics simulation models. Based on the latest progress in hERG structure and molecular dynamics simulation research, summarizing the molecules involved in the changes in the channel state helps to elucidate the unique gating characteristics of the channel and the reason for its high affinity to cardiotoxic drugs. In this review, we aim to summarize the significant advances in understanding the voltage gating regulation of the hERG channel based on its structure obtained from cryo-electron microscopy and computer simulations, which reveal the critical roles of several specific structural domains and amino acid residues.
Collapse
Affiliation(s)
- Zheng Zequn
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Lian Jiangfang
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Toplak Ž, Hendrickx LA, Abdelaziz R, Shi X, Peigneur S, Tomašič T, Tytgat J, Peterlin-Mašič L, Pardo LA. Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Med Res Rev 2021; 42:183-226. [PMID: 33945158 DOI: 10.1002/med.21808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.
Collapse
Affiliation(s)
- Žan Toplak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Louise A Hendrickx
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Reham Abdelaziz
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Xiaoyi Shi
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | | | - Luis A Pardo
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
8
|
Perry MD, Ng CA, Mangala MM, Ng TYM, Hines AD, Liang W, Xu MJO, Hill AP, Vandenberg JI. Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovasc Res 2021; 116:1434-1445. [PMID: 31628797 DOI: 10.1093/cvr/cvz247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Current treatment for congenital long QT syndrome Type 2 (cLQTS2), an electrical disorder that increases the risk of life-threatening cardiac arrhythmias, is aimed at reducing the incidence of arrhythmia triggers (beta-blockers) or terminating the arrhythmia after onset (implantable cardioverter-defibrillator). An alternative strategy is to target the underlying disease mechanism, which is reduced rapid delayed rectifier current (IKr) passed by Kv11.1 channels. Small molecule activators of Kv11.1 have been identified but the extent to which these can restore normal cardiac signalling in cLQTS2 backgrounds remains unclear. Here, we examined the ability of ICA-105574, an activator of Kv11.1 that impairs transition to the inactivated state, to restore function to heterozygous Kv11.1 channels containing either inactivation enhanced (T618S, N633S) or expression deficient (A422T) mutations. METHODS AND RESULTS ICA-105574 effectively restored Kv11.1 current from heterozygous inactivation enhanced or expression defective mutant channels in heterologous expression systems. In a human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of cLQTS2 containing the expression defective Kv11.1 mutant A422T, cardiac repolarization, estimated from the duration of calcium transients in isolated cells and the rate corrected field potential duration (FPDc) in culture monolayers of cells, was significantly prolonged. The Kv11.1 activator ICA-105574 was able to reverse the prolonged repolarization in a concentration-dependent manner. However, at higher doses, ICA-105574 produced a shortening of the FPDc compared to controls. In vitro and in silico analysis suggests that this overcorrection occurs as a result of a temporal redistribution of the peak IKr to much earlier in the plateau phase of the action potential, which results in early repolarization. CONCLUSION Kv11.1 activators, which target the primary disease mechanism, provide a possible treatment option for cLQTS2, with the caveat that there may be a risk of overcorrection that could itself be pro-arrhythmic.
Collapse
Affiliation(s)
- Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Melissa M Mangala
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Timothy Y M Ng
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Adam D Hines
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,Queensland Brain Institute, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Whitney Liang
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Michelle J O Xu
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Qile M, Ji Y, Golden TD, Houtman MJC, Romunde F, Fransen D, van Ham WB, IJzerman AP, January CT, Heitman LH, Stary-Weinzinger A, Delisle BP, van der Heyden MAG. LUF7244 plus Dofetilide Rescues Aberrant K v11.1 Trafficking and Produces Functional I Kv11.1. Mol Pharmacol 2020; 97:355-364. [PMID: 32241959 DOI: 10.1124/mol.119.118190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/24/2020] [Indexed: 02/14/2025] Open
Abstract
Voltage-gated potassium 11.1 (Kv11.1) channels play a critical role in repolarization of cardiomyocytes during the cardiac action potential (AP). Drug-mediated Kv11.1 blockade results in AP prolongation, which poses an increased risk of sudden cardiac death. Many drugs, like pentamidine, interfere with normal Kv11.1 forward trafficking and thus reduce functional Kv11.1 channel densities. Although class III antiarrhythmics, e.g., dofetilide, rescue congenital and acquired forward trafficking defects, this is of little use because of their simultaneous acute channel blocking effect. We aimed to test the ability of a combination of dofetilide plus LUF7244, a Kv11.1 allosteric modulator/activator, to rescue Kv11.1 trafficking and produce functional Kv11.1 current. LUF7244 treatment by itself did not disturb or rescue wild type (WT) or G601S-Kv11.1 trafficking, as shown by Western blot and immunofluorescence microcopy analysis. Pentamidine-decreased maturation of WT Kv11.1 levels was rescued by 10 μM dofetilide or 10 μM dofetilide + 5 μM LUF7244. In trafficking defective G601S-Kv11.1 cells, dofetilide (10 μM) or dofetilide + LUF7244 (10 + 5 μM) also restored Kv11.1 trafficking, as demonstrated by Western blot and immunofluorescence microscopy. LUF7244 (10 μM) increased IKv 11.1 despite the presence of dofetilide (1 μM) in WT Kv11.1 cells. In G601S-expressing cells, long-term treatment (24-48 hour) with LUF7244 (10 μM) and dofetilide (1 μM) increased IKv11.1 compared with nontreated or acutely treated cells. We conclude that dofetilide plus LUF7244 rescues Kv11.1 trafficking and produces functional IKv11.1 Thus, combined administration of LUF7244 and an IKv11.1 trafficking corrector could serve as a new pharmacological therapy of both congenital and drug-induced Kv11.1 trafficking defects. SIGNIFICANCE STATEMENT: Decreased levels of functional Kv11.1 potassium channel at the plasma membrane of cardiomyocytes prolongs action potential repolarization, which associates with cardiac arrhythmia. Defective forward trafficking of Kv11.1 channel protein is an important factor in acquired and congenital long QT syndrome. LUF7244 as a negative allosteric modulator/activator in combination with dofetilide corrected both congenital and acquired Kv11.1 trafficking defects, resulting in functional Kv11.1 current.
Collapse
Affiliation(s)
- Muge Qile
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Yuan Ji
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Tyona D Golden
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Marien J C Houtman
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Fee Romunde
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Doreth Fransen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Ad P IJzerman
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Craig T January
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Laura H Heitman
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Anna Stary-Weinzinger
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Brian P Delisle
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Marcel A G van der Heyden
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| |
Collapse
|
10
|
Van Theemsche KM, Van de Sande DV, Snyders DJ, Labro AJ. Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K + and Na + Channels. Front Pharmacol 2020; 11:735. [PMID: 32499709 PMCID: PMC7243439 DOI: 10.3389/fphar.2020.00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.
Collapse
Affiliation(s)
- Kenny M Van Theemsche
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Zangerl-Plessl EM, Berger M, Drescher M, Chen Y, Wu W, Maulide N, Sanguinetti M, Stary-Weinzinger A. Toward a Structural View of hERG Activation by the Small-Molecule Activator ICA-105574. J Chem Inf Model 2020; 60:360-371. [PMID: 31877041 DOI: 10.1021/acs.jcim.9b00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outward current conducted by human ether-à-go-go-related gene type 1 (hERG1) K+ channels is important for action potential repolarization in the human ventricle. Rapid, voltage-dependent inactivation greatly reduces outward currents conducted by hERG1 channels and involves conformational changes in the ion selectivity filter (SF). Recently, compounds have been found that activate hERG1 channel function by modulating gating mechanisms such as reducing inactivation. Such activating compounds could represent a novel approach to prevent arrhythmias associated with prolonged ventricular repolarization associated with inherited or acquired long QT syndrome. ICA-105574 (ICA), a 3-nitro-n-(4-phenoxyphenyl) benzamide derivative activates hERG1 by strongly attenuating pore-type inactivation. We previously mapped the putative binding site for ICA to a hydrophobic pocket located between two adjacent subunits. Here, we used the recently reported cryoelectron microscopy structures of hERG1 to elucidate the structural mechanisms by which ICA influences the stability of the SF. By combining molecular dynamics simulations, voltage-clamp electrophysiology, and the synthesis of novel ICA derivatives, we provide atomistic insights into SF dynamics and propose a structural link between the SF and S6 segments. Further, our study highlights the importance of the nitro moiety, at the meta position of the benzamide ring, for the activity of ICA and reveals that the (bio)isosteric substitution of this side chain can switch the activity to weak inhibitors. Our findings indicate that ICA increases the stability of the SF to attenuate channel inactivation, and this action requires a fine-tuned compound geometry.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| | - Martin Berger
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Martina Drescher
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Yong Chen
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Wei Wu
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Nuno Maulide
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Michael Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| |
Collapse
|
12
|
Qile M, Beekman HDM, Sprenkeler DJ, Houtman MJC, van Ham WB, Stary-Weinzinger A, Beyl S, Hering S, van den Berg DJ, de Lange ECM, Heitman LH, IJzerman AP, Vos MA, van der Heyden MAG. LUF7244, an allosteric modulator/activator of K v 11.1 channels, counteracts dofetilide-induced torsades de pointes arrhythmia in the chronic atrioventricular block dog model. Br J Pharmacol 2019; 176:3871-3885. [PMID: 31339551 PMCID: PMC6780032 DOI: 10.1111/bph.14798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Kv 11.1 (hERG) channel blockade is an adverse effect of many drugs and lead compounds, associated with lethal cardiac arrhythmias. LUF7244 is a negative allosteric modulator/activator of Kv 11.1 channels that inhibits early afterdepolarizations in vitro. We tested LUF7244 for antiarrhythmic efficacy and potential proarrhythmia in a dog model. EXPERIMENTAL APPROACH LUF7244 was tested in vitro for (a) increasing human IKv11.1 and canine IKr and (b) decreasing dofetilide-induced action potential lengthening and early afterdepolarizations in cardiomyocytes derived from human induced pluripotent stem cells and canine isolated ventricular cardiomyocytes. In vivo, LUF7244 was given intravenously to anaesthetized dogs in sinus rhythm or with chronic atrioventricular block. KEY RESULTS LUF7244 (0.5-10 μM) concentration dependently increased IKv11.1 by inhibiting inactivation. In vitro, LUF7244 (10 μM) had no effects on IKIR2.1 , INav1.5 , ICa-L , and IKs , doubled IKr , shortened human and canine action potential duration by approximately 50%, and inhibited dofetilide-induced early afterdepolarizations. LUF7244 (2.5 mg·kg-1 ·15 min-1 ) in dogs with sinus rhythm was not proarrhythmic and shortened, non-significantly, repolarization parameters (QTc: -6.8%). In dogs with chronic atrioventricular block, LUF7244 prevented dofetilide-induced torsades de pointes arrhythmias in 5/7 animals without normalization of the QTc. Peak LUF7244 plasma levels were 1.75 ± 0.80 during sinus rhythm and 2.34 ± 1.57 μM after chronic atrioventricular block. CONCLUSIONS AND IMPLICATIONS LUF7244 counteracted dofetilide-induced early afterdepolarizations in vitro and torsades de pointes in vivo. Allosteric modulators/activators of Kv 11.1 channels might neutralize adverse cardiac effects of existing drugs and newly developed compounds that display QTc lengthening.
Collapse
Affiliation(s)
- Muge Qile
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Henriette D M Beekman
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David J Sprenkeler
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Stanislav Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Dirk-Jan van den Berg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ad P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
13
|
Kodirov SA. Tale of tail current. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:78-97. [PMID: 31238048 DOI: 10.1016/j.pbiomolbio.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
The largest biomass of channel proteins is located in unicellular organisms and bacteria that have no organs. However, orchestrated bidirectional ionic currents across the cell membrane via the channels are important for the functioning of organs of organisms, and equally concern both fauna or flora. Several ion channels are activated in the course of action potentials. One of the hallmarks of voltage-dependent channels is a 'tail current' - deactivation as observed after prior and sufficient activation predominantly at more depolarized potentials e.g. for Kv while upon hyperpolarization for HCN α subunits. Tail current also reflects the timing of channel closure that is initiated upon termination of stimuli. Finally, deactivation of currents during repolarization could be a selective estimate for given channel as in case of HERG, if dedicated long and more depolarized 'tail pulse' is used. Since from a holding potential of e.g. -70 mV are often a family of outward K+ currents comprising IA and IK are simultaneously activated in native cells.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341, Russia; Institute of Experimental Medicine, I. P. Pavlov Department of Physiology, Russian Academy of Medical Sciences, Saint Petersburg, Russia; Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, 02-093, Poland.
| |
Collapse
|
14
|
Ma L, Chin YKY, Dekan Z, Herzig V, Chow CY, Heighway J, Lam SW, Guillemin GJ, Alewood PF, King GF. Novel venom-derived inhibitors of the human EAG channel, a putative antiepileptic drug target. Biochem Pharmacol 2018; 158:60-72. [PMID: 30149017 DOI: 10.1016/j.bcp.2018.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go voltage-gated potassium channel hEAG1 (Kv10.1) lead to developmental disorders with associated infantile-onset epilepsy. However, the physiological role of hEAG1 in the central nervous system remains elusive. Potent and selective antagonists of hEAG1 are therefore much sought after, both as pharmacological tools for studying the (patho)physiological functions of this enigmatic channel and as potential leads for development of anti-epileptic drugs. Since animal venoms are a rich source of potent ion channel modifiers that have been finely tuned by millions of year of evolution, we screened 108 arachnid venoms for hEAG1 inhibitors using electrophysiology. Two hit peptides (Aa1a and Ap1a) were isolated, sequenced, and chemically synthesised for structure-function studies. Both of these hEAG1 inhibitors are C-terminally amidated peptides containing an inhibitor cystine knot motif, which provides them with exceptional stability in both plasma and cerebrospinal fluid. Aa1a and Ap1a are the most potent peptidic inhibitors of hEAG1 reported to date, and they present a novel mode of action by targeting both the activation and inactivation gating of the channel. These peptides should be useful pharmacological tools for probing hEAG1 function as well as informative leads for the development of novel anti-epileptic drugs.
Collapse
Affiliation(s)
- Linlin Ma
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jacqueline Heighway
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sau Wing Lam
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia; St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
15
|
Moreels L, Peigneur S, Galan DT, De Pauw E, Béress L, Waelkens E, Pardo LA, Quinton L, Tytgat J. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel K V10.1. Mar Drugs 2017; 15:md15090287. [PMID: 28902151 PMCID: PMC5618426 DOI: 10.3390/md15090287] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
The human ether-à-go-go channel (hEag1 or KV10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1). The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a scaffold for the design and synthesis of more potent and safer anticancer drugs.
Collapse
Affiliation(s)
- Lien Moreels
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| | - Diogo T Galan
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry-MolSys, University of Liege, Liege 4000, Belgium.
| | - Lászlo Béress
- Immunology and Rheumatology, Section of Peptide Chemistry, Hannover Medical School (MHH), Hannover 30625, Germany.
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven 3000, Belgium.
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine; Göttingen 37075, Germany.
| | - Loïc Quinton
- Laboratory of Mass Spectrometry-MolSys, University of Liege, Liege 4000, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
16
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
17
|
Li P, Chen X, Zhang Q, Zheng Y, Jiang H, Yang H, Gao Z. The human ether-a-go-go-related gene activator NS1643 enhances epilepsy-associated KCNQ channels. J Pharmacol Exp Ther 2014; 351:596-604. [PMID: 25232191 DOI: 10.1124/jpet.114.217703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human ether-a-go-go-related gene (hERG) and KCNQ channels are two classes of voltage-gated potassium channels. Specific mutations have been identified that are causal for type II long QT (LQT2) syndrome, neonatal epilepsy, and benign familial neonatal convulsions. Increasing evidence from clinical studies suggests that LQT2 and epilepsy coexist in some patients. Therefore, an integral approach to investigating and treating the two diseases is likely more effective. In the current study, we found that NS1643 [1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea], a previously reported hERG activator, is also an activator of KCNQ channels. It potentiates the neuronal KCNQ2, KCNQ4, and KCNQ2/Q3 channels, but not the cardiac KCNQ1. The effects of NS1643 on the KCNQ2 channel include left shifting of voltage for reaching 50% of the maximum conductance and slowing of deactivation. Analysis of the dose-response curve of NS1643 revealed an EC50 value of 2.44 ± 0.25 μM. A hydrophobic phenylalanine (F137) located at the middle region of the voltage-sensing domain was identified as critical for NS1643 activity on KCNQ2. When testing NS1643 effects in rescuing LQT2 hERG mutants and the KCNQ2 BFNC mutants, we found it is particularly efficacious in some cases. Considering the substantial relationship between LQT2 and epilepsy, these findings reveal that NS1643 is a useful compound to elucidate the causal connection of LQT2 and epilepsy. More generally, this may provide a strategy in the development of therapeutics for LQT2 and epilepsy.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xueqin Chen
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiansen Zhang
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yueming Zheng
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huaiyu Yang
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Sanguinetti MC. HERG1 channel agonists and cardiac arrhythmia. Curr Opin Pharmacol 2013; 15:22-7. [PMID: 24721650 DOI: 10.1016/j.coph.2013.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023]
Abstract
Type 1 human ether-a-go-go-related gene (hERG1) potassium channels are a key determinant of normal repolarization of cardiac action potentials. Loss of function mutations in hERG1 channels cause inherited long QT syndrome and increased risk of cardiac arrhythmia and sudden death. Many common medications that block hERG1 channels as an unintended side effect also increase arrhythmic risk. Routine preclinical screening for hERG1 block led to the discovery of agonists that shorten action potential duration and QT interval. Agonists have the potential to be used as pharmacotherapy for long QT syndrome, but can also be proarrhythmic. Recent studies have elucidated multiple mechanisms of action for these compounds and the structural basis for their binding to the pore domain of the hERG1 channel.
Collapse
Affiliation(s)
- Michael C Sanguinetti
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Meng J, Shi C, Li L, Du Y, Xu Y. Compound ICA-105574 prevents arrhythmias induced by cardiac delayed repolarization. Eur J Pharmacol 2013; 718:87-97. [PMID: 24041920 DOI: 10.1016/j.ejphar.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 01/14/2023]
Abstract
Impaired ventricular repolarization can lead to long QT syndrome (LQT), a proarrhythmic disease with high risk of developing lethal ventricular tachyarrhythmias. The compound ICA-105574 is a recently developed hERG activator and it enhances IKr current with very high potency by removing the channel inactivation. The present study was designed to investigate antiarrhythmic properties of ICA-105574. For comparison, the effects of another compound NS1643 was in-parallel assessed, which also acts primarily to attenuate channel inactivation with moderate potency. We found that both ICA-105574 and NS1643 concentration-dependently shortened action potential duration (APD) in ventricular myocytes, and QT/QTc intervals in isolated guinea-pig hearts. ICA-105574, but not NS1643, completely prevented ventricular arrhythmias in intact guinea-pig hearts caused by IKr and IKs inhibitors, although both ICA-105574 and NS1643 could reverse the drug-induced prolongation of APD in ventricular myocytes. Reversing prolongation of QT/QTc intervals and antagonizing the increases in transmural dispersion of repolarization and instability of the QT interval induced by IKr and IKs inhibitors contributed to antiarrhythmic effect of ICA-105574. Meanwhile, ICA-105574 at higher concentrations showed a potential proarrhythmic risk in normal hearts. Our results suggest that ICA-105574 has more efficient antiarrhythmic activity than NS1643. However, its potential proarrhythmic risk implies that benefits and risks should be seriously taken into consideration for further developing this type of hERG activators.
Collapse
Affiliation(s)
- Jing Meng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Hebei Province, Shijiazhuang 050017, China; Department of Pharmaceutical Chemistry, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
20
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|