1
|
Chen R, Liu Y, Qian L, Yi M, Yin H, Wang S, Xiang B. Sodium channels as a new target for pain treatment. Front Pharmacol 2025; 16:1573254. [PMID: 40206072 PMCID: PMC11979154 DOI: 10.3389/fphar.2025.1573254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Voltage-gated sodium channels, especially the Nav1.7, Nav1.8, and Nav1.9 subtypes, play a crucial role in the transmission of pain signals. Nav1.7 is considered a threshold channel that regulates the generation of action potentials and is closely associated with various hereditary pain disorders. Nav1.8 primarily participates in inflammatory and neuropathic pain within the peripheral nervous system. Its characteristic of not involving the central nervous system makes it a potential target for non-addictive analgesics. Nav1.9 has shown significant involvement in cold pain sensing and small fiber neuropathy, although its mechanism of action is still under further investigation. Currently, despite promising results from preclinical studies, sodium channel inhibitors have not fully met expectations in clinical trials due to issues such as drug selectivity, dosing, and safety. The development of Nav1.7 and Nav1.8 inhibitors faces challenges such as drug intolerance, insufficient target occupancy, and off-target side effects. Future research may promote the development of non-opioid analgesics through combined inhibition strategies targeting multiple Nav subtypes, as well as improving drug selectivity and bioavailability. Overall, sodium channel inhibitors remain a key area of research in pain management, but their clinical application prospects still require further exploration.
Collapse
Affiliation(s)
- Rui Chen
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yiran Liu
- Nursing Department, Cujin Community Health Service Center, Chengdu, China
| | - Liu Qian
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mingliang Yi
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hong Yin
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Shun Wang
- Department of Anesthesiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bingbing Xiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Kamei T, Kudo T, Yamane H, Ishibashi F, Takada Y, Honda S, Maezawa Y, Ikeda K, Oyamada Y. Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230. Biochem Biophys Res Commun 2024; 721:150126. [PMID: 38776832 DOI: 10.1016/j.bbrc.2024.150126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.
Collapse
Affiliation(s)
- Tatsuya Kamei
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, 650-0047, Japan.
| | - Takehiro Kudo
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Hana Yamane
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, 650-0047, Japan
| | - Fumiaki Ishibashi
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Platform Technology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Yoshinori Takada
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Global Corporate Strategy, Sumitomo Pharma Co., Ltd., Tokyo, 104-8356, Japan
| | - Shigeyuki Honda
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Sumika Chemical Analysis Service, Ltd., Osaka, 554-0022, Japan
| | - Yasuyo Maezawa
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Kazuhito Ikeda
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Platform Technology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Yoshihiro Oyamada
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; AlphaNavi Pharma Inc., Osaka, 564-0053, Japan
| |
Collapse
|
3
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
4
|
Xie YF, Yang J, Ratté S, Prescott SA. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife 2024; 12:RP90960. [PMID: 38687187 PMCID: PMC11060714 DOI: 10.7554/elife.90960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
5
|
Wang Y, Shu J, Yang H, Hong K, Yang X, Guo W, Fang J, Li F, Liu T, Shan Z, Shi T, Cai S, Zhang J. Nav1.7 Modulator Bearing a 3-Hydroxyindole Backbone Holds the Potential to Reverse Neuropathic Pain. ACS Chem Neurosci 2024; 15:1063-1073. [PMID: 38449097 DOI: 10.1021/acschemneuro.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Chronic pain is a growing global health problem affecting at least 10% of the world's population. However, current chronic pain treatments are inadequate. Voltage-gated sodium channels (Navs) play a pivotal role in regulating neuronal excitability and pain signal transmission and thus are main targets for nonopioid painkiller development, especially those preferentially expressed in dorsal root ganglial (DRG) neurons, such as Nav1.6, Nav1.7, and Nav1.8. In this study, we screened in virtual hits from dihydrobenzofuran and 3-hydroxyoxindole hybrid molecules against Navs via a veratridine (VTD)-based calcium imaging method. The results showed that one of the molecules, 3g, could inhibit VTD-induced neuronal activity significantly. Voltage clamp recordings demonstrated that 3g inhibited the total Na+ currents of DRG neurons in a concentration-dependent manner. Biophysical analysis revealed that 3g slowed the activation, meanwhile enhancing the inactivation of the Navs. Additionally, 3g use-dependently blocked Na+ currents. By combining with selective Nav inhibitors and a heterozygous expression system, we demonstrated that 3g preferentially inhibited the TTX-S Na+ currents, specifically the Nav1.7 current, other than the TTX-R Na+ currents. Molecular docking experiments implicated that 3g binds to a known allosteric site at the voltage-sensing domain IV(VSDIV) of Nav1.7. Finally, intrathecal injection of 3g significantly relieved mechanical pain behavior in the spared nerve injury (SNI) rat model, suggesting that 3g is a promising candidate for treating chronic pain.
Collapse
Affiliation(s)
- Yuwei Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jirong Shu
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Haoyi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Kemiao Hong
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiangji Yang
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Weijie Guo
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Fang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Fuyi Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tao Liu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen 518020, China
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Taoda Shi
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Song Cai
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Wu Q, Huang J, Fan X, Wang K, Jin X, Huang G, Li J, Pan X, Yan N. Structural mapping of Na v1.7 antagonists. Nat Commun 2023; 14:3224. [PMID: 37270609 DOI: 10.1038/s41467-023-38942-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Voltage-gated sodium (Nav) channels are targeted by a number of widely used and investigational drugs for the treatment of epilepsy, arrhythmia, pain, and other disorders. Despite recent advances in structural elucidation of Nav channels, the binding mode of most Nav-targeting drugs remains unknown. Here we report high-resolution cryo-EM structures of human Nav1.7 treated with drugs and lead compounds with representative chemical backbones at resolutions of 2.6-3.2 Å. A binding site beneath the intracellular gate (site BIG) accommodates carbamazepine, bupivacaine, and lacosamide. Unexpectedly, a second molecule of lacosamide plugs into the selectivity filter from the central cavity. Fenestrations are popular sites for various state-dependent drugs. We show that vinpocetine, a synthetic derivative of a vinca alkaloid, and hardwickiic acid, a natural product with antinociceptive effect, bind to the III-IV fenestration, while vixotrigine, an analgesic candidate, penetrates the IV-I fenestration of the pore domain. Our results permit building a 3D structural map for known drug-binding sites on Nav channels summarized from the present and previous structures.
Collapse
Affiliation(s)
- Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Kan Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiaao Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
7
|
Steiger LJ, Tsintsadze T, Mattheisen GB, Smith SM. Somatic and terminal CB1 receptors are differentially coupled to voltage-gated sodium channels in neocortical neurons. Cell Rep 2023; 42:112247. [PMID: 36933217 PMCID: PMC10106091 DOI: 10.1016/j.celrep.2023.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Endogenous cannabinoid signaling is vital for important brain functions, and the same pathways can be modified pharmacologically to treat pain, epilepsy, and posttraumatic stress disorder. Endocannabinoid-mediated changes to excitability are predominantly attributed to 2-arachidonoylglycerol (2-AG) acting presynaptically via the canonical cannabinoid receptor, CB1. Here, we identify a mechanism in the neocortex by which anandamide (AEA), another major endocannabinoid, but not 2-AG, powerfully inhibits somatically recorded voltage-gated sodium channel (VGSC) currents in the majority of neurons. This pathway involves intracellular CB1 that, when activated by anandamide, decreases the likelihood of recurrent action potential generation. WIN 55,212-2 similarly activates CB1 and inhibits VGSC currents, indicating that this pathway is also positioned to mediate the actions of exogenous cannabinoids on neuronal excitability. The coupling between CB1 and VGSCs is absent at nerve terminals, and 2-AG does not block somatic VGSC currents, indicating functional compartmentalization of the actions of two endocannabinoids.
Collapse
Affiliation(s)
- Luke J Steiger
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timur Tsintsadze
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Glynis B Mattheisen
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen M Smith
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
9
|
Labau JIR, Alsaloum M, Estacion M, Tanaka B, Dib-Hajj FB, Lauria G, Smeets HJM, Faber CG, Dib-Hajj S, Waxman SG. Lacosamide Inhibition of Na V1.7 Channels Depends on its Interaction With the Voltage Sensor Domain and the Channel Pore. Front Pharmacol 2022; 12:791740. [PMID: 34992539 PMCID: PMC8724789 DOI: 10.3389/fphar.2021.791740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Lacosamide, developed as an anti-epileptic drug, has been used for the treatment of pain. Unlike typical anticonvulsants and local anesthetics which enhance fast-inactivation and bind within the pore of sodium channels, lacosamide enhances slow-inactivation of these channels, suggesting different binding mechanisms and mode of action. It has been reported that lacosamide's effect on NaV1.5 is sensitive to a mutation in the local anesthetic binding site, and that it binds with slow kinetics to the fast-inactivated state of NaV1.7. We recently showed that the NaV1.7-W1538R mutation in the voltage-sensing domain 4 completely abolishes NaV1.7 inhibition by clinically-achievable concentration of lacosamide. Our molecular docking analysis suggests a role for W1538 and pore residues as high affinity binding sites for lacosamide. Aryl sulfonamide sodium channel blockers are also sensitive to substitutions of the W1538 residue but not of pore residues. To elucidate the mechanism by which lacosamide exerts its effects, we used voltage-clamp recordings and show that lacosamide requires an intact local anesthetic binding site to inhibit NaV1.7 channels. Additionally, the W1538R mutation does not abrogate local anesthetic lidocaine-induced blockade. We also show that the naturally occurring arginine in NaV1.3 (NaV1.3-R1560), which corresponds to NaV1.7-W1538R, is not sufficient to explain the resistance of NaV1.3 to clinically-relevant concentrations of lacosamide. However, the NaV1.7-W1538R mutation conferred sensitivity to the NaV1.3-selective aryl-sulfonamide blocker ICA-121431. Together, the W1538 residue and an intact local anesthetic site are required for lacosamide's block of NaV1.7 at a clinically-achievable concentration. Moreover, the contribution of W1538 to lacosamide inhibitory effects appears to be isoform-specific.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Brian Tanaka
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Hubert J M Smeets
- Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
10
|
Lindner JS, Rajayer SR, Martiszus BJ, Smith SM. Cinacalcet inhibition of neuronal action potentials preferentially targets the fast inactivated state of voltage-gated sodium channels. Front Physiol 2022; 13:1066467. [PMID: 36601343 PMCID: PMC9806421 DOI: 10.3389/fphys.2022.1066467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Voltage-gated sodium channel (VGSC) activation is essential for action potential generation in the brain. Allosteric calcium-sensing receptor (CaSR) agonist, cinacalcet, strongly and ubiquitously inhibits VGSC currents in neocortical neurons via an unidentified, G-protein-dependent inhibitory molecule. Here, using whole-cell patch VGSC clamp methods, we investigated the voltage-dependence of cinacalcet-mediated inhibition of VGSCs and the channel state preference of cinacalcet. The rate of inhibition of VGSC currents was accelerated at more depolarized holding potentials. Cinacalcet shifted the voltage-dependence of both fast and slow inactivation of VGSC currents in the hyperpolarizing direction. Utilizing a simple model, the voltage-dependence of VGSC current inhibition may be explained if the affinity of the inhibitory molecule to the channel states follows the sequence: fast-inactivated > slow-inactivated > resting. The state dependence of VGSC current inhibition contributes to the non-linearity of action potential block by cinacalcet. This dynamic and abundant signaling pathway by which cinacalcet regulates VGSC currents provides an important voltage-dependent mechanism for modulating central neuronal excitability.
Collapse
Affiliation(s)
- Jamie S Lindner
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Salil R Rajayer
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Briana J Martiszus
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stephen M Smith
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
11
|
Kollarik M, Ru F, Pavelkova N, Mulcahy J, Hunter J, Undem BJ. Role of Na V 1.7 in action potential conduction along human bronchial vagal afferent C-fibres. Br J Pharmacol 2022; 179:242-251. [PMID: 34634134 DOI: 10.1111/bph.15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to determine the role of NaV 1.7 in action potential conduction in C-fibres in the bronchial branches of the human vagus nerve. EXPERIMENTAL APPROACH Bronchial branches of the vagus nerve were dissected from human donor tissue. The C-wave of the electrically evoked compound action potential was quantified in the absence and presence of increasing concentrations of the selective NaV 1.7 blocking drugs, PF-05089771 and ST-2262, as well as the NaV 1.1, 1.2, and 1.3 blocking drug ICA121-431. The efficacy and potency of these inhibitors were compared to the standard NaV 1 blocker, tetrodotoxin. We then compared the relative potencies of the NaV 1 blockers in inhibiting the C-wave of the compound action potential, with their ability to inhibit parasympathetic cholinergic contraction of human isolated bronchi, a response previously shown to be strictly dependent on NaV 1.7 channels. KEY RESULTS The selective NaV 1.7 blockers inhibited the C-wave of the compound action potential with potencies similar to that observed in the NaV 1.7 bronchial contractions assay. Using rt-PCR, we noted that NaV 1.7 mRNA was strongly expressed and transported down the vagus nerve bundles. CONCLUSIONS AND IMPLICATIONS NaV 1.7 blockers can prevent action potential conduction in the majority of vagal C-fibres arising from human bronchi. Blockers of NaV 1.7 channels may therefore have value in inhibiting the responses to excessive airway C-fibre activation in inflammatory airway disease, responses that include coughing as well as reflex bronchoconstriction and secretions.
Collapse
Affiliation(s)
- Marian Kollarik
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Fei Ru
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nikoleta Pavelkova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - John Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, USA
| | - John Hunter
- SiteOne Therapeutics, South San Francisco, CA, USA
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Braden K, Stratton HJ, Salvemini D, Khanna R. Small molecule targeting NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces and prevents pain chronification in a mouse model of oxaliplatin-induced neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100082. [PMID: 35024498 PMCID: PMC8733339 DOI: 10.1016/j.ynpai.2021.100082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Treatment with anti-neoplastic agents can lead to the development of chemotherapy induced peripheral neuropathy (CIPN), which is long lasting and often refractory to treatment. This neuropathic pain develops along dermatomes innervated by peripheral nerves with cell bodies located in the dorsal root ganglia (DRG). The voltage-gated sodium channel NaV1.7 is expressed at high levels in peripheral nerve tissues and has been implicated in the development of CIPN. Efforts to develop novel analgesics directly inhibiting NaV1.7 have been unsuccessful, and our group has pioneered an alternative approach based on indirect modulation of channel trafficking by the accessory protein collapsin response mediator protein 2 (CRMP2). We have recently reported a small molecule, compound 194, that inhibits CRMP2 SUMOylation by the E2 SUMO-conjugating enzyme Ubc9 (Cai et al. , Sci. Transl. Med. 2021 13(6 1 9):eabh1314). Compound 194 is a potent and selective inhibitor of NaV1.7 currents in DRG neurons and reverses mechanical allodynia in models of surgical, inflammatory, and neuropathic pain, including spared nerve injury and paclitaxelinduced peripheral neuropathy. Here we report that, in addition to its reported effects in rats, 194 also reduces mechanical allodynia in male CD-1 mice treated with platinumcomplex agent oxaliplatin. Importantly, treatment with 194 prevented the development of mechanical allodynia when co-administered with oxaliplatin. No effects were observed on the body weight of animals treated with oxaliplatin or 194 throughout the study period. These findings support the notion that 194 is a robust inhibitor of CIPN that reduces established neuropathic pain and prevents the emergence of neuropathic pain during treatment with multiple anti-neoplastic agents in both mice and rats.
Collapse
Key Words
- CIPN, chemotherapy induced peripheral neuropathy
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRMP2
- CRMP2, collapsin response mediator protein 2
- Chemotherapy
- DRG, dorsal root ganglia
- NaV1.7
- NaV1.7, voltage-gated sodium channel family 1 isoform 7
- Neuropathy
- Oxaliplatin
- PWT, paw withdrawal threshold
- SNI, spared nerve injury
- SUMO, smallubiquitin like modifier
- SUMOylation
- TTX, tetrodotoxin
- TTX-R, tetrodotoxin-resistant
- TTX-S, tetrodotoxin-sensitive
- Ubc9, E2 SUMO-conjugating enzyme
- t-CSM, tat-CRMP2 SUMOylation motif
Collapse
Affiliation(s)
- Kathryn Braden
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, AZ 85724, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, AZ 85724, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
13
|
Deng SY, Tang XC, Chang YC, Xu ZZ, Chen QY, Cao N, Kong LJY, Wang Y, Ma KT, Li L, Si JQ. Improving NKCC1 Function Increases the Excitability of DRG Neurons Exacerbating Pain Induced After TRPV1 Activation of Primary Sensory Neurons. Front Cell Neurosci 2021; 15:665596. [PMID: 34113239 PMCID: PMC8185156 DOI: 10.3389/fncel.2021.665596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague–Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4–6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.
Collapse
Affiliation(s)
- Shi-Yu Deng
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xue-Chun Tang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yue-Chen Chang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Medical Teaching Experimental Center, Shihezi University Medical College, Shihezi, China
| | - Zhen-Zhen Xu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Yi Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Xiangyang Central Hospital, China
| | - Nan Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang-Jing-Yuan Kong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ke-Tao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
14
|
Hinckley CA, Kuryshev Y, Sers A, Barre A, Buisson B, Naik H, Hajos M. Characterization of Vixotrigine, a Broad-Spectrum Voltage-Gated Sodium Channel Blocker. Mol Pharmacol 2021; 99:49-59. [PMID: 33298520 DOI: 10.1124/molpharm.120.000079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Voltage-gated sodium channels (Navs) are promising targets for analgesic and antiepileptic therapies. Although specificity between Nav subtypes may be desirable to target specific neural types, such as nociceptors in pain, many broadly acting Nav inhibitors are clinically beneficial in neuropathic pain and epilepsy. Here, we present the first systematic characterization of vixotrigine, a Nav blocker. Using recombinant systems, we find that vixotrigine potency is enhanced in a voltage- and use-dependent manner, consistent with a state-dependent block of Navs. Furthermore, we find that vixotrigine potently inhibits sodium currents produced by both peripheral and central nervous system Nav subtypes, with use-dependent IC50 values between 1.76 and 5.12 μM. Compared with carbamazepine, vixotrigine shows higher potency and more profound state-dependent inhibition but a similar broad spectrum of action distinct from Nav1.7- and Nav1.8-specific blockers. We find that vixotrigine rapidly inhibits Navs and prolongs recovery from the fast-inactivated state. In native rodent dorsal root ganglion sodium channels, we find that vixotrigine shifts steady-state inactivation curves. Based on these results, we conclude that vixotrigine is a broad-spectrum, state-dependent Nav blocker. SIGNIFICANCE STATEMENT: Vixotrigine blocks both peripheral and central voltage-gated sodium channel subtypes. Neurophysiological approaches in recombinant systems and sensory neurons suggest this block is state-dependent.
Collapse
Affiliation(s)
- Christopher A Hinckley
- Biogen, Cambridge, Massachusetts (C.A.H., H.N.); Charles River Laboratories Cleveland, Inc., Cleveland, Ohio (Y.K.); Neuroservice, Aix-en-Provence, France (A.S., A.B., B.B.); and Department of Comparative Medicine, Yale University, New Haven, Connecticut (M.H.)
| | - Yuri Kuryshev
- Biogen, Cambridge, Massachusetts (C.A.H., H.N.); Charles River Laboratories Cleveland, Inc., Cleveland, Ohio (Y.K.); Neuroservice, Aix-en-Provence, France (A.S., A.B., B.B.); and Department of Comparative Medicine, Yale University, New Haven, Connecticut (M.H.)
| | - Alissende Sers
- Biogen, Cambridge, Massachusetts (C.A.H., H.N.); Charles River Laboratories Cleveland, Inc., Cleveland, Ohio (Y.K.); Neuroservice, Aix-en-Provence, France (A.S., A.B., B.B.); and Department of Comparative Medicine, Yale University, New Haven, Connecticut (M.H.)
| | - Alexander Barre
- Biogen, Cambridge, Massachusetts (C.A.H., H.N.); Charles River Laboratories Cleveland, Inc., Cleveland, Ohio (Y.K.); Neuroservice, Aix-en-Provence, France (A.S., A.B., B.B.); and Department of Comparative Medicine, Yale University, New Haven, Connecticut (M.H.)
| | - Bruno Buisson
- Biogen, Cambridge, Massachusetts (C.A.H., H.N.); Charles River Laboratories Cleveland, Inc., Cleveland, Ohio (Y.K.); Neuroservice, Aix-en-Provence, France (A.S., A.B., B.B.); and Department of Comparative Medicine, Yale University, New Haven, Connecticut (M.H.)
| | - Himanshu Naik
- Biogen, Cambridge, Massachusetts (C.A.H., H.N.); Charles River Laboratories Cleveland, Inc., Cleveland, Ohio (Y.K.); Neuroservice, Aix-en-Provence, France (A.S., A.B., B.B.); and Department of Comparative Medicine, Yale University, New Haven, Connecticut (M.H.)
| | - Mihaly Hajos
- Biogen, Cambridge, Massachusetts (C.A.H., H.N.); Charles River Laboratories Cleveland, Inc., Cleveland, Ohio (Y.K.); Neuroservice, Aix-en-Provence, France (A.S., A.B., B.B.); and Department of Comparative Medicine, Yale University, New Haven, Connecticut (M.H.)
| |
Collapse
|
15
|
Pajouhesh H, Beckley JT, Delwig A, Hajare HS, Luu G, Monteleone D, Zhou X, Ligutti J, Amagasu S, Moyer BD, Yeomans DC, Du Bois J, Mulcahy JV. Discovery of a selective, state-independent inhibitor of Na V1.7 by modification of guanidinium toxins. Sci Rep 2020; 10:14791. [PMID: 32908170 PMCID: PMC7481244 DOI: 10.1038/s41598-020-71135-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.
Collapse
Affiliation(s)
- H Pajouhesh
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J T Beckley
- SiteOne Therapeutics, Bozeman, MT, 59715, USA
| | - A Delwig
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - H S Hajare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - G Luu
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - D Monteleone
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - X Zhou
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J Ligutti
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - S Amagasu
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - B D Moyer
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - D C Yeomans
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - J V Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA.
| |
Collapse
|
16
|
Labau JIR, Estacion M, Tanaka BS, de Greef BTA, Hoeijmakers JGJ, Geerts M, Gerrits MM, Smeets HJM, Faber CG, Merkies ISJ, Lauria G, Dib-Hajj SD, Waxman SG. Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy. Brain 2020; 143:771-782. [PMID: 32011655 PMCID: PMC7089662 DOI: 10.1093/brain/awaa016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Small fibre neuropathy is a common pain disorder, which in many cases fails to respond to treatment with existing medications. Gain-of-function mutations of voltage-gated sodium channel Nav1.7 underlie dorsal root ganglion neuronal hyperexcitability and pain in a subset of patients with small fibre neuropathy. Recent clinical studies have demonstrated that lacosamide, which blocks sodium channels in a use-dependent manner, attenuates pain in some patients with Nav1.7 mutations; however, only a subgroup of these patients responded to the drug. Here, we used voltage-clamp recordings to evaluate the effects of lacosamide on five Nav1.7 variants from patients who were responsive or non-responsive to treatment. We show that, at the clinically achievable concentration of 30 μM, lacosamide acts as a potent sodium channel inhibitor of Nav1.7 variants carried by responsive patients, via a hyperpolarizing shift of voltage-dependence of both fast and slow inactivation and enhancement of use-dependent inhibition. By contrast, the effects of lacosamide on slow inactivation and use-dependence in Nav1.7 variants from non-responsive patients were less robust. Importantly, we found that lacosamide selectively enhances fast inactivation only in variants from responders. Taken together, these findings begin to unravel biophysical underpinnings that contribute to responsiveness to lacosamide in patients with small fibre neuropathy carrying select Nav1.7 variants.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.,Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Brian S Tanaka
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Bianca T A de Greef
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Margot Geerts
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ingemar S J Merkies
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neurology, St. Elisabeth Hospital, Willemstad, Curaçao
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
17
|
Grubinska B, Chen L, Alsaloum M, Rampal N, Matson DJ, Yang C, Taborn K, Zhang M, Youngblood B, Liu D, Galbreath E, Allred S, Lepherd M, Ferrando R, Kornecook TJ, Lehto SG, Waxman SG, Moyer BD, Dib-Hajj S, Gingras J. Rat Na V1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers. Mol Pain 2020; 15:1744806919881846. [PMID: 31550995 PMCID: PMC6831982 DOI: 10.1177/1744806919881846] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recapitulating human disease pathophysiology using genetic animal models is a
powerful approach to enable mechanistic understanding of genotype–phenotype
relationships for drug development. NaV1.7 is a sodium channel
expressed in the peripheral nervous system with strong human genetic validation
as a pain target. Efforts to identify novel analgesics that are nonaddictive
resulted in industry exploration of a class of sulfonamide compounds that bind
to the fourth voltage-sensor domain of NaV1.7. Due to sequence
differences in this region, sulfonamide blockers generally are potent on human
but not rat NaV1.7 channels. To test sulfonamide-based chemical
matter in rat models of pain, we generated a humanized NaV1.7 rat
expressing a chimeric NaV1.7 protein containing the
sulfonamide-binding site of the human gene sequence as a replacement for the
equivalent rat sequence. Unexpectedly, upon transcription, the human insert was
spliced out, resulting in a premature stop codon. Using a validated antibody,
NaV1.7 protein was confirmed to be lost in the brainstem, dorsal
root ganglia, sciatic nerve, and gastrointestinal tissue but not in nasal
turbinates or olfactory bulb in rats homozygous for the knock-in allele
(HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with
reduced tetrodotoxin-sensitive current density and action potential firing in
small diameter dorsal root ganglia neurons. HOM-KI rats did not exhibit
nociceptive pain responses in hot plate or capsaicin-induced flinching assays
and did not exhibit neuropathic pain responses following spinal nerve ligation.
Consistent with expression of chimeric NaV1.7 in olfactory tissue,
HOM-KI rats retained olfactory function. This new genetic model highlights the
necessity of NaV1.7 for pain behavior in rats and indicates that
sufficient inhibition of NaV1.7 in humans may reduce pain in
neuropathic conditions. Due to preserved olfactory function, this rat model
represents an alternative to global NaV1.7 knockout mice that require
time-intensive hand feeding during early postnatal development.
Collapse
Affiliation(s)
- B Grubinska
- Neuroscience Department, Amgen Research, Cambridge, MA, USA.,Voyager Therapeutics, Cambridge, MA, USA
| | - L Chen
- Department of Neurology, Yale University, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA
| | - M Alsaloum
- Department of Neurology, Yale University, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - N Rampal
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, USA
| | - D J Matson
- Neuroscience Department, Amgen Research, Cambridge, MA, USA
| | - C Yang
- Neuroscience Department, Amgen Research, Cambridge, MA, USA
| | - K Taborn
- Neuroscience Department, Amgen Research, Cambridge, MA, USA.,Wave Life Sciences, Ltd, Cambridge, MA, USA
| | - M Zhang
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, USA
| | - B Youngblood
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, USA
| | - D Liu
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, USA
| | - E Galbreath
- Comparative Biology and Safety Sciences, Amgen Research, Cambridge, MA, USA.,Takeda Pharmaceutical Company Ltd, Cambridge, MA, USA
| | - S Allred
- Comparative Biology and Safety Sciences, Amgen Research, South San Francisco, CA, USA.,Seattle Genetics, Bothell, WA, USA
| | - M Lepherd
- Comparative Biology and Safety Sciences, Amgen Research, South San Francisco, CA, USA.,Genentech, Inc. South San Francisco, CA, USA
| | - R Ferrando
- Comparative Biology and Safety Sciences, Amgen Research, South San Francisco, CA, USA.,AbbVie Stemcentrx, Inc., South San Francisco, CA, USA
| | - T J Kornecook
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, USA.,Biogen Inc., Cambridge, MA, USA
| | - S G Lehto
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, USA
| | - S G Waxman
- Department of Neurology, Yale University, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA
| | - B D Moyer
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, USA
| | - S Dib-Hajj
- Department of Neurology, Yale University, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA
| | - J Gingras
- Neuroscience Department, Amgen Research, Cambridge, MA, USA.,Homology Medicine Inc., Bedford, MA, USA
| |
Collapse
|
18
|
Jo S, Bean BP. Lidocaine Binding Enhances Inhibition of Nav1.7 Channels by the Sulfonamide PF-05089771. Mol Pharmacol 2020; 97:377-383. [PMID: 32193331 PMCID: PMC7237866 DOI: 10.1124/mol.119.118380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/27/2020] [Indexed: 11/22/2022] Open
Abstract
PF-05089771 is an aryl sulfonamide Nav1.7 channel blocker that binds to the inactivated state of Nav1.7 channels with high affinity but binds only weakly to channels in the resting state. Such aryl sulfonamide Nav1.7 channel blockers bind to the extracellular surface of the S1-S4 voltage-sensor segment of homologous Domain 4, whose movement is associated with inactivation. This binding site is different from that of classic sodium channel inhibitors like lidocaine, which also bind with higher affinity to the inactivated state than the resting state but bind at a site within the pore of the channel. The common dependence on gating state with distinct binding sites raises the possibility that inhibition by aryl sulfonamides and by classic local anesthetics might show an interaction mediated by their mutual state dependence. We tested this possibility by examining the state-dependent inhibition by PF-05089771 and lidocaine of human Nav1.7 channels expressed in human embryonic kidney 293 cells. At -80 mV, where a small fraction of channels are in an inactivated state under drug-free conditions, inhibition by PF-05089771 was both enhanced and speeded in the presence of lidocaine. The results suggest that lidocaine binding to the channel enhances PF-05089771 inhibition by altering the equilibrium between resting states (with D4S4 in the inner position) and inactivated states (with D4S4 in the outer position). The gating state-mediated interaction between the compounds illustrates a principle applicable to many state-dependent agents. SIGNIFICANCE STATEMENT: The results show that lidocaine enhances the degree and rate of inhibition of Nav1.7 channels by the aryl sulfonamide compound PF-05089771, consistent with state-dependent binding by lidocaine increasing the fraction of channels presenting a high-affinity binding site for PF-05089771 and suggesting that combinations of agents targeted to the pore-region binding site of lidocaine and the external binding site of aryl sulfonamides may have synergistic actions.
Collapse
Affiliation(s)
- Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Zhang H, Moyer BD, Yu V, McGivern JG, Jarosh M, Werley CA, Hecht VC, Babcock RJ, Dong K, Dempsey GT, McManus OB, Hempel CM. Correlation of Optical and Automated Patch Clamp Electrophysiology for Identification of Na V1.7 Inhibitors. SLAS DISCOVERY 2020; 25:434-446. [PMID: 32292096 DOI: 10.1177/2472555220914532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The voltage-gated sodium channel Nav1.7 is a genetically validated target for pain; pharmacological blockers are promising as a new class of nonaddictive therapeutics. The search for Nav1.7 subtype selective inhibitors requires a reliable, scalable, and sensitive assay. Previously, we developed an all-optical electrophysiology (Optopatch) Spiking HEK platform to study activity-dependent modulation of Nav1.7 in a format compatible with high-throughput screening. In this study, we benchmarked the Optopatch Spiking HEK assay with an existing validated automated electrophysiology assay on the IonWorks Barracuda (IWB) platform. In a pilot screen of 3520 compounds, which included compound plates from a random library as well as compound plates enriched for Nav1.7 inhibitors, the Optopatch Spiking HEK assay identified 174 hits, of which 143 were confirmed by IWB. The Optopatch Spiking HEK assay maintained the high reliability afforded by traditional fluorescent assays and further demonstrated comparable sensitivity to IWB measurements. We speculate that the Optopatch assay could provide an affordable high-throughput screening platform to identify novel Nav1.7 subtype selective inhibitors with diverse mechanisms of action, if coupled with a multiwell parallel optogenetic recording instrument.
Collapse
Affiliation(s)
| | - Bryan D Moyer
- Neuroscience, Amgen Research, Thousand Oaks, CA, USA
| | - Violeta Yu
- Neuroscience, Amgen Research, Cambridge, MA, USA
| | - Joseph G McGivern
- Discovery Technologies, Amgen Research, South San Francisco, CA, USA
| | | | | | - Vivian C Hecht
- Q-State Biosciences, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan J Babcock
- Q-State Biosciences, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Dong
- Q-State Biosciences, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Chris M Hempel
- Q-State Biosciences, Cambridge, MA, USA.,Expressive Neuroscience, Syracuse, NY, USA
| |
Collapse
|
20
|
Wang JT, Zheng YM, Chen YT, Gu M, Gao ZB, Nan FJ. Discovery of aryl sulfonamide-selective Nav1.7 inhibitors with a highly hydrophobic ethanoanthracene core. Acta Pharmacol Sin 2020; 41:293-302. [PMID: 31316182 PMCID: PMC7471454 DOI: 10.1038/s41401-019-0267-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/30/2019] [Indexed: 01/19/2023]
Abstract
Nav1.7 channels are mainly distributed in the peripheral nervous system. Blockade of Nav1.7 channels with small-molecule inhibitors in humans might provide pain relief without affecting the central nervous system. Based on the facts that many reported Nav1.7-selective inhibitors contain aryl sulfonamide fragments, as well as a tricyclic antidepressant, maprotiline, has been found to inhibit Nav1.7 channels, we designed and synthesized a series of compounds with ethanoanthracene and aryl sulfonamide moieties. Their inhibitory activity on sodium channels were detected with electrophysiological techniques. We found that compound 10o potently inhibited Nav1.7 channels stably expressed in HEK293 cells (IC50 = 0.64 ± 0.30 nmol/L) and displayed a high Nav1.7/Nav1.5 selectivity. In mouse small-sized dorsal root ganglion neurons, compound 10o (10, 100 nmol/L) dose-dependently decreased the sodium currents and dramatically suppressed depolarizing current-elicited neuronal discharge. Preliminary in vivo experiments showed that compound 10o possessed good analgesic activity: in a mouse visceral pain model, administration of compound 10o (30−100 mg/kg, i.p.) effectively and dose-dependently suppressed acetic acid-induced writhing.
Collapse
|
21
|
Complementary roles of murine Na V1.7, Na V1.8 and Na V1.9 in acute itch signalling. Sci Rep 2020; 10:2326. [PMID: 32047194 PMCID: PMC7012836 DOI: 10.1038/s41598-020-59092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7−/− showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8−/− impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.
Collapse
|
22
|
Lee S, Jo S, Talbot S, Zhang HXB, Kotoda M, Andrews NA, Puopolo M, Liu PW, Jacquemont T, Pascal M, Heckman LM, Jain A, Lee J, Woolf CJ, Bean BP. Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation. eLife 2019; 8:48118. [PMID: 31765298 PMCID: PMC6877086 DOI: 10.7554/elife.48118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.
Collapse
Affiliation(s)
- Seungkyu Lee
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | | | - Masakazu Kotoda
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Nick A Andrews
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, United States
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thomas Jacquemont
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Maud Pascal
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Laurel M Heckman
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Aakanksha Jain
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Jinbo Lee
- Sage Partner International, Andover, United States
| | - Clifford J Woolf
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
23
|
Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Bois JD, Hunter JC. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na V1.7. J Med Chem 2019; 62:8695-8710. [PMID: 31012583 PMCID: PMC6786914 DOI: 10.1021/acs.jmedchem.8b01906] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Voltage-gated sodium ion channel subtype 1.7 (NaV1.7) is a high interest target for the discovery of non-opioid analgesics. Compelling evidence from human genetic data, particularly the finding that persons lacking functional NaV1.7 are insensitive to pain, has spurred considerable effort to develop selective inhibitors of this Na+ ion channel target as analgesic medicines. Recent clinical setbacks and disappointing performance of preclinical compounds in animal pain models, however, have led to skepticism around the potential of selective NaV1.7 inhibitors as human therapeutics. In this Perspective, we discuss the attributes and limitations of recently disclosed investigational drugs targeting NaV1.7 and review evidence that, by better understanding the requirements for selectivity and target engagement, the opportunity to deliver effective analgesic medicines targeting NaV1.7 endures.
Collapse
Affiliation(s)
- John V. Mulcahy
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Hassan Pajouhesh
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Jacob T. Beckley
- SiteOne Therapeutics, 351 Evergreen Drive, Suite B1, Bozeman, MT 59715
| | - Anton Delwig
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - J. Du Bois
- Stanford University, Lokey Chemistry and Biology, 337 Campus Drive, Stanford, CA 94305
| | - John C. Hunter
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| |
Collapse
|
24
|
Ma RSY, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S, Mohammed R. Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res 2019; 12:2709-2722. [PMID: 31564962 PMCID: PMC6743634 DOI: 10.2147/jpr.s207610] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Being maladaptive and frequently unresponsive to pharmacotherapy, chronic pain presents a major unmet clinical need. While an intact central nervous system is required for conscious pain perception, nociceptor hyperexcitability induced by nerve injury in the peripheral nervous system (PNS) is sufficient and necessary to initiate and maintain neuropathic pain. The genesis and propagation of action potentials is dependent on voltage-gated sodium channels, in particular, Nav1.7, Nav1.8 and Nav1.9. However, nerve injury triggers changes in their distribution, expression and/or biophysical properties, leading to aberrant excitability. Most existing treatment for pain relief acts through non-selective, state-dependent sodium channel blockage and have narrow therapeutic windows. Natural toxins and developing subtype-specific and molecular-specific sodium channel blockers show promise for treatment of neuropathic pain with minimal side effects. New approaches to analgesia include combination therapy and gene therapy. Here, we review how individual sodium channel subtypes contribute to pain, and the attempts made to develop more effective analgesics for the treatment of chronic pain.
Collapse
Affiliation(s)
- Renee Siu Yu Ma
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kayani Kayani
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Liu J, Tan H, Yang W, Yao S, Hong L. The voltage-gated sodium channel Na v1.7 associated with endometrial cancer. J Cancer 2019; 10:4954-4960. [PMID: 31598168 PMCID: PMC6775510 DOI: 10.7150/jca.31544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Endometrial cancer is the most common gynecologic malignancy in women in the developed countries. Despite recent progress in functional characterization of voltage-gated sodium channel (Nav) in multiple cancers, very little was known about the expression of Nav in human endometrial cancer. The present study sought to determine the role of Nav and molecular nature of this channel in the endometrial cancer. Methods: PCR approach was introduced to determine expression level of Nav subunits in endometrial cancer specimens. Pharmacological agents were used to investigate Nav function in endometrial cancer cells. Flow cytometry were used to test cancer apoptosis, and invasion assays were applied to test tumor metastasis. Results: Transcriptional levels of the all Nav α and β subunits were determined by real time-PCR in endometrial cancer with pair tissues of carcinoma and adjacent nonneoplastic tissue, Nav1.7 was the most highly expressed Nav subtype in endometrial cancer tissues. Nav1.7 level was closely associated with tumor size, local lymph node metastasis, and 5-year and 10-year survival ratio. Inhibition of this channel by Nav1.7 blocker PF-05089771, promoted cancer apoptosis and attenuated cancer cell invasion. Conclusion: These results establish a relationship between voltage-gated sodium channel protein and endometrial cancer, and suggest that Nav1.7 is a potential prognostic biomarker and could serve as a novel therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Junxiu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wancai Yang
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liang Hong
- Institute of Precision Medicine, Jining Medical University, Jining, China
| |
Collapse
|
26
|
Tetrodotoxin-Sensitive Sodium Channels Mediate Action Potential Firing and Excitability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons. J Neurosci 2019; 39:7086-7101. [PMID: 31300524 DOI: 10.1523/jneurosci.2817-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Small-diameter vesicular glutamate transporter 3-lineage (Vglut3lineage) dorsal root ganglion (DRG) neurons play an important role in mechanosensation and thermal hypersensitivity; however, little is known about their intrinsic electrical properties. We therefore set out to investigate mechanisms of excitability within this population. Calcium microfluorimetry analysis of male and female mouse DRG neurons demonstrated that the cooling compound menthol selectively activates a subset of Vglut3lineage neurons. Whole-cell recordings showed that small-diameter Vglut3lineage DRG neurons fire menthol-evoked action potentials and exhibited robust, transient receptor potential melastatin 8 (TRPM8)-dependent discharges at room temperature. This heightened excitability was confirmed by current-clamp and action potential phase-plot analyses, which showed menthol-sensitive Vglut3lineage neurons to have more depolarized membrane potentials, lower firing thresholds, and higher evoked firing frequencies compared with menthol-insensitive Vglut3lineage neurons. A biophysical analysis revealed voltage-gated sodium channel (NaV) currents in menthol-sensitive Vglut3lineage neurons were resistant to entry into slow inactivation compared with menthol-insensitive neurons. Multiplex in situ hybridization showed similar distributions of tetrodotoxin (TTX)-sensitive NaV transcripts between TRPM8-positive and -negative Vglut3lineage neurons; however, NaV1.8 transcripts, which encode TTX-resistant channels, were more prevalent in TRPM8-negative neurons. Conversely, pharmacological analyses identified distinct functional contributions of NaV subunits, with NaV1.1 driving firing in menthol-sensitive neurons, whereas other small-diameter Vglut3lineage neurons rely primarily on TTX-resistant NaV channels. Additionally, when NaV1.1 channels were blocked, the remaining NaV current readily entered into slow inactivation in menthol-sensitive Vglut3lineage neurons. Thus, these data demonstrate that TTX-sensitive NaVs drive action potential firing in menthol-sensitive sensory neurons and contribute to their heightened excitability.SIGNIFICANCE STATEMENT Somatosensory neurons encode various sensory modalities including thermoreception, mechanoreception, nociception, and itch. This report identifies a previously unknown requirement for tetrodotoxin-sensitive sodium channels in action potential firing in a discrete subpopulation of small-diameter sensory neurons that are activated by the cooling agent menthol. Together, our results provide a mechanistic understanding of factors that control intrinsic excitability in functionally distinct subsets of peripheral neurons. Furthermore, as menthol has been used for centuries as an analgesic and anti-pruritic, these findings support the viability of NaV1.1 as a therapeutic target for sensory disorders.
Collapse
|
27
|
Xu L, Ding X, Wang T, Mou S, Sun H, Hou T. Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today 2019; 24:1389-1397. [PMID: 31129313 DOI: 10.1016/j.drudis.2019.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Voltage-gated sodium channels (VGSCs), formed by 24 transmembrane segments arranged into four domains, have a key role in the initiation and propagation of electrical signaling in excitable cells. VGSCs are involved in a variety of diseases, including epilepsy, cardiac arrhythmias, and neuropathic pain, and therefore have been regarded as appealing therapeutic targets for the development of anticonvulsant, antiarrhythmic, and local anesthetic drugs. In this review, we discuss recent advances in understanding the structures and biological functions of VGSCs. In addition, we systematically summarize eight pharmacologically distinct ligand-binding sites in VGSCs and representative isoform-selective VGSC modulators in clinical trials. Finally, we review studies on molecular modeling and computer-aided drug design (CADD) for VGSCs to help understanding of biological processes involving VGSCs.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoqin Ding
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China
| | - Tianhu Wang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shanzhi Mou
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Selective NaV1.7 Antagonists with Long Residence Time Show Improved Efficacy against Inflammatory and Neuropathic Pain. Cell Rep 2018; 24:3133-3145. [DOI: 10.1016/j.celrep.2018.08.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/26/2018] [Accepted: 08/22/2018] [Indexed: 11/21/2022] Open
|
29
|
Colley CS, England E, Linley JE, Wilkinson TCI. Screening Strategies for the Discovery of Ion Channel Monoclonal Antibodies. ACTA ACUST UNITED AC 2018; 82:e44. [DOI: 10.1002/cpph.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - John E. Linley
- Neuroscience, IMED Biotech Unit, AstraZeneca; Cambridge United Kingdom
| | | |
Collapse
|
30
|
|
31
|
Zheng YM, Wang WF, Li YF, Yu Y, Gao ZB. Enhancing inactivation rather than reducing activation of Nav1.7 channels by a clinically effective analgesic CNV1014802. Acta Pharmacol Sin 2018; 39:587-596. [PMID: 29094728 PMCID: PMC5888685 DOI: 10.1038/aps.2017.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/03/2017] [Indexed: 12/16/2022]
Abstract
The Nav1.7 channel represents a promising target for pain relief. In the recent decades, a number of Nav1.7 channel inhibitors have been developed. According to the effects on channel kinetics, these inhibitors could be divided into two major classes: reducing activation or enhancing inactivation. To date, however, only several inhibitors have moved forward into phase 2 clinical trials and most of them display a less than ideal analgesic efficacy, thus intensifying the controversy regarding if an ideal candidate should preferentially affect the activation or inactivation state. In the present study, we investigated the action mechanisms of a recently clinically confirmed inhibitor CNV1014802 using both electrophysiology and site-directed mutagenesis. We found that CNV1014802 inhibited Nav1.7 channels through stabilizing a nonconductive inactivated state. When the cells expressing Nav1.7 channels were hold at 70 mV or 120 mV, the half maximal inhibitory concentration (IC50) values (with 95% confidence limits) were 1.77 (1.20-2.33) and 71.66 (46.85-96.48) μmol/L, respectively. This drug caused dramatic hyperpolarizing shift of channel inactivation but did not affect activation. Moreover, CNV1014802 accelerated the onset of inactivation and delayed the recovery from inactivation. Notably, application of CNV1014802 (30 μmol/L) could rescue the Nav1.7 mutations expressed in CHO cells that cause paroxysmal extreme pain disorder (PEPD), thereby restoring the impaired inactivation to those of the wild-type channel. Our study demonstrates that CNV1014802 enhances the inactivation but does not reduce the activation of Nav1.7 channels, suggesting that identifying inhibitors that preferentially affect inactivation is a promising approach for developing drugs targeting Nav1.7.
Collapse
Affiliation(s)
- Yue-ming Zheng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wan-fu Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan-fen Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yong Yu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-bing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
32
|
Physical basis of specificity and delayed binding of a subtype selective sodium channel inhibitor. Sci Rep 2018; 8:1356. [PMID: 29358762 PMCID: PMC5778059 DOI: 10.1038/s41598-018-19850-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Nerve and muscle signalling is controlled by voltage-gated sodium (Nav) channels which are the targets of local anesthetics, anti-epileptics and anti-arrythmics. Current medications do not selectively target specific types of Nav found in the body, but compounds that do so have the potential to be breakthrough treatments for chronic pain, epilepsy and other neuronal disorders. We use long computer simulations totaling more than 26 μs to show how a promising lead compound can target one Nav implicated in pain perception and specific channels found in bacteria, and accurately predict the affinity of the compound to different channel types. Most importantly, we provide two explanations for the slow kinetics of this class of compound that limits their therapeutic utility. Firstly, the negative charge on the compound is essential for high affinity binding but is also responsible for energetic barriers that slow binding. Secondly, the compound has to undergo a conformational reorientation during the binding process. This knowledge aids the design of compounds affecting specific eukaryotic and bacterial channels and suggests routes for future drug development.
Collapse
|
33
|
Swain NA, Batchelor D, Beaudoin S, Bechle BM, Bradley PA, Brown AD, Brown B, Butcher KJ, Butt RP, Chapman ML, Denton S, Ellis D, Galan SRG, Gaulier SM, Greener BS, de Groot MJ, Glossop MS, Gurrell IK, Hannam J, Johnson MS, Lin Z, Markworth CJ, Marron BE, Millan DS, Nakagawa S, Pike A, Printzenhoff D, Rawson DJ, Ransley SJ, Reister SM, Sasaki K, Storer RI, Stupple PA, West CW. Discovery of Clinical Candidate 4-[2-(5-Amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and Optimization of Diaryl Ether Aryl Sulfonamides as Selective Inhibitors of NaV1.7. J Med Chem 2017; 60:7029-7042. [DOI: 10.1021/acs.jmedchem.7b00598] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Serge Beaudoin
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | - Bruce M. Bechle
- Worldwide
Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | | | | | | | | | | | - Mark L. Chapman
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | | | | | | | | | | | | | - Matthew S. Johnson
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | - Zhixin Lin
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | - Brian E. Marron
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | - David Printzenhoff
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | - Steven M. Reister
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | - Christopher W. West
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| |
Collapse
|
34
|
Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP, Jarosh M, Johnson D, Lee JH, Lehto SG, Ligutti J, Liu D, Luther J, Matson D, Ortuno D, Roberts J, Taborn K, Wang J, Weiss MM, Yu V, Zhu DXD, Fremeau RT, Moyer BD. Pharmacologic Characterization of AMG8379, a Potent and Selective Small Molecule Sulfonamide Antagonist of the Voltage-Gated Sodium Channel Na V1.7. J Pharmacol Exp Ther 2017; 362:146-160. [PMID: 28473457 DOI: 10.1124/jpet.116.239590] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/03/2017] [Indexed: 03/08/2025] Open
Abstract
Potent and selective antagonists of the voltage-gated sodium channel NaV1.7 represent a promising avenue for the development of new chronic pain therapies. We generated a small molecule atropisomer quinolone sulfonamide antagonist AMG8379 and a less active enantiomer AMG8380. Here we show that AMG8379 potently blocks human NaV1.7 channels with an IC50 of 8.5 nM and endogenous tetrodotoxin (TTX)-sensitive sodium channels in dorsal root ganglion (DRG) neurons with an IC50 of 3.1 nM in whole-cell patch clamp electrophysiology assays using a voltage protocol that interrogates channels in a partially inactivated state. AMG8379 was 100- to 1000-fold selective over other NaV family members, including NaV1.4 expressed in muscle and NaV1.5 expressed in the heart, as well as TTX-resistant NaV channels in DRG neurons. Using an ex vivo mouse skin-nerve preparation, AMG8379 blocked mechanically induced action potential firing in C-fibers in both a time-dependent and dose-dependent manner. AMG8379 similarly reduced the frequency of thermally induced C-fiber spiking, whereas AMG8380 affected neither mechanical nor thermal responses. In vivo target engagement of AMG8379 in mice was evaluated in multiple NaV1.7-dependent behavioral endpoints. AMG8379 dose-dependently inhibited intradermal histamine-induced scratching and intraplantar capsaicin-induced licking, and reversed UVB radiation skin burn-induced thermal hyperalgesia; notably, behavioral effects were not observed with AMG8380 at similar plasma exposure levels. AMG8379 is a potent and selective NaV1.7 inhibitor that blocks sodium current in heterologous cells as well as DRG neurons, inhibits action potential firing in peripheral nerve fibers, and exhibits pharmacodynamic effects in translatable models of both itch and pain.
Collapse
Affiliation(s)
- Thomas J Kornecook
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Ruoyuan Yin
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Stephen Altmann
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Xuhai Be
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Virginia Berry
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Christopher P Ilch
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Michael Jarosh
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Danielle Johnson
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Josie H Lee
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Sonya G Lehto
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Joseph Ligutti
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Dong Liu
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Jason Luther
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - David Matson
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Danny Ortuno
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - John Roberts
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Kristin Taborn
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Jinti Wang
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Matthew M Weiss
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Violeta Yu
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Dawn X D Zhu
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Robert T Fremeau
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| | - Bryan D Moyer
- Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California
| |
Collapse
|
35
|
Flinspach M, Xu Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, Liu Y, Neff RA, Freedman J, Eckert WA, Zhou M, Bonesteel R, Pennington MW, Eddinger KA, Yaksh TL, Hunter M, Swanson RV, Wickenden AD. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci Rep 2017; 7:39662. [PMID: 28045073 PMCID: PMC5206724 DOI: 10.1038/srep39662] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/25/2016] [Indexed: 12/27/2022] Open
Abstract
Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain.
Collapse
Affiliation(s)
- M Flinspach
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Q Xu
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A D Piekarz
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Fellows
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Hagan
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A Gibbs
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Y Liu
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R A Neff
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - J Freedman
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - W A Eckert
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - M Zhou
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Bonesteel
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | - K A Eddinger
- University of California, San Diego, Department Anesthesiology and Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA
| | - T L Yaksh
- University of California, San Diego, Department Anesthesiology and Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA
| | - M Hunter
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R V Swanson
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A D Wickenden
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| |
Collapse
|