1
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
2
|
Wang EJY, Chen IH, Kuo BYT, Yu CC, Lai MT, Lin JT, Lin LYT, Chen CM, Hwang T, Sheu JJC. Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules 2022; 12:biom12121862. [PMID: 36551290 PMCID: PMC9775460 DOI: 10.3390/biom12121862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., β-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.
Collapse
Affiliation(s)
- Evan Ja-Yang Wang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - I-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 403301, Taiwan
| | - Jen-Tai Lin
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
| | - Leo Yen-Ting Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 7102)
| |
Collapse
|
3
|
Divya G, Madhura R, Khetan V, Rishi P, Narayanan J. Understanding the mechano and chemo response of retinoblastoma tumor cells. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Abstract
Caveolae are bulb-like invaginations made up of two essential structural proteins, caveolin-1 and cavins, which are abundantly present at the plasma membrane of vertebrate cells. Since their discovery more than 60 years ago, the function of caveolae has been mired in controversy. The last decade has seen the characterization of new caveolae components and regulators together with the discovery of additional cellular functions that have shed new light on these enigmatic structures. Early on, caveolae and/or caveolin-1 have been involved in the regulation of several parameters associated with cancer progression such as cell migration, metastasis, angiogenesis, or cell growth. These studies have revealed that caveolin-1 and more recently cavin-1 have a dual role with either a negative or a positive effect on most of these parameters. The recent discovery that caveolae can act as mechanosensors has sparked an array of new studies that have addressed the mechanobiology of caveolae in various cellular functions. This review summarizes the current knowledge on caveolae and their role in cancer development through their activity in membrane tension buffering. We propose that the role of caveolae in cancer has to be revisited through their response to the mechanical forces encountered by cancer cells during tumor mass development.
Collapse
Affiliation(s)
- Vibha Singh
- UMR3666, INSERM U1143, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS, 75005, Paris, France
| | - Christophe Lamaze
- UMR3666, INSERM U1143, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS, 75005, Paris, France.
| |
Collapse
|
5
|
Involvement of the FAK Network in Pathologies Related to Altered Mechanotransduction. Int J Mol Sci 2020; 21:ijms21249426. [PMID: 33322030 PMCID: PMC7764271 DOI: 10.3390/ijms21249426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Mechanotransduction is a physiological process in which external mechanical stimulations are perceived, interpreted, and translated by cells into biochemical signals. Mechanical stimulations exerted by extracellular matrix stiffness and cell–cell contacts are continuously applied to living cells, thus representing a key pivotal trigger for cell homeostasis, survival, and function, as well as an essential factor for proper organ development and metabolism. Indeed, a deregulation of the mechanotransduction process consequent to gene mutations or altered functions of proteins involved in perceiving cellular and extracellular mechanics can lead to a broad range of diseases, from muscular dystrophies and cardiomyopathies to cancer development and metastatization. Here, we recapitulate the involvement of focal adhesion kinase (FAK) in the cellular conditions deriving from altered mechanotransduction processes.
Collapse
|
6
|
Zhang J, Gao S, Zheng Q, Kang Y, Li J, Zhang S, Shang C, Tan X, Ren W, Ma Y. A Novel Model Incorporating Tumor Stiffness, Blood Flow Characteristics, and Ki-67 Expression to Predict Responses After Neoadjuvant Chemotherapy in Breast Cancer. Front Oncol 2020; 10:603574. [PMID: 33364197 PMCID: PMC7753215 DOI: 10.3389/fonc.2020.603574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To investigate the ability of tumor stiffness, tumor blood flow, and Ki-67 expression alone or in combination in predicting the pathological response to neoadjuvant chemotherapy (NACT) in breast cancer. PATIENTS AND METHODS This prospective cohort study included 145 breast cancer patients treated with NACT. Tumor stiffness (maximum stiffness (Emax), mean stiffness (Emean)), blood score (BS), and their relative changes, were evaluated before (t0), during (t1-t5), and at the end of NACT (t6) by shear-wave elastography and optical imaging. Ki-67 expression was quantitatively evaluated by immunohistochemistry using core biopsy specimens obtained before NACT. Pathological responses were evaluated by residual cancer burden. The ability of tumor stiffness, BS, Ki-67, and predRCB-which combined ΔEmean (t2) (the relative changes in Emean after the second NACT cycle), BS2 (BS after the second NACT cycle), and Ki-67-in predicting tumor responses was compared using receiver operating characteristic curves and the Z-test. RESULTS Tumor stiffness and BS decreased during NACT. ΔEmean (t2), BS2, and Ki-67 had better predictive performance than other indexes in identifying a favorable response (AUC = 0.82, 0.81, and 0.80) and resistance responses (AUC = 0.85, 0.79, and 0.84), with no significant differences between the three (p > 0.05). PredRCB had better predictive performance than any parameter alone for a favorable response (AUC = 0.90) and resistance (AUC = 0.93). CONCLUSION Tumor stiffness, BS, and Ki-67 expression showed good and similar abilities for predicting the pathological response to NACT, and predRCB was a significantly better predictor than each index alone. These results may help design therapeutic strategies for breast cancer patients undergoing NACT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiaojin Zheng
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianyi Li
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuo Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cong Shang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueying Tan
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Ma
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB, Yang J. Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a Mechanoresponsive EPHA2/LYN Complex. Dev Cell 2020; 54:302-316.e7. [PMID: 32574556 DOI: 10.1016/j.devcel.2020.05.031] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) regulate various cellular processes via distinct mechanotransduction pathways. In breast cancer, increased ECM stiffness promotes epithelial-to-mesenchymal transition (EMT), cell invasion, and metastasis. Here, we identify a mechanosensitive EPHA2/LYN protein complex regulating EMT and metastasis in response to increasing ECM stiffness during tumor progression. High ECM stiffness leads to ligand-independent phosphorylation of ephrin receptor EPHA2, which recruits and activates the LYN kinase. LYN phosphorylates the EMT transcription factor TWIST1 to release TWIST1 from its cytoplasmic anchor G3BP2 to enter the nucleus, thus triggering EMT and invasion. Genetic and pharmacological inhibition of this pathway prevents breast tumor invasion and metastasis in vivo. In human breast cancer samples, activation of this pathway correlates with collagen fiber alignment, a marker of increasing ECM stiffness. Our findings reveal an EPHA2/LYN/TWIST1 mechanotransduction pathway that responds to mechanical signals from the tumor microenvironment to drive EMT, invasion, and metastasis.
Collapse
Affiliation(s)
- Laurent Fattet
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hae-Yun Jung
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, La Jolla, CA 92037, USA
| | - Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Albert C Chen
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, La Jolla, CA 92037, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, Department of Pediatrics, University of California, San Diego, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Zhang J, Zhang S, Gao S, Ma Y, Tan X, Kang Y, Ren W. HIF-1α, TWIST-1 and ITGB-1, associated with Tumor Stiffness, as Novel Predictive Markers for the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Manag Res 2020; 12:2209-2222. [PMID: 32273760 PMCID: PMC7102918 DOI: 10.2147/cmar.s246349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the relationship between hypoxia-inducible factor 1-alpha (HIF-1α), Twist family BHLH transcription factor 1 (TWIST-1), and β1 integrin (ITGB-1) expression and tumor stiffness, and evaluate performance of HIF-1α, TWIST-1, and ITGB-1 alone and in combination with Ki-67 for predicting pathological responses to neoadjuvant chemotherapy (NACT) in breast cancer (BC). PATIENTS AND METHODS This was a prospective cohort study of 104 BC patients receiving NACT. Tumor stiffness and oxygen score (OS) were evaluated before NACT by shear-wave elastography and optical imaging; HIF-1α, TWIST-1, ITGB-1, and Ki-67 expression were quantitatively assessed by immunohistochemistry of paraffin-embedded tumor samples obtained by core needle biopsy. Indexes were compared among different residual cancer burden (RCB) groups, and associations of HIF-1α, TWIST-1, ITGB-1, and Ki-67 with tumor stiffness and OS were examined. The value of HIF-1α, TWIST-1, ITGB-1, and Ki-67, and a possible new combined index (predRCB) for predicting NACT responses was assessed by receiver operating characteristic (ROC) curves. RESULTS HIF-1α, TWIST-1, and ITGB-1 expression were positively correlated with tumor stiffness and negatively with OS. Area under the ROC curves (AUCs) measuring the performance of HIF-1α, TWIST-1, ITGB-1, and Ki-67 for predicting responses to NACT were 0.81, 0.85, 0.79, and 0.80 for favorable responses, and 0.83, 0.86, 0.84, and 0.85 for resistant responses, respectively. PredRCB showed better prediction than the other individual indexes for favorable responses (AUC = 0.88) and resistant responses (AUC = 0.92). CONCLUSION HIF-1α, TWIST-1, ITGB-1, and Ki-67 performed well in predicting favorable responses and resistance to NACT, and predRCB improved the predictive power of the individual indexes. These results support individualized treatment of BC patients receiving NACT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People’s Republic of China
| | - Shuo Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People’s Republic of China
| | - Song Gao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People’s Republic of China
| | - Yan Ma
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People’s Republic of China
| | - Xueying Tan
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People’s Republic of China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People’s Republic of China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People’s Republic of China
| |
Collapse
|
9
|
Barber J, Zhu L. Two-dimensional Finite Element Model of Breast Cancer Cell Motion Through a Microfluidic Channel. Bull Math Biol 2019; 81:1238-1259. [DOI: 10.1007/s11538-018-00557-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
|
10
|
Pratt SJP, Hernández-Ochoa EO, Lee RM, Ory EC, Lyons JS, Joca HC, Johnson A, Thompson K, Bailey P, Lee CJ, Mathias T, Vitolo MI, Trudeau M, Stains JP, Ward CW, Schneider MF, Martin SS. Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding. Oncotarget 2018; 9:25008-25024. [PMID: 29861849 PMCID: PMC5982755 DOI: 10.18632/oncotarget.25186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/03/2018] [Indexed: 01/11/2023] Open
Abstract
Aggressive cellular phenotypes such as uncontrolled proliferation and increased migration capacity engender cellular transformation, malignancy and metastasis. While genetic mutations are undisputed drivers of cancer initiation and progression, it is increasingly accepted that external factors are also playing a major role. Two recently studied modulators of breast cancer are changes in the cellular mechanical microenvironment and alterations in calcium homeostasis. While many studies investigate these factors separately in breast cancer cells, very few do so in combination. This current work sets a foundation to explore mechano-calcium relationships driving malignant progression in breast cancer. Utilizing real-time imaging of an in vitro scratch assay, we were able to resolve mechanically-sensitive calcium signaling in human breast cancer cells. We observed rapid initiation of intracellular calcium elevations within seconds in cells at the immediate wound edge, followed by a time-dependent increase in calcium in cells at distances up to 500μm from the scratch wound. Calcium signaling to neighboring cells away from the wound edge returned to baseline within seconds. Calcium elevations at the wound edge however, persisted for up to 50 minutes. Rigorous quantification showed that extracellular calcium was necessary for persistent calcium elevation at the wound edge, but intercellular signal propagation was dependent on internal calcium stores. In addition, intercellular signaling required extracellular ATP and activation of P2Y2 receptors. Through comparison of scratch-induced signaling from multiple cell lines, we report drastic reductions in response from aggressively tumorigenic and metastatic cells. The real-time scratch assay established here provides quantitative data on the molecular mechanisms that support rapid scratch-induced calcium signaling in breast cancer cells. These mechanisms now provide a clear framework for investigating which short-term calcium signals promote long-term changes in cancer cell biology.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rachel M Lee
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eleanor C Ory
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James S Lyons
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Humberto C Joca
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Johnson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keyata Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Bailey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cornell J Lee
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Trevor Mathias
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele I Vitolo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matt Trudeau
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Nursing, University of Maryland, Baltimore, MD, USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stuart S Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Frost JJ, Pienta KJ, Coffey DS. Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem. Oncotarget 2017; 9:11429-11440. [PMID: 29545909 PMCID: PMC5837760 DOI: 10.18632/oncotarget.22939] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Symmetry and symmetry breaking concepts from physics and biology are applied to the problem of cancer. Three categories of symmetry breaking in cancer are examined: combinatorial, geometric, and functional. Within these categories, symmetry breaking is examined for relevant cancer features, including epithelial-mesenchymal transition (EMT); tumor heterogeneity; tensegrity; fractal geometric and information structure; functional interaction networks; and network stabilizability and attack tolerance. The new cancer symmetry concepts are relevant to homeostasis loss in cancer and to its origin, spread, treatment and resistance. Symmetry and symmetry breaking could provide a new way of thinking and a pathway to a solution of the cancer problem.
Collapse
Affiliation(s)
- J James Frost
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medical Oncology, Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Donald S Coffey
- James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Inside the Cell: Integrins as New Governors of Nuclear Alterations? Cancers (Basel) 2017; 9:cancers9070082. [PMID: 28684679 PMCID: PMC5532618 DOI: 10.3390/cancers9070082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer cell migration is a complex process that requires coordinated structural changes and signals in multiple cellular compartments. The nucleus is the biggest and stiffest organelle of the cell and might alter its physical properties to allow cancer cell movement. Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix interactions, which regulate numerous intracellular signals and biological functions under physiological conditions. Moreover, integrins orchestrate changes in tumor cells and their microenvironment that lead to cancer growth, survival and invasiveness. Most of the research efforts have focused on targeting integrin-mediated adhesion and signaling. Recent exciting data suggest the crucial role of integrins in controlling internal cellular structures and nuclear alterations during cancer cell migration. Here we review the emerging role of integrins in nuclear biology. We highlight increasing evidence that integrins are critical for changes in multiple nuclear components, the positioning of the nucleus and its mechanical properties during cancer cell migration. Finally, we discuss how integrins are integral proteins linking the plasma membrane and the nucleus, and how they control cell migration to enable cancer invasion and infiltration. The functional connections between these cell receptors and the nucleus will serve to define new attractive therapeutic targets.
Collapse
|