1
|
Frey KM, Bertoletti N, Chan AH, Ippolito JA, Bollini M, Spasov KA, Jorgensen WL, Anderson KS. Structural Studies and Structure Activity Relationships for Novel Computationally Designed Non-nucleoside Inhibitors and Their Interactions With HIV-1 Reverse Transcriptase. Front Mol Biosci 2022; 9:805187. [PMID: 35237658 PMCID: PMC8882919 DOI: 10.3389/fmolb.2022.805187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Reverse transcriptase (RT) from the human immunodeficiency virus continues to be an attractive drug target for antiretroviral therapy. June 2022 will commemorate the 30th anniversary of the first Human Immunodeficiency Virus (HIV) RT crystal structure complex that was solved with non-nucleoside reverse transcriptase inhibitor nevirapine. The release of this structure opened opportunities for designing many families of non-nucleoside reverse transcriptase inhibitors (NNRTIs). In paying tribute to the first RT-nevirapine structure, we have developed several compound classes targeting the non-nucleoside inhibitor binding pocket of HIV RT. Extensive analysis of crystal structures of RT in complex with the compounds informed iterations of structure-based drug design. Structures of seven additional complexes were determined and analyzed to summarize key interactions with residues in the non-nucleoside inhibitor binding pocket (NNIBP) of RT. Additional insights comparing structures with antiviral data and results from molecular dynamics simulations elucidate key interactions and dynamics between the nucleotide and non-nucleoside binding sites.
Collapse
Affiliation(s)
- Kathleen M. Frey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Albert H. Chan
- Department of Chemistry, Yale University, New Haven, CT, United States
| | | | - Mariela Bollini
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Krasimir A. Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Beloor J, Kudalkar SN, Buzzelli G, Yang F, Mandl HK, Rajashekar JK, Spasov KA, Jorgensen WL, Saltzman WM, Anderson KS, Kumar P. Long-acting and extended-release implant and nanoformulations with a synergistic antiretroviral two-drug combination controls HIV-1 infection in a humanized mouse model. Bioeng Transl Med 2022; 7:e10237. [PMID: 35079625 PMCID: PMC8780078 DOI: 10.1002/btm2.10237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
The HIV pandemic has affected over 38 million people worldwide with close to 26 million currently accessing antiretroviral therapy (ART). A major challenge in the long-term treatment of HIV-1 infection is nonadherence to ART. Long-acting antiretroviral (LA-ARV) formulations, that reduce dosing frequency to less than once a day, are an urgent need that could tackle the adherence issue. Here, we have developed two LA-ART interventions, one an injectable nanoformulation, and the other, a removable implant, for the delivery of a synergistic two-drug ARV combination comprising a pre-clinical nonnucleoside reverse transcriptase inhibitor (NNRTI), Compound I, and the nucleoside reverse transcriptase inhibitor (NRTI), 4'-ethynyl-2-fluoro-2'-deoxyadenosine. The nanoformulation is poly(lactide-co-glycolide)-based and the implant is a copolymer of ω-pentadecalactone and p-dioxanone, poly(PDL-co-DO), a novel class of biocompatible, biodegradable materials. Both the interventions, packaged independently with each ARV, released sustained levels of the drugs, maintaining plasma therapeutic indices for over a month, and suppressed viremia in HIV-1-infected humanized mice for up to 42 days with maintenance of CD4+ T cells. These data suggest promise in the use of these new drugs as LA-ART formulations in subdermal implant and injectable mode.
Collapse
Affiliation(s)
- Jagadish Beloor
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Shalley N. Kudalkar
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | - Gina Buzzelli
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Fan Yang
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Hanna K. Mandl
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Jyothi K. Rajashekar
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Krasimir A. Spasov
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | | | - W. Mark Saltzman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Karen S. Anderson
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
3
|
Ippolito J, Niu H, Bertoletti N, Carter ZJ, Jin S, Spasov KA, Cisneros JA, Valhondo M, Cutrona KJ, Anderson KS, Jorgensen WL. Covalent Inhibition of Wild-Type HIV-1 Reverse Transcriptase Using a Fluorosulfate Warhead. ACS Med Chem Lett 2021; 12:249-255. [PMID: 33603971 PMCID: PMC7883463 DOI: 10.1021/acsmedchemlett.0c00612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
Covalent inhibitors of wild-type HIV-1 reverse transcriptase (CRTIs) are reported. Three compounds derived from catechol diether non-nucleoside inhibitors (NNRTIs) with addition of a fluorosulfate warhead are demonstrated to covalently modify Tyr181 of HIV-RT. X-ray crystal structures for complexes of the CRTIs with the enzyme are provided, which fully demonstrate the covalent attachment, and confirmation is provided by appropriate mass shifts in ESI-TOF mass spectra. The three CRTIs and six noncovalent analogues are found to be potent inhibitors with both IC50 values for in vitro inhibition of WT RT and EC50 values for cytopathic protection of HIV-1-infected human T-cells in the 5-320 nM range.
Collapse
Affiliation(s)
- Joseph
A. Ippolito
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Haichan Niu
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Nicole Bertoletti
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Zachary J. Carter
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Shengyan Jin
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Krasimir A. Spasov
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - José A. Cisneros
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Margarita Valhondo
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kara J. Cutrona
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Karen S. Anderson
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
4
|
Song LF, Merz KM. Evolution of Alchemical Free Energy Methods in Drug Discovery. J Chem Inf Model 2020; 60:5308-5318. [DOI: 10.1021/acs.jcim.0c00547] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Frank Song
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Wang Y, De Clercq E, Li G. Current and emerging non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment. Expert Opin Drug Metab Toxicol 2019; 15:813-829. [PMID: 31556749 DOI: 10.1080/17425255.2019.1673367] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are essential components of highly active antiretroviral therapy against HIV-1 infections. Here, we provide a comprehensive overview of approved and emerging NNRTIs. Areas covered: This review covers the latest trend of NNRTIs regarding their pharmacodynamics, pharmacokinetics, mechanisms of drug action, drug resistance as well as new applications such as two-drug regimens and long-acting formulations. Expert opinion: Since the first NNRTI, nevirapine, was approved in 1996, antiviral drug discovery led to the approval of seven NNRTIs, including nevirapine, delavirdine (discontinued), etravirine, elsulfavirine, efavirenz, rilpivirine, and doravirine. The latter three compounds with favorable pharmacodynamic profiles and minimal adverse effects are often combined with one integrase inhibitor or two NRTIs in once-daily fixed-dose tablets. NNRTI-anchored regimens have been approved as initial therapies in treatment-naïve patients (efficacy: 72% to 86%) or maintaining therapies in virologically-suppressed patients (efficacy: 91% to 95%). Future development of NNRTIs includes: (i) better resistance and cross-resistance profiles; (ii) reduction of drug burden by optimizing two-drug or three-drug combinations; and (iii) improvement of patient adherence by novel long-acting formulations with weekly or monthly administration. Overall, NNRTIs play an important role in the management of HIV-1 infections, especially in resource-limited countries.
Collapse
Affiliation(s)
- Yali Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University , Changsha , Hunan , China
| | - Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research , Leuven , Belgium
| | - Guangdi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University , Changsha , Hunan , China
| |
Collapse
|
6
|
Bertoletti N, Chan AH, Schinazi RF, Yin YW, Anderson KS. Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIV-1 reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine. Protein Sci 2019; 28:1664-1675. [PMID: 31301259 PMCID: PMC6699100 DOI: 10.1002/pro.3681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
The retrovirus HIV-1 has been a major health issue since its discovery in the early 80s. In 2017, over 37 million people were infected with HIV-1, of which 1.8 million were new infections that year. Currently, the most successful treatment regimen is the highly active antiretroviral therapy (HAART), which consists of a combination of three to four of the current 26 FDA-approved HIV-1 drugs. Half of these drugs target the reverse transcriptase (RT) enzyme that is essential for viral replication. One class of RT inhibitors is nucleoside reverse transcriptase inhibitors (NRTIs), a crucial component of the HAART. Once incorporated into DNA, NRTIs function as a chain terminator to stop viral DNA replication. Unfortunately, treatment with NRTIs is sometimes linked to toxicity caused by off-target side effects. NRTIs may also target the replicative human mitochondrial DNA polymerase (Pol γ), causing long-term severe drug toxicity. The goal of this work is to understand the discrimination mechanism of different NRTI analogues by RT. Crystal structures and kinetic experiments are essential for the rational design of new molecules that are able to bind selectively to RT and not Pol γ. Structural comparison of NRTI-binding modes with both RT and Pol γ enzymes highlights key amino acids that are responsible for the difference in affinity of these drugs to their targets. Therefore, the long-term goal of this research is to develop safer, next generation therapeutics that can overcome off-target toxicity.
Collapse
Affiliation(s)
- Nicole Bertoletti
- Department of PharmacologyYale University School of MedicineNew HavenConnecticut
| | - Albert H. Chan
- Department of PharmacologyYale University School of MedicineNew HavenConnecticut
| | - Raymond F. Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for AIDS ResearchEmory University School of MedicineAtlantaGeorgia
| | - Y. Whitney Yin
- Department of Pharmacology and ToxicologyUniversity of Texas Medical BranchGalvestonTexas
- Sealy Center for Structural BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Karen S. Anderson
- Department of PharmacologyYale University School of MedicineNew HavenConnecticut
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticut
| |
Collapse
|
7
|
Sasaki T, Gannam ZTK, Kudalkar SN, Frey KM, Lee WG, Spasov KA, Jorgensen WL, Anderson KS. Molecular and cellular studies evaluating a potent 2-cyanoindolizine catechol diether NNRTI targeting wildtype and Y181C mutant HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2019; 29:2182-2188. [PMID: 31281023 PMCID: PMC6690785 DOI: 10.1016/j.bmcl.2019.06.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The development of efficacious NNRTIs for HIV/AIDS therapy is commonly met with the emergence of drug resistant strains, including the Y181C variant. Using a computationally-guided approach, we synthesized the catechol diether series of NNRTIs, which display sub-nanomolar potency in cellular assays. Among the most potent were a series of 2-cyanoindolizine substituted catechol diethers, including Compound 1. We present here a thorough evaluation of this compound, including biochemical, cellular, and structural studies. The compound demonstrates low nanomolar potency against both WT and Y181C HIV-1 RT in in vitro and cellular assays. Our crystal structures of both the wildtype and mutant forms of RT in complex with Compound 1 allow the interrogation of this compound's features that allow it to maintain strong efficacy against the drug resistant mutant. Among these are compensatory shifts in the NNRTI binding pocket, persistence of multiple hydrogen bonds, and van der Waals contacts throughout the binding site. Further, the fluorine at the C6 position of the indolizine moiety makes multiple favorable interactions with both RT forms. The present study highlights the indolizine-substituted catechol diether class of NNRTIs as promising therapeutic candidates possessing optimal pharmacological properties and significant potency against multiple RT variants.
Collapse
Affiliation(s)
- Tomoaki Sasaki
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Zira T K Gannam
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Shalley N Kudalkar
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Kathleen M Frey
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Won-Gil Lee
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520, United States
| | - Krasimir A Spasov
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520, United States
| | - Karen S Anderson
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States; Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
8
|
Kudalkar SN, Ullah I, Bertoletti N, Mandl HK, Cisneros JA, Beloor J, Chan AH, Quijano E, Saltzman WM, Jorgensen WL, Kumar P, Anderson KS. Structural and pharmacological evaluation of a novel non-nucleoside reverse transcriptase inhibitor as a promising long acting nanoformulation for treating HIV. Antiviral Res 2019; 167:110-116. [PMID: 31034849 PMCID: PMC6554724 DOI: 10.1016/j.antiviral.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
Abstract
Combination antiretroviral therapy (cART) has been proven effective in inhibiting human immunodeficiency virus type 1 (HIV-1) infection and has significantly improved the health outcomes in acquired immune deficiency syndrome (AIDS) patients. The therapeutic benefits of cART have been challenged because of the toxicity and emergence of drug-resistant HIV-1 strains along with lifelong patient compliance resulting in non-adherence. These issues also hinder the clinical benefits of non-nucleoside reverse transcriptase inhibitors (NNRTIs), which are one of the vital components of cART for the treatment of HIV-1 infection. In this study, using a computational and structural based drug design approach, we have discovered an effective HIV -1 NNRTI, compound I (Cmpd I) that is very potent in biochemical assays and which targets key residues in the allosteric binding pocket of wild-type (WT)-RT as revealed by structural studies. Furthermore, Cmpd I exhibited very potent antiviral activity in HIV-1 infected T cells, lacked cytotoxicity (therapeutic index >100,000), and no significant off-target effects were noted in pharmacological assays. To address the issue of non-adherence, we developed a long-acting nanoformulation of Cmpd I (Cmpd I-NP) using poly (lactide-coglycolide) (PLGA) particles. The pharmacokinetic studies of free and nanoformulated Cmpd I were carried out in BALB/c mice. Intraperitoneal administration of Cmpd I and Cmpd I-NP in BALB/c mice revealed prolonged serum residence time of 48 h and 30 days, respectively. The observed serum concentrations of Cmpd I in both cases were sufficient to provide >97% inhibition in HIV-1 infected T-cells. The significant antiviral activity along with favorable pharmacological and pharmacokinetic profile of Cmpd I, provide compelling and critical support for its further development as an anti-HIV therapeutic agent.
Collapse
Affiliation(s)
- Shalley N Kudalkar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Hanna K Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - José A Cisneros
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Jagadish Beloor
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Albert H Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Elias Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
9
|
Battini L, Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type‐1 non‐nucleoside reverse transcriptase inhibitors. Med Res Rev 2018; 39:1235-1273. [DOI: 10.1002/med.21544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| |
Collapse
|
10
|
Reply to Pandey et al.: Understanding the efficacy of a potential antiretroviral drug candidate in humanized mouse model of HIV infection. Proc Natl Acad Sci U S A 2018; 115:E8114-E8115. [DOI: 10.1073/pnas.1810136115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
|
12
|
From in silico hit to long-acting late-stage preclinical candidate to combat HIV-1 infection. Proc Natl Acad Sci U S A 2017; 115:E802-E811. [PMID: 29279368 DOI: 10.1073/pnas.1717932115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 pandemic affecting over 37 million people worldwide continues, with nearly one-half of the infected population on highly active antiretroviral therapy (HAART). Major therapeutic challenges remain because of the emergence of drug-resistant HIV-1 strains, limitations because of safety and toxicity with current HIV-1 drugs, and patient compliance for lifelong, daily treatment regimens. Nonnucleoside reverse transcriptase inhibitors (NNRTIs) that target the viral polymerase have been a key component of the current HIV-1 combination drug regimens; however, these issues hamper them. Thus, the development of novel more effective NNRTIs as anti-HIV-1 agents with fewer long-term liabilities, efficacy on new drug-resistant HIV-1 strains, and less frequent dosing is crucial. Using a computational and structure-based design strategy to guide lead optimization, a 5 µM virtual screening hit was transformed to a series of very potent nanomolar to picomolar catechol diethers. One representative, compound I, was shown to have nanomolar activity in HIV-1-infected T cells, potency on clinically relevant HIV-1 drug-resistant strains, lack of cytotoxicity and off-target effects, and excellent in vivo pharmacokinetic behavior. In this report, we show the feasibility of compound I as a late-stage preclinical candidate by establishing synergistic antiviral activity with existing HIV-1 drugs and clinical candidates and efficacy in HIV-1-infected humanized [human peripheral blood lymphocyte (Hu-PBL)] mice by completely suppressing viral loads and preventing human CD4+ T-cell loss. Moreover, a long-acting nanoformulation of compound I [compound I nanoparticle (compound I-NP)] in poly(lactide-coglycolide) (PLGA) was developed that shows sustained maintenance of plasma drug concentrations and drug efficacy for almost 3 weeks after a single dose.
Collapse
|
13
|
Poongavanam V, Namasivayam V, Vanangamudi M, Al Shamaileh H, Veedu RN, Kihlberg J, Murugan NA. Integrative approaches in
HIV
‐1 non‐nucleoside reverse transcriptase inhibitor design. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical ChemistrySree Vidyanikethan College of Pharmacy Tirupathi India
| | | | - Rakesh N Veedu
- Centre for Comparative GenomicsMurdoch University Perth Australia
- Perron Institute for Neurological and Translational Science Perth Australia
| | - Jan Kihlberg
- Department of Chemistry‐BMCUppsala University Uppsala Sweden
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of BiotechnologyKTH‐Royal Institute of Technology Stockholm Sweden
| |
Collapse
|