1
|
Zaluski J, Bassetto M, Kiser PD, Tochtrop GP. Advances and therapeutic opportunities in visual cycle modulation. Prog Retin Eye Res 2025; 106:101360. [PMID: 40280538 DOI: 10.1016/j.preteyeres.2025.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The visual cycle is a metabolic pathway that enables continuous vision by regenerating the 11-cis-retinal chromophore for photoreceptors opsins. Although integral to normal visual function, the flux of retinoids through this cycle can contribute to a range of retinal pathologies, including Stargardt disease, age-related macular degeneration, and diabetic retinopathy. In such conditions, intermediates and byproducts of the visual cycle, such as bisretinoid components of lipofuscin, can accumulate, concomitant with cellular damage and eventual photoreceptor loss. This has inspired efforts to modulate the visual cycle, aiming to slow or prevent the formation of these toxic intermediates and thus preserve retinal structure and function. Over the past two decades, multiple strategies to modulate the visual cycle have emerged. These include both intrinsic approaches, targeting key enzymes, retinoid-binding proteins, or receptors within the pigment epithelium or photoreceptors (e.g., RPE65, CRBP1, and rhodopsin inhibitors/antagonists) and extrinsic strategies that indirectly alter retinoid availability within the retina (e.g., RBP4 antagonists). Many of these agents have shown promise in animal models of visual cycle-associated retinal diseases, reducing pathological changes, and improving retinal survival. Several have advanced into clinical studies, although none are currently FDA-approved. Challenges remain in optimizing drug specificity and duration of action while minimizing side effects such as nyctalopia. In this review, we comprehensively examine current and emerging visual cycle modulators, discuss their medicinal chemistry, mechanisms of action, efficacy in preclinical and clinical studies, and highlight future opportunities for drug discovery aimed at safely and effectively preserving vision through modulation of this biochemical pathway.
Collapse
Affiliation(s)
- Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA.
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Azam M, Jastrzebska B. Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies. Cells 2025; 14:49. [PMID: 39791750 PMCID: PMC11720364 DOI: 10.3390/cells14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP. Among them, mutations in the rhodopsin gene (RHO) are the most common cause of this condition. Due to the involvement of numerous genes and multiple mutations in a single gene, RP is a highly heterogeneous disease making the development of effective treatments particularly challenging. The progression of this disease involves complex cellular responses to restore cellular homeostasis, including the unfolded protein response (UPR) signaling, autophagy, and various cell death pathways. These mechanisms, however, often fail to prevent photoreceptor cell degradation and instead contribute to cell death under certain conditions. Current research focuses on the pharmacological modulation of the components of these pathways and the direct stabilization of mutated receptors as potential treatment strategies. Despite these efforts, the intricate interplay between these mechanisms and the diverse causative mutations involved has hindered the development of effective treatments. Advancing our understanding of the interactions between photoreceptor cell death mechanisms and the specific genetic mutations driving RP is critical to accelerate the discovery and development of therapeutic strategies for this currently incurable disease.
Collapse
Affiliation(s)
- Maria Azam
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Ortega JT, Gallagher JM, McKee AG, Tang Y, Carmena-Bargueňo M, Azam M, Pashandi Z, Golczak M, Meiler J, Pérez-Sánchez H, Schlebach JP, Jastrzebska B. Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa. PLoS Biol 2025; 23:e3002932. [PMID: 39808594 PMCID: PMC11731721 DOI: 10.1371/journal.pbio.3002932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025] Open
Abstract
Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking. We identified and validated the biological effects of 2 non-retinoid compounds with favorable pharmacological properties that cross the blood-retina barrier. These compounds reversibly bind to unliganded rod opsin, each with a Kd comparable to 9-cis-retinal and improve opsin stability. By improving the internal protein structure network (PSN), these rod opsin ligands also enhanced the plasma membrane expression of total 36 of 123 tested clinical RP variants, including the most prevalent P23H variant. Importantly, these compounds protected retinas against light-induced degeneration in mice vulnerable to bright light injury and prolonged survival of photoreceptors in a retinitis pigmentosa mouse model for rod opsin misfolding.
Collapse
Affiliation(s)
- Joseph T. Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jacklyn M. Gallagher
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Andrew G. McKee
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Yidan Tang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Miguel Carmena-Bargueňo
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Maria Azam
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Zaiddodine Pashandi
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marcin Golczak
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Jonathan P. Schlebach
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
4
|
Guarascio R, Cheetham ME. Light as a Mediator of Acute and Chronic Retina Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:247-251. [PMID: 39930204 DOI: 10.1007/978-3-031-76550-6_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
In age-related macula dystrophy (AMD) and some forms of inherited retinal dystrophies (IRDs), blindness is caused by the loss of photoreceptors and retinal pigment epithelium (RPE) cells. This process can be exacerbated by genetic and environmental risk factors, including exposure of the retina to bright light. Several light damage models have been developed and have proved to be powerful tools to study retinal degeneration. These models have enabled the investigation of common mechanisms of cell death and inflammation, as well as the identification of therapeutic targets and the assessment of potential new therapies against retinal degeneration. Here, we discuss the principal mechanisms of light-induced toxicity and highlight how this has been used in the development of therapeutic approaches to treat AMD and IRDs.
Collapse
|
5
|
Matsuyama M, Ortega JT, Fedorov Y, Scott-McKean J, Muller-Greven J, Buck M, Adams D, Jastrzebska B, Greenlee W, Matsuyama S. Development of novel cytoprotective small compounds inhibiting mitochondria-dependent cell death. iScience 2023; 26:107916. [PMID: 37841588 PMCID: PMC10568349 DOI: 10.1016/j.isci.2023.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
We identified cytoprotective small molecules (CSMs) by a cell-based high-throughput screening of Bax inhibitors. Through a medicinal chemistry program, M109S was developed, which is orally bioactive and penetrates the blood-brain/retina barriers. M109S protected retinal cells in ocular disease mouse models. M109S directly interacted with Bax and inhibited the conformational change and mitochondrial translocation of Bax. M109S inhibited ABT-737-induced apoptosis both in Bax-only and Bak-only mouse embryonic fibroblasts. M109S also inhibited apoptosis induced by staurosporine, etoposide, and obatoclax. M109S decreased maximal mitochondrial oxygen consumption rate and reactive oxygen species production, whereas it increased glycolysis. These effects on cellular metabolism may contribute to the cytoprotective activity of M109S. M109S is a novel small molecule protecting cells from mitochondria-dependent apoptosis both in vitro and in vivo. M109S has the potential to become a research tool for studying cell death mechanisms and to develop therapeutics targeting mitochondria-dependent cell death pathway.
Collapse
Affiliation(s)
- Mieko Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T. Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yuri Fedorov
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonah Scott-McKean
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeannie Muller-Greven
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Drew Adams
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Ortega JT, Parmar T, Jastrzebska B. Galanin receptor 3 - A new pharmacological target in retina degeneration. Pharmacol Res 2023; 188:106675. [PMID: 36693600 PMCID: PMC9918719 DOI: 10.1016/j.phrs.2023.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The neuropeptide galanin receptor 3 (GALR3) is a class A G protein-coupled receptor (GPCR) broadly expressed in the nervous system, including the retina. GALR3 is involved in the modulation of immune and inflammatory responses. Tight control of these processes is critical for maintaining homeostasis in the retina and is required to sustain vision. Here, we investigated the role of GALR3 in retina pathologies triggered by bright light and P23H mutation in the rhodopsin (RHO) gene, associated with the activation of oxidative stress and inflammatory responses. We used a multiphase approach involving pharmacological inhibition of GALR3 with its antagonist SNAP-37889 and genetic depletion of GALR3 to modulate the GALR3 signaling. Our in vitro experiments in the retinal pigment epithelium-derived cells (ARPE19) susceptible to all-trans-retinal toxicity indicated that GALR3 could be involved in the cellular stress response to this phototoxic product. Indeed, blocking the GALR3 signaling in Abca4-/-/Rdh8-/- and wild-type Balb/cJ mice, sensitive to bright light-induced retina damage, protected retina health in these mice exposed to light. The retina morphology and function were substantially improved, and stress response processes were reduced in these mouse models compared to the controls. Furthermore, in P23H Rho knock-in mice, a model of retinitis pigmentosa (RP), both pharmacological inhibition and genetic ablation of GALR3 prolonged the survival of photoreceptors. These results indicate that GALR3 signaling contributes to acute light-induced and chronic RP-linked retinopathies. Together, this work provides the pharmacological knowledge base to evaluate GALR3 as a potential target for developing novel therapies to combat retinal degeneration.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Tanu Parmar
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Ortega JT, McKee AG, Roushar FJ, Penn WD, Schlebach JP, Jastrzebska B. Chromenone derivatives as novel pharmacological chaperones for retinitis pigmentosa-linked rod opsin mutants. Hum Mol Genet 2022; 31:3439-3457. [PMID: 35642742 PMCID: PMC9558842 DOI: 10.1093/hmg/ddac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
The correct expression of folded, functional rhodopsin (Rho) is critical for visual perception. However, this seven-transmembrane helical G protein-coupled receptor is prone to mutations with pathological consequences of retinal degeneration in retinitis pigmentosa (RP) due to Rho misfolding. Pharmacological chaperones that stabilize the inherited Rho variants by assisting their folding and membrane targeting could slow the progression of RP. In this study, we employed virtual screening of synthetic compounds with a natural product scaffold in conjunction with in vitro and in vivo evaluations to discover a novel chromenone-containing small molecule with favorable pharmacological properties that stabilize rod opsin. This compound reversibly binds to unliganded bovine rod opsin with an EC50 value comparable to the 9-cis-retinal chromophore analog and partially rescued membrane trafficking of multiple RP-related rod opsin variants in vitro. Importantly, this novel ligand of rod opsin was effective in vivo in murine models, protecting photoreceptors from deterioration caused by either bright light or genetic insult. Together, our current study suggests potential broad therapeutic implications of the new chromenone-containing non-retinoid small molecule against retinal diseases associated with photoreceptor degeneration.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Andrew G McKee
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Francis J Roushar
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Wesley D Penn
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Jonathan P Schlebach
- To whom correspondence should be addressed at: Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 441064965, USA. Tel: +1 2163685683; Fax: +1 2163681300; (Beata Jastrzebska); Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA. Tel: +1 812-855-6779; Fax: +1 812-855-8300; (Jonathan P. Schlebach)
| | - Beata Jastrzebska
- To whom correspondence should be addressed at: Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 441064965, USA. Tel: +1 2163685683; Fax: +1 2163681300; (Beata Jastrzebska); Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA. Tel: +1 812-855-6779; Fax: +1 812-855-8300; (Jonathan P. Schlebach)
| |
Collapse
|
8
|
Mice Lacking the Systemic Vitamin A Receptor RBPR2 Show Decreased Ocular Retinoids and Loss of Visual Function. Nutrients 2022; 14:nu14122371. [PMID: 35745101 PMCID: PMC9231411 DOI: 10.3390/nu14122371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary This work represents an initial evaluation of the second RBP4-vitamin A receptor RBPR2 in a mammalian model. We provide evidence that the membrane localized RBPR2 protein, under variable conditions of dietary vitamin A intake, plays an important role for dietary vitamin A transport to the eye for ocular retinoid homeostasis and visual function. These findings are of general interest, as disturbances in blood and ocular vitamin A homeostasis are linked to retinal degenerative diseases, which are blinding diseases. The animal model described here could also serve as an in vivo tool to study mechanisms related to retinal cell degeneration that are associated with vitamin A deficiency. Abstract The systemic transport of dietary vitamin A/all-trans retinol bound to RBP4 into peripheral tissues for storage is an essential physiological process that continuously provides visual chromophore precursors to the retina under fasting conditions. This mechanism is critical for phototransduction, photoreceptor cell maintenance and survival, and in the support of visual function. While the membrane receptor STRA6 facilitates the blood transport of lipophilic vitamin A into the eye, it is not expressed in most peripheral organs, which are proposed to express a second membrane receptor for the uptake of vitamin A from circulating RBP4. The discovery of a novel vitamin A receptor, RBPR2, which is expressed in the liver and intestine, but not in the eye, alluded to this long-sort non-ocular membrane receptor for systemic RBP4-ROL uptake and transport. We have previously shown in zebrafish that the retinol-binding protein receptor 2 (Rbpr2) plays an important role in the transport of yolk vitamin A to the eye. Mutant rbpr2 zebrafish lines manifested in decreased ocular retinoid concentrations and retinal phenotypes. To investigate a physiological role for the second vitamin A receptor, RBPR2, in mammals and to analyze the metabolic basis of systemic vitamin A transport for retinoid homeostasis, we established a whole-body Rbpr2 knockout mouse (Rbpr2−/−) model. These mice were viable on both vitamin A-sufficient and -deficient diets. Rbpr2−/− mice that were fed a vitamin A-sufficient diet displayed lower ocular retinoid levels, decreased opsins, and manifested in decrease visual function, as measured by electroretinography. Interestingly, when Rbpr2−/− mice were fed a vitamin A-deficient diet, they additionally showed shorter photoreceptor outer segment phenotypes, altogether manifesting in a significant loss of visual function. Thus, under conditions replicating vitamin A sufficiency and deficiency, our analyses revealed that RBPR2-mediated systemic vitamin A transport is a regulated process that is important for vitamin A delivery to the eye when RBP4-bound ROL is the only transport pathway in the fasting condition or under vitamin A deficiency conditions.
Collapse
|
9
|
Ortega JT, Parmar T, Carmena-Bargueño M, Pérez-Sánchez H, Jastrzebska B. Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice. J Neurosci Res 2022; 100:1063-1083. [PMID: 35165923 PMCID: PMC9615108 DOI: 10.1002/jnr.25021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022]
Abstract
The balanced homeostasis of the G protein-coupled receptor (GPCR), rhodopsin (Rho), is required for vision. Misfolding mutations in Rho cause photoreceptor death, leading to retinitis pigmentosa (RP) and consequently blindness. With no cure currently available, the development of efficient therapy for RP is an urgent need. Pharmacological supplementation with molecular chaperones, including flavonoids, improves stability, folding, and membrane targeting of the RP Rho mutants in vitro. Thus, we hypothesized that flavonoids by binding to P23H Rho and enhancing its conformational stability could mitigate detrimental effects of this mutation on retinal health. In this work, we evaluated the pharmacological potential of two model flavonoids, quercetin and myricetin, by using in silico, in vitro, and in vivo models of P23H Rho. Our computational analysis showed that quercetin could interact within the orthosteric binding pocket of P23H Rho and shift the conformation of its N-terminal loop toward the wild type (WT)-like state. Quercetin added to the NIH-3T3 cells stably expressing P23H Rho increased the stability of this receptor and improved its function. Systemic administration of quercetin to P23H Rho knock-in mice substantially improved retinal morphology and function, which was associated with an increase in levels of Rho and cone opsins. In addition, treatment with quercetin resulted in downregulation of the UPR signaling and oxidative stress-related markers. This study unravels the pharmacological potential of quercetin to slow down the progression of photoreceptor death in Rho-related RP and highlights its prospective as a lead compound to develop a novel therapeutic remedy to counter RP pathology.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Trifonov L, Rothstein A, Korshin EE, Viskind O, Afri M, Leitus G, Palczewski K, Gruzman A. Straightforward Access to Terminally Disubstituted Electron‐Deficient Alkylidene Cyclopent‐2‐en‐4‐ones through Olefination with α‐Carbonyl and α‐Cyano Secondary Alkyl Sulfones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lena Trifonov
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Ayelet Rothstein
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Edward E. Korshin
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Olga Viskind
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Michal Afri
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Gregory Leitus
- Department of Chemical Research Support the Weizmann Institute of Science Rehovot 76100 Israel
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute Department of Ophthalmology and Departments of Physiology and Biophysics and Chemistry and Molecular Biology and Biochemistry, University of California Irvine CA 92697 USA
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| |
Collapse
|
11
|
Ramkumar S, Parmar VM, Samuels I, Berger NA, Jastrzebska B, von Lintig J. The vitamin a transporter STRA6 adjusts the stoichiometry of chromophore and opsins in visual pigment synthesis and recycling. Hum Mol Genet 2021; 31:548-560. [PMID: 34508587 DOI: 10.1093/hmg/ddab267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
The retinal pigment epithelium of the vertebrate eyes acquires vitamin A from circulating retinol binding protein for chromophore biosynthesis. The chromophore covalently links with an opsin protein in the adjacent photoreceptors of the retina to form the bipartite visual pigment complexes. We here analyzed visual pigment biosynthesis in mice deficient for the retinol binding protein receptor STRA6. We observed that chromophore content was decreased throughout the life cycle of these animals, indicating that lipoprotein-dependent delivery pathways for the vitamin cannot substitute for STRA6. Changes in the expression of photoreceptor marker genes, including a down-regulation of the genes encoding rod and cone opsins, paralleled the decrease in ocular retinoid concentration in STRA6-deficient mice. Despite this adaptation, cone photoreceptors displayed absent or mislocalized opsins at all ages examined. Rod photoreceptors entrapped the available chromophore but exhibited significant amounts of chromophore-free opsins in the dark-adapted stage. Treatment of mice with pharmacological doses of vitamin A ameliorated the rod phenotype but did not restore visual pigment synthesis in cone photoreceptors of STRA6-deficient mice. The imbalance between chromophore and opsin concentrations of rod and cone photoreceptors was associated with an unfavorable retinal physiology, including diminished electrical responses of photoreceptors to light, and retinal degeneration during aging. Together, our study demonstrates that STRA6 is critical to adjust the stoichiometry of chromophore and opsins in rod cone photoreceptors and to prevent pathologies associated with ocular vitamin A deprivation.
Collapse
Affiliation(s)
- Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Vipul M Parmar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ivy Samuels
- Northeast Ohio VA Healthcare System, Cleveland, 44106, OH, USA
| | - Nathan A Berger
- Center for Science, Health and Society, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA.,Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| |
Collapse
|
12
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
13
|
Ortega JT, Parmar T, Golczak M, Jastrzebska B. Protective Effects of Flavonoids in Acute Models of Light-Induced Retinal Degeneration. Mol Pharmacol 2021; 99:60-77. [PMID: 33154094 PMCID: PMC7736834 DOI: 10.1124/molpharm.120.000072] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Degeneration of photoreceptors caused by excessive illumination, inherited mutations, or aging is the principal pathology of blinding diseases. Pharmacological compounds that stabilize the visual receptor rhodopsin and modulate the cellular pathways triggering death of photoreceptors could avert this pathology. Interestingly, flavonoids can modulate the cellular processes, such as oxidative stress, inflammatory responses, and apoptosis, that are activated during retinal degeneration. As we found previously, flavonoids also bind directly to unliganded rod opsin, enhancing its folding, stability, and regeneration. In addition, flavonoids stimulate rhodopsin gene expression. Thus, we evaluated the effect of two main dietary flavonoids, quercetin and myricetin, in ATP-binding cassette subfamily A member 4 -/- /retinol dehydrogenase 8 -/- and wild-type BALB/c mice susceptible to light-induced photoreceptor degeneration. Using in vivo imaging, such as optical coherence tomography, scanning laser ophthalmoscopy, and histologic assessment of retinal morphology, we found that treatment with these flavonoids prior to light insult remarkably protected retina from deterioration and preserved its function. Using high-performance liquid chromatography-mass spectrometry analysis, we detected these flavonoids in the eye upon their intraperitoneal administration. The molecular events associated with the protective effect of quercetin and myricetin were related to the elevated expression of photoreceptor-specific proteins, rhodopsin and cone opsins, decreased expression of the specific inflammatory markers, and the shift of the equilibrium between cell death regulators BCL2-associated X protein (BAX) and B-cell lymphoma 2 toward an antiapoptotic profile. These results were confirmed in photoreceptor-derived 661W cells treated with either H2O2 or all-trans-retinal stressors implicated in the mechanism of retinal degeneration. Altogether, flavonoids could have significant prophylactic value for retinal degenerative diseases. SIGNIFICANCE STATEMENT: Flavonoids commonly present in food exhibit advantageous effects in blinding diseases. They bind to and stabilize unliganded rod opsin, which in excess accelerates degenerative processes in the retina. Additionally, flavonoids enhance the expression of the visual receptors, rod and cone opsins; inhibit the inflammatory reactions; and induce the expression of antiapoptotic markers in the retina, preventing the degeneration in vivo. Thus, flavonoids could have a prophylactic value for retinal degenerative diseases.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Marcin Golczak
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
14
|
Parmar T, Ortega JT, Jastrzebska B. Retinoid analogs and polyphenols as potential therapeutics for age-related macular degeneration. Exp Biol Med (Maywood) 2020; 245:1615-1625. [PMID: 32438835 PMCID: PMC7787542 DOI: 10.1177/1535370220926938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT Age-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T Ortega
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
The Retinoid and Non-Retinoid Ligands of the Rod Visual G Protein-Coupled Receptor. Int J Mol Sci 2019; 20:ijms20246218. [PMID: 31835521 PMCID: PMC6941084 DOI: 10.3390/ijms20246218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a predominant role in the drug discovery effort. These cell surface receptors are activated by a variety of specific ligands that bind to the orthosteric binding pocket located in the extracellular part of the receptor. In addition, the potential binding sites located on the surface of the receptor enable their allosteric modulation with critical consequences for their function and pharmacology. For decades, drug discovery focused on targeting the GPCR orthosteric binding sites. However, finding that GPCRs can be modulated allosterically opened a new venue for developing novel pharmacological modulators with higher specificity. Alternatively, focus on discovering of non-retinoid small molecules beneficial in retinopathies associated with mutations in rhodopsin is currently a fast-growing pharmacological field. In this review, we summarize the accumulated knowledge on retinoid ligands and non-retinoid modulators of the light-sensing GPCR, rhodopsin and their potential in combating the specific vision-related pathologies. Also, recent findings reporting the potential of biologically active compounds derived from natural products as potent rod opsin modulators with beneficial effects against degenerative diseases related to this receptor are highlighted here.
Collapse
|
16
|
Ortega JT, Parmar T, Jastrzebska B. Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. J Biol Chem 2019; 294:8101-8122. [PMID: 30944172 DOI: 10.1074/jbc.ra119.007808] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin (Rho) is a visual G protein-coupled receptor expressed in the rod photoreceptors of the eye, where it mediates transmission of a light signal into a cell and converts this signal into a nerve impulse. More than 100 mutations in Rho are linked to various ocular impairments, including retinitis pigmentosa (RP). Accordingly, much effort has been directed toward developing ligands that target Rho and improve its folding and stability. Natural compounds may provide another viable approach to such drug discovery efforts. The dietary polyphenol compounds, ubiquitously present in fruits and vegetables, have beneficial effects in several eye diseases. However, the underlying mechanism of their activity is not fully understood. In this study, we used a combination of computational methods, biochemical and biophysical approaches, including bioluminescence resonance energy transfer, and mammalian cell expression systems to clarify the effects of four common bioactive flavonoids (quercetin, myricetin, and their mono-glycosylated forms quercetin-3-rhamnoside and myricetrin) on rod opsin stability, function, and membrane organization. We observed that by directly interacting with ligand-free opsin, flavonoids modulate its conformation, thereby causing faster entry of the retinal chromophore into its binding pocket. Moreover, flavonoids significantly increased opsin stability, most likely by introducing structural rigidity and promoting receptor self-association within the biological membranes. Of note, the binding of flavonoids to an RP-linked P23H opsin variant partially restored its normal cellular trafficking. Together, our results suggest that flavonoids could be utilized as lead compounds in the development of effective nonretinoid therapeutics for managing RP-related retinopathies.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|