1
|
Wu C, Wang K, Liu Z, Shen S, Yang Z, Shao Z, Yan W. Pharmacological Characterization of Dopamine Receptor DRD1 Variants and Exploration of Their Allosteric Activation. Biochemistry 2025; 64:2200-2211. [PMID: 40311121 DOI: 10.1021/acs.biochem.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
G protein-coupled receptors (GPCRs) are major drug targets, yet genetic variations in these receptors can alter drug responses, leading to significant challenges in healthcare. Despite the prevalence of GPCR-targeting drugs, the effects of these genetic variations on receptor function remain underexplored. This study establishes a framework for allosterically rescuing loss-of-function (LoF) variants in GPCRs, using the dopamine receptor D1 (DRD1) as a model. We characterized 49 DRD1 variants from genetic databases and literature, finding that most variants exhibit reduced membrane expression. Structural analysis indicated that variants within the ligand-binding pocket or near critical activation motifs may impair ligand binding or hinder conformational changes during receptor activation, potentially disrupting orthosteric ligand induced signaling. We categorized the variants into three functional groups: those with enhanced G protein signaling, enhanced β-arrestin recruitment, or complete LoF. Among these, 16 variants disrupt G protein signaling, and 27 impair β-arrestin recruitment in HEK293 cells. Notably, defective G protein signaling caused by LoF variants such as T371.46K and L662.46F were effectively restored using allosteric modulators. These findings highlight the functional impact of DRD1 variants and demonstrate the therapeutic potential of relative selectivity of two signal pathways. This study advances precision medicine by offering strategies to restore receptor function and develop targeted therapies for GPCR-related disorders.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kexin Wang
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiyu Liu
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyuan Shen
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiqian Yang
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenhua Shao
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Tianfu Jincheng Laboratory, Chengdu 610093, China
| | - Wei Yan
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Powers AS, Khan A, Paggi JM, Latorraca NR, Souza S, Di Salvo J, Lu J, Soisson SM, Johnston JM, Weinglass AB, Dror RO. A non-canonical mechanism of GPCR activation. Nat Commun 2024; 15:9938. [PMID: 39550377 PMCID: PMC11569127 DOI: 10.1038/s41467-024-54103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
The goal of designing safer, more effective drugs has led to tremendous interest in molecular mechanisms through which ligands can precisely manipulate the signaling of G-protein-coupled receptors (GPCRs), the largest class of drug targets. Decades of research have led to the widely accepted view that all agonists-ligands that trigger GPCR activation-function by causing rearrangement of the GPCR's transmembrane helices, opening an intracellular pocket for binding of transducer proteins. Here we demonstrate that certain agonists instead trigger activation of free fatty acid receptor 1 by directly rearranging an intracellular loop that interacts with transducers. We validate the predictions of our atomic-level simulations by targeted mutagenesis; specific mutations that disrupt interactions with the intracellular loop convert these agonists into inverse agonists. Further analysis suggests that allosteric ligands could regulate the signaling of many other GPCRs via a similar mechanism, offering rich possibilities for precise control of pharmaceutically important targets.
Collapse
Affiliation(s)
- Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Aasma Khan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
- Department of Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah Souza
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Jun Lu
- Department of Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
- Small Molecule Discovery, Zai Lab (US) LLC, Cambridge, MA, USA
| | - Stephen M Soisson
- Department of Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
- Protein Therapeutics and Structural Biology, Odyssey Therapeutics, Boston, MA, USA
| | | | - Adam B Weinglass
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
- Biophysics Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Labouesse MA, Wilhelm M, Kagiampaki Z, Yee AG, Denis R, Harada M, Gresch A, Marinescu AM, Otomo K, Curreli S, Serratosa Capdevila L, Zhou X, Cola RB, Ravotto L, Glück C, Cherepanov S, Weber B, Zhou X, Katner J, Svensson KA, Fellin T, Trudeau LE, Ford CP, Sych Y, Patriarchi T. A chemogenetic approach for dopamine imaging with tunable sensitivity. Nat Commun 2024; 15:5551. [PMID: 38956067 PMCID: PMC11219860 DOI: 10.1038/s41467-024-49442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Genetically-encoded dopamine (DA) sensors enable high-resolution imaging of DA release, but their ability to detect a wide range of extracellular DA levels, especially tonic versus phasic DA release, is limited by their intrinsic affinity. Here we show that a human-selective dopamine receptor positive allosteric modulator (PAM) can be used to boost sensor affinity on-demand. The PAM enhances DA detection sensitivity across experimental preparations (in vitro, ex vivo and in vivo) via one-photon or two-photon imaging. In vivo photometry-based detection of optogenetically-evoked DA release revealed that DETQ administration produces a stable 31 minutes window of potentiation without effects on animal behavior. The use of the PAM revealed region-specific and metabolic state-dependent differences in tonic DA levels and enhanced single-trial detection of behavior-evoked phasic DA release in cortex and striatum. Our chemogenetic strategy can potently and flexibly tune DA imaging sensitivity and reveal multi-modal (tonic/phasic) DA signaling across preparations and imaging approaches.
Collapse
Affiliation(s)
- Marie A Labouesse
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | | | - Andrew G Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Raphaelle Denis
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Masaya Harada
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Kanako Otomo
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Reto B Cola
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Stanislav Cherepanov
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Xin Zhou
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Louis-Eric Trudeau
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yaroslav Sych
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Girmaw F. Review on allosteric modulators of dopamine receptors so far. Health Sci Rep 2024; 7:e1984. [PMID: 38505681 PMCID: PMC10948587 DOI: 10.1002/hsr2.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background Contemporary research is predominantly directed towards allosteric modulators, a class of compounds designed to interact with specific sites distinct from the orthosteric site on G protein-coupled receptors. These allosteric modulators play a pivotal role in influencing diverse pharmacological effects, such as agonism/inverse agonism, efficacy modulation, and affinity modulation. One particularly intriguing aspect is the demonstrated capacity of allosteric modulation to enhance drug selectivity for therapeutic purposes, potentially leading to a reduction in serious side effects associated with traditional approaches. Allosteric ligands, a majority of which fall into the categories of negative allosteric modulators or positive allosteric modulators, exhibit the unique ability to either diminish or enhance the effects of endogenous ligands. Negative allosteric modulators weaken the response, while positive allosteric modulators intensify it. Additionally, silent allosteric modulators represent a distinct class that neither activates nor blocks the effects of endogenous ligands, adding complexity to the spectrum of allosteric modulation. In the broader context of central nervous system disorders, allosteric modulation takes center stage, particularly in the realm of dopamine receptors specifically, D1, D2, and D3 receptors. These receptors hold immense therapeutic potential for a range of conditions spanning neurodegenerative disorders to neurobehavioral and psychiatric disorders. The intricate modulation of dopamine receptors through allosteric mechanisms offers a nuanced and versatile approach to drug development. As research endeavors continue to unfold, the exploration of allosteric modulation stands as a promising frontier, holding the potential to reshape the landscape of drug discovery and therapeutic interventions in the field of neurology and psychiatry.
Collapse
Affiliation(s)
- Fentaw Girmaw
- Department of Pharmacy, College of Health ScienceWoldia UniversityWoldiaEthiopia
| |
Collapse
|
5
|
Goldberg A, Xie B, Shi L. The Molecular Mechanism of Positive Allosteric Modulation at the Dopamine D1 Receptor. Int J Mol Sci 2023; 24:12848. [PMID: 37629030 PMCID: PMC10454769 DOI: 10.3390/ijms241612848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues. Based on the cryo-EM structures of the D1R, we conducted molecular dynamics simulations to investigate the binding and allosteric mechanisms of LY3154207. Our simulations revealed that LY3154207 preferred the horizontal orientation above intracellular loop 2 (IL2) and stabilized the helical conformation of IL2. Moreover, LY3154207 binding induced subtle yet significant changes in key structural motifs and their neighboring residues. Notably, a cluster of residues centered around the Na+-binding site became more compact, while interactions involving the PIF motif and its neighboring residues were loosened upon LY3154207 binding, consistent with their role in opening the intracellular crevice for receptor activation. Additionally, we identified an allosteric pathway likely responsible for the positive allosteric effect of LY3154207 in enhancing Gs protein coupling. This mechanistic understanding of LY3154207's allosteric action at the D1R paves the way for the rational design of more potent and effective allosteric modulators.
Collapse
Affiliation(s)
| | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Powers AS, Khan A, Paggi JM, Latorraca NR, Souza S, Salvo JD, Lu J, Soisson SM, Johnston JM, Weinglass AB, Dror RO. A non-canonical mechanism of GPCR activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553154. [PMID: 37645874 PMCID: PMC10462065 DOI: 10.1101/2023.08.14.553154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The goal of designing safer, more effective drugs has led to tremendous interest in molecular mechanisms through which ligands can precisely manipulate signaling of G-protein-coupled receptors (GPCRs), the largest class of drug targets. Decades of research have led to the widely accepted view that all agonists-ligands that trigger GPCR activation-function by causing rearrangement of the GPCR's transmembrane helices, opening an intracellular pocket for binding of transducer proteins. Here we demonstrate that certain agonists instead trigger activation of free fatty acid receptor 1 by directly rearranging an intracellular loop that interacts with transducers. We validate the predictions of our atomic-level simulations by targeted mutagenesis; specific mutations which disrupt interactions with the intracellular loop convert these agonists into inverse agonists. Further analysis suggests that allosteric ligands could regulate signaling of many other GPCRs via a similar mechanism, offering rich possibilities for precise control of pharmaceutically important targets.
Collapse
Affiliation(s)
- Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aasma Khan
- Department of Quantitative Biology, Merck & Co., Inc., West Point, PA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Sarah Souza
- Department of Quantitative Biology, Merck & Co., Inc., West Point, PA, USA
| | | | - Jun Lu
- Department of Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
- Small Molecule Discovery, Zai Lab (US) LLC, 314 Main Street, Suite 04-100, Cambridge, MA 02142
| | - Stephen M Soisson
- Department of Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
- Protein Therapeutics and Structural Biology, Odyssey Therapeutics, 51 Sleeper Street, Suite 800, Boston, MA 02210
| | | | - Adam B Weinglass
- Department of Quantitative Biology, Merck & Co., Inc., West Point, PA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Goldberg A, Xie B, Shi L. The molecular mechanism of positive allosteric modulation at the dopamine D1 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550907. [PMID: 37546785 PMCID: PMC10402154 DOI: 10.1101/2023.07.27.550907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues. Based on the cryo-EM structures of the D1R, we conducted molecular dynamics simulations to investigate the binding and allosteric mechanisms of LY3154207. Our simulations revealed that LY3154207 preferred the horizontal orientation above intracellular loop 2 (IL2) and stabilized the helical conformation of IL2. Moreover, LY3154207 binding induced subtle yet significant changes in key structural motifs and their neighboring residues. Notably, a cluster of residues centered around the Na + binding site became more compact, while interactions involving the PIF motif and its neighboring residues were loosened upon LY3154207 binding, consistent with their role in opening the intracellular crevice for receptor activation. Additionally, we identified an allosteric pathway likely responsible for the positive allosteric effect of LY3154207 in enhancing Gs protein coupling. This mechanistic understanding of LY3154207's allosteric action at the D1R pave the way for the rational design of more potent and effective allosteric modulators.
Collapse
Affiliation(s)
- Alexander Goldberg
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
8
|
Wang X, Hembre EJ, Goldsmith PJ, Beck JP, Svensson KA, Willard FS, Bruns RF. Mutual Cooperativity of Three Allosteric Sites on the Dopamine D1 Receptor. Mol Pharmacol 2023; 103:176-187. [PMID: 36804203 DOI: 10.1124/molpharm.122.000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
An amine-containing molecule called Compound A has been reported by a group from Bristol-Myers Squibb to act as a positive allosteric modulator (PAM) at the dopamine D1 receptor. We synthesized the more active enantiomer of Compound A (BMS-A1) and compared it with the D1 PAMs DETQ and MLS6585, which are known to bind to intracellular loop 2 and the extracellular portion of transmembrane helix 7, respectively. Results from D1/D5 chimeras indicated that PAM activity of BMS-A1 tracked with the presence of D1 sequence in the N-terminal/extracellular region of the D1 receptor, a unique location compared with either of the other PAMs. In pairwise combinations, BMS-A1 potentiated the small allo-agonist activity of each of the other PAMs, while the triple PAM combination (in the absence of dopamine) produced a cAMP response about 64% of the maximum produced by dopamine. Each of the pairwise PAM combinations produced a much larger leftward shift of the dopamine EC50 than either single PAM alone. All three PAMs in combination produced a 1000-fold leftward shift of the dopamine curve. These results demonstrate the presence of three non-overlapping allosteric sites that cooperatively stabilize the same activated state of the human D1 receptor. SIGNIFICANCE STATEMENT: Deficiencies in dopamine D1 receptor activation are seen in Parkinson disease and other neuropsychiatric disorders. In this study, three positive allosteric modulators of the dopamine D1 receptor were found to bind to distinct and separate sites, interacting synergistically with each other and dopamine, with the triple combination causing a 1000-fold leftward shift of the response to dopamine. These results showcase multiple opportunities to modulate D1 tone and highlight new pharmacological approaches for allosteric modulation of G-protein-coupled receptors.
Collapse
Affiliation(s)
- Xushan Wang
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Erik J Hembre
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Paul J Goldsmith
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - James P Beck
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Kjell A Svensson
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Francis S Willard
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Robert F Bruns
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| |
Collapse
|
9
|
Free RB, Nilson AN, Boldizsar NM, Doyle TB, Rodriguiz RM, Pogorelov VM, Machino M, Lee KH, Bertz JW, Xu J, Lim HD, Dulcey AE, Mach RH, Woods JH, Lane JR, Shi L, Marugan JJ, Wetsel WC, Sibley DR. Identification and Characterization of ML321: A Novel and Highly Selective D 2 Dopamine Receptor Antagonist with Efficacy in Animal Models That Predict Atypical Antipsychotic Activity. ACS Pharmacol Transl Sci 2023; 6:151-170. [PMID: 36654757 PMCID: PMC9841785 DOI: 10.1021/acsptsci.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 12/31/2022]
Abstract
We have developed and characterized a novel D2R antagonist with exceptional GPCR selectivity - ML321. In functional profiling screens of 168 different GPCRs, ML321 showed little activity beyond potent inhibition of the D2R and to a lesser extent the D3R, demonstrating excellent receptor selectivity. The D2R selectivity of ML321 may be related to the fact that, unlike other monoaminergic ligands, ML321 lacks a positively charged amine group and adopts a unique binding pose within the orthosteric binding site of the D2R. PET imaging studies in non-human primates demonstrated that ML321 penetrates the CNS and occupies the D2R in a dose-dependent manner. Behavioral paradigms in rats demonstrate that ML321 can selectively antagonize a D2R-mediated response (hypothermia) while not affecting a D3R-mediated response (yawning) using the same dose of drug, thus indicating exceptional in vivo selectivity. We also investigated the effects of ML321 in animal models that are predictive of antipsychotic efficacy in humans. We found that ML321 attenuates both amphetamine- and phencyclidine-induced locomotor activity and restored pre-pulse inhibition (PPI) of acoustic startle in a dose-dependent manner. Surprisingly, using doses that were maximally effective in both the locomotor and PPI studies, ML321 was relatively ineffective in promoting catalepsy. Kinetic studies revealed that ML321 exhibits slow-on and fast-off receptor binding rates, similar to those observed with atypical antipsychotics with reduced extrapyramidal side effects. Taken together, these observations suggest that ML321, or a derivative thereof, may exhibit ″atypical″ antipsychotic activity in humans with significantly fewer side effects than observed with the currently FDA-approved D2R antagonists.
Collapse
Affiliation(s)
- R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Ashley N. Nilson
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Noelia M. Boldizsar
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Trevor B. Doyle
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Ramona M. Rodriguiz
- Department
of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine
Analysis Core Facility, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
| | - Vladimir M. Pogorelov
- Department
of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine
Analysis Core Facility, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
| | - Mayako Machino
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse, Intramural
Research Program, National Institutes of
Health, 333 Cassell Drive, Baltimore, Maryland21224, United
States
| | - Kuo Hao Lee
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse, Intramural
Research Program, National Institutes of
Health, 333 Cassell Drive, Baltimore, Maryland21224, United
States
| | - Jeremiah W. Bertz
- Department
of Pharmacology, University of Michigan
Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan48109, United States
| | - Jinbin Xu
- Division
of Radiological Sciences, Department of Radiology, Mallinckrodt Institute
of Radiology, Washington University School
of Medicine, St. Louis, Missouri63110, United States
| | - Herman D. Lim
- Drug Discovery
Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC3052, Australia
| | - Andrés E. Dulcey
- Division
of Pre-Clinical Innovation, National Center for Advancing Translational
Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland20850, United States
| | - Robert H. Mach
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania19104, United States
| | - James H. Woods
- Department
of Pharmacology, University of Michigan
Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan48109, United States
| | - J Robert Lane
- Centre
of Membrane Proteins and Receptors, Universities
of Birmingham and Nottingham, NottinghamNG7 2UH, United Kingdom
| | - Lei Shi
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse, Intramural
Research Program, National Institutes of
Health, 333 Cassell Drive, Baltimore, Maryland21224, United
States
| | - Juan J. Marugan
- Division
of Pre-Clinical Innovation, National Center for Advancing Translational
Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland20850, United States
| | - William C. Wetsel
- Department
of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine
Analysis Core Facility, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
- Departments
of Neurobiology and Cell Biology, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| |
Collapse
|
10
|
Chen Q, Zhou X, Rehmel J, Steele JP, Svensson KA, Beck JP, Hembre EJ, Hao J. Ensemble Docking Approach to Mitigate Pregnane X Receptor-Mediated CYP3A4 Induction Risk. J Chem Inf Model 2023; 63:173-186. [PMID: 36473234 DOI: 10.1021/acs.jcim.2c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three structurally closely related dopamine D1 receptor positive allosteric modulators (D1 PAMs) based on a tetrahydroisoquinoline (THIQ) scaffold were profiled for their CYP3A4 induction potentials. It was found that the length of the linker at the C5 position greatly affected the potentials of these D1 PAMs as CYP3A4 inducers, and the level of induction correlated well with the activation of the pregnane X receptor (PXR). Based on the published PXR X-ray crystal structures, we built a binding model specifically for these THIQ-scaffold-based D1 PAMs in the PXR ligand-binding pocket via an ensemble docking approach and found the model could explain the observed CYP induction disparity. Combined with our previously reported D1 receptor homology model, which identified the C5 position as pointing toward the solvent-exposed space, our PXR-binding model coincidentally suggested that structural modifications at the C5 position could productively modulate the CYP induction potential while maintaining the D1 PAM potency of these THIQ-based PAMs.
Collapse
Affiliation(s)
- Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Xin Zhou
- Drug Disposition, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, California92121, United States
| | - Jessica Rehmel
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - James P Steele
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Kjell A Svensson
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - James P Beck
- Discovery Chemistry Research and Technologies, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, California92121, United States
| | - Erik J Hembre
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Junliang Hao
- Discovery Chemistry Research and Technologies, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, California92121, United States
| |
Collapse
|
11
|
Kaczor AA, Wróbel TM, Bartuzi D. Allosteric Modulators of Dopamine D 2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules 2022; 28:molecules28010178. [PMID: 36615372 PMCID: PMC9822192 DOI: 10.3390/molecules28010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays a hot topic in medicinal chemistry. Allosteric modulators, i.e., compounds which bind in a receptor site topologically distinct from orthosteric sites, exhibit a number of advantages. They are more selective, safer and display a ceiling effect which prevents overdosing. Allosteric modulators of dopamine D2 receptor are potential drugs against a number of psychiatric and neurological diseases, such as schizophrenia and Parkinson's disease. In this review, an insightful summary of current research on D2 receptor modulators is presented, ranging from their pharmacology and structural aspects of ligand-receptor interactions to their synthesis.
Collapse
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence: ; Tel.: +48-81-448-72-73
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
12
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Hao J, Beck J, Zhou X, Lackner GL, Johnston R, Reinhard M, Goldsmith P, Hollinshead S, Dehlinger V, Filla SA, Wang XS, Richardson J, Posada M, Mohutsky M, Schober D, Katner JS, Chen Q, Hu B, Remick DM, Coates DA, Mathes BM, Hawk MK, Svensson KA, Hembre E. Synthesis and Preclinical Characterization of LY3154885, a Human Dopamine D1 Receptor Positive Allosteric Modulator with an Improved Nonclinical Drug-Drug Interaction Risk Profile. J Med Chem 2022; 65:3786-3797. [PMID: 35175768 DOI: 10.1021/acs.jmedchem.1c01887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results from recently completed clinical studies suggest the dopamine D1 receptor positive allosteric modulator (PAM) mevidalen (1) could offer unique value for lewy body dementia (LBD) patients. In nonclinical assessments, 1 was mainly eliminated by CYP3A4-mediated metabolism, therefore at the risk of being a victim of drug-drug interactions (DDI) with CYP3A4 inhibitors and inducers. An effort was initiated to identify a new D1 PAM with an improved DDI risk profile. While attempts to introduce additional metabolic pathways mediated by other CYP isoforms failed to provide molecules with an acceptable profile, we discovered that the relative contribution of CYP-mediated oxidation and UGT-mediated conjugation could be tuned to reduce the CYP3A4-mediated victim DDI risk. We have identified LY3154885 (5), a D1 PAM that possesses similar in vitro and in vivo pharmacologic properties as 1, but is metabolized mainly by UGT, predicting it could potentially offer lower victim DDI risk in clinic.
Collapse
|
14
|
Wang J, Yang D, Cheng X, Yang L, Wang Z, Dai A, Cai X, Zhang C, Yuliantie E, Liu Q, Jiang H, Liu H, Wang MW, Yang H. Allosteric Modulators Enhancing GLP-1 Binding to GLP-1R via a Transmembrane Site. ACS Chem Biol 2021; 16:2444-2452. [PMID: 34570476 DOI: 10.1021/acschembio.1c00552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a well-established drug target for the treatment of type II diabetes. The development of small-molecule positive allosteric modulators (PAMs) of GLP-1R is a promising therapeutic strategy. Here, we report the discovery and characterization of PAMs with distinct chemotypes, binding to a cryptic pocket formed by the cytoplasmic half of TM3, TM5, and TM6. Molecular dynamic simulations and mutagenesis studies indicate that the PAM enlarges the orthosteric pocket to facilitate GLP-1 binding. Further signaling assays characterized their probe-dependent signaling profiles. Our findings provide mechanistic insights into fine-tuning GLP-1R via this allosteric pocket and open up new avenues to design small-molecule drugs for class B G-protein-coupled receptors.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Dehua Yang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Antao Dai
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoqing Cai
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Elita Yuliantie
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Ming-Wei Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
15
|
Free RB, Cuoco CA, Xie B, Namkung Y, Prabhu VV, Willette BKA, Day MM, Sanchez-Soto M, Lane JR, Laporte SA, Shi L, Allen JE, Sibley DR. Pharmacological Characterization of the Imipridone Anticancer Drug ONC201 Reveals a Negative Allosteric Mechanism of Action at the D 2 Dopamine Receptor. Mol Pharmacol 2021; 100:372-387. [PMID: 34353882 PMCID: PMC8626643 DOI: 10.1124/molpharm.121.000336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
ONC201 is a first-in-class imipridone compound that is in clinical trials for the treatment of high-grade gliomas and other advanced cancers. Recent studies identified that ONC201 antagonizes D2-like dopamine receptors at therapeutically relevant concentrations. In the current study, characterization of ONC201 using radioligand binding and multiple functional assays revealed that it was a full antagonist of the D2 and D3 receptors (D2R and D3R) with low micromolar potencies, similar to its potency for antiproliferative effects. Curve-shift experiments using D2R-mediated β-arrestin recruitment and cAMP assays revealed that ONC201 exhibited a mixed form of antagonism. An operational model of allostery was used to analyze these data, which suggested that the predominant modulatory effect of ONC201 was on dopamine efficacy with little to no effect on dopamine affinity. To investigate how ONC201 binds to the D2R, we employed scanning mutagenesis coupled with a D2R-mediated calcium efflux assay. Eight residues were identified as being important for ONC201's functional antagonism of the D2R. Mutation of these residues followed by assessing ONC201 antagonism in multiple signaling assays highlighted specific residues involved in ONC201 binding. Together with computational modeling and simulation studies, our results suggest that ONC201 interacts with the D2R in a bitopic manner where the imipridone core of the molecule protrudes into the orthosteric binding site, but does not compete with dopamine, whereas a secondary phenyl ring engages an allosteric binding pocket that may be associated with negative modulation of receptor activity. SIGNIFICANCE STATEMENT: ONC201 is a novel antagonist of the D2 dopamine receptor with demonstrated efficacy in the treatment of various cancers, especially high-grade glioma. This study demonstrates that ONC201 antagonizes the D2 receptor with novel bitopic and negative allosteric mechanisms of action, which may explain its high selectivity and some of its clinical anticancer properties that are distinct from other D2 receptor antagonists widely used for the treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Caroline A Cuoco
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Bing Xie
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Yoon Namkung
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Varun V Prabhu
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Blair K A Willette
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Marilyn M Day
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Marta Sanchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - J Robert Lane
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Stéphane A Laporte
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Lei Shi
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - Joshua E Allen
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., C.A.C., B.K.A.W., M.M.D., M.S-S., D.R.S.); Chimerix, Inc., Durham, North Carolina (V.V.P., J.E.A.); Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (B.X., L.S.); Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Canada (Y.N., S.A.P.); and Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, United Kingdom (J.R.L.)
| |
Collapse
|
16
|
Donthamsetti P, Winter N, Hoagland A, Stanley C, Visel M, Lammel S, Trauner D, Isacoff E. Cell specific photoswitchable agonist for reversible control of endogenous dopamine receptors. Nat Commun 2021; 12:4775. [PMID: 34362914 PMCID: PMC8346604 DOI: 10.1038/s41467-021-25003-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Dopamine controls diverse behaviors and their dysregulation contributes to many disorders. Our ability to understand and manipulate the function of dopamine is limited by the heterogenous nature of dopaminergic projections, the diversity of neurons that are regulated by dopamine, the varying distribution of the five dopamine receptors (DARs), and the complex dynamics of dopamine release. In order to improve our ability to specifically modulate distinct DARs, here we develop a photo-pharmacological strategy using a Membrane anchored Photoswitchable orthogonal remotely tethered agonist for the Dopamine receptor (MP-D). Our design selectively targets D1R/D5R receptor subtypes, most potently D1R (MP-D1ago), as shown in HEK293T cells. In vivo, we targeted dorsal striatal medium spiny neurons where the photo-activation of MP-D1ago increased movement initiation, although further work is required to assess the effects of MP-D1ago on neuronal function. Our method combines ligand and cell type-specificity with temporally precise and reversible activation of D1R to control specific aspects of movement. Our results provide a template for analyzing dopamine receptors.
Collapse
Affiliation(s)
- Prashant Donthamsetti
- grid.47840.3f0000 0001 2181 7878Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Nils Winter
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig-Maximilians University, München, Germany
| | - Adam Hoagland
- grid.47840.3f0000 0001 2181 7878Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Cherise Stanley
- grid.47840.3f0000 0001 2181 7878Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Meike Visel
- grid.47840.3f0000 0001 2181 7878Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Stephan Lammel
- grid.47840.3f0000 0001 2181 7878Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Dirk Trauner
- grid.137628.90000 0004 1936 8753Department of Chemistry, New York University, New York City, NY USA
| | - Ehud Isacoff
- grid.47840.3f0000 0001 2181 7878Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
17
|
Wong XK, Yeong KY. A Patent Review on the Current Developments of Benzoxazoles in Drug Discovery. ChemMedChem 2021; 16:3237-3262. [PMID: 34289258 DOI: 10.1002/cmdc.202100370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Indexed: 12/11/2022]
Abstract
The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
18
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
19
|
Fyfe TJ, Scammells PJ, Lane JR, Capuano B. Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D 1 Receptor. Molecules 2021; 26:molecules26133799. [PMID: 34206465 PMCID: PMC8270344 DOI: 10.3390/molecules26133799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (d- and l-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with superior allosteric properties.
Collapse
Affiliation(s)
- Tim J. Fyfe
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
| | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
| | - J. Robert Lane
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence: (J.R.L.); (B.C.)
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
- Correspondence: (J.R.L.); (B.C.)
| |
Collapse
|
20
|
Desai A, Benner L, Wu R, Gertsik L, Maruff P, Light GA, Uz T, Marek GJ, Zhu T. Phase 1 randomized study on the safety, tolerability, and pharmacodynamic cognitive and electrophysiological effects of a dopamine D 1 receptor positive allosteric modulator in patients with schizophrenia. Neuropsychopharmacology 2021; 46:1145-1151. [PMID: 33203954 PMCID: PMC8182805 DOI: 10.1038/s41386-020-00908-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
ASP4345, a novel dopamine D1 receptor positive allosteric modulator, is being evaluated for the treatment of cognitive impairment associated with schizophrenia (CIAS). This phase 1 multiple ascending-dose study (NCT02720263) assessed the safety, tolerability, and pharmacodynamics of ASP4345 in patients with schizophrenia/schizoaffective disorder. Pharmacodynamic assessments were Cogstate cognitive tests and electrophysiological biomarkers, including gamma-band power and phase synchronization in response to 40-Hz auditory steady-state stimulation, as well as mismatch negativity (MMN) and P3a event-related potentials. The sample size determination was based on standard practice in assessing safety and tolerability of a new chemical entity. Data were summarized by conversion of this data into effect sizes using descriptive and inferential statistics. A total of 36 randomized patients received ASP4345 (3, 15, 50, and 150 mg; n = 9 each dose) and 12 patients received placebo. Patients in the ASP4345 group experienced 73 treatment-emergent adverse events (TEAEs) and 34 TEAEs were reported for the placebo group. The most common TEAEs were headache and somnolence and nearly all TEAEs were mild in severity. No changes in mood or self-reports of suicidal ideation/behavior were observed. Improvements in performance on cognitive tests were noted, which suggests a potential improvement in psychomotor function and visual attention. Furthermore, positive changes in neurophysiological biomarkers (auditory steady-state response [ASSR] and MMN) suggest improvement in information processing. The findings need to be confirmed in studies with a larger patient population. Nonetheless, the trends in safety and pharmacodynamic data support further clinical development of ASP4345 for the treatment of CIAS.
Collapse
Affiliation(s)
- Amit Desai
- Astellas Pharma Global Development, Inc., Northbrook, IL, USA.
| | - Lauren Benner
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Ruishan Wu
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Lev Gertsik
- grid.490279.1California Clinical Trials Medical Group, Inc., Glendale, CA USA
| | | | - Gregory A. Light
- grid.266100.30000 0001 2107 4242University of California, San Diego, San Diego, CA USA
| | - Tolga Uz
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Gerard J. Marek
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Tong Zhu
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| |
Collapse
|
21
|
Luderman KD, Jain P, Benjamin Free R, Conroy JL, Aubé J, Sibley DR, Frankowski KJ. Development of pyrimidone D1 dopamine receptor positive allosteric modulators. Bioorg Med Chem Lett 2021; 31:127696. [PMID: 33221389 PMCID: PMC8380033 DOI: 10.1016/j.bmcl.2020.127696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
MLS1082 is a structurally novel pyrimidone-based D1-like dopamine receptor positive allosteric modulator. Potentiation of D1 dopamine receptor (D1R) signaling is a therapeutic strategy for treating neurocognitive disorders. Here, we investigate the relationship between D1R potentiation and two prominent structural features of MLS1082, namely the pendant N-aryl and C-alkyl groups on the pyrimidone ring. To this end, we synthesized 24 new analogues and characterized their ability to potentiate dopamine signaling at the D1R and the closely related D5R. We identified structure-activity relationship trends for both aryl and alkyl modifications and our efforts afforded several analogues with improvements in activity. The most effective analogues demonstrated an approximately 8-fold amplification of dopamine-mediated D1R signaling. These findings advance the understanding of structural moieties underlying the activity of pyrimidone-based D1R positive allosteric modulators.
Collapse
Affiliation(s)
- Kathryn D Luderman
- Molecular Neuropharmacology Section, NINDS, National Institutes of Health, Bethesda, MD, United States
| | - Prashi Jain
- Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, NINDS, National Institutes of Health, Bethesda, MD, United States
| | - Jennie L Conroy
- Molecular Neuropharmacology Section, NINDS, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Aubé
- Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States; Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599-7363, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, NINDS, National Institutes of Health, Bethesda, MD, United States.
| | - Kevin J Frankowski
- Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States; Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599-7363, United States.
| |
Collapse
|
22
|
Insights into the Interaction of LVV-Hemorphin-7 with Angiotensin II Type 1 Receptor. Int J Mol Sci 2020; 22:ijms22010209. [PMID: 33379211 PMCID: PMC7795518 DOI: 10.3390/ijms22010209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII’s kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.
Collapse
|
23
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Carli M, Scarselli M, Maggio R, Rossi M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:ph13110388. [PMID: 33202534 PMCID: PMC7696972 DOI: 10.3390/ph13110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists. In recent years, a strong effort to develop allosteric modulators as potential therapeutic agents for schizophrenia was made, mainly for the several advantages in their use. In particular, the allosteric binding sites are topographically distinct from the orthosteric pockets, and thus drugs targeting these sites have a higher degree of receptor subunit specificity. Moreover, “pure” allosteric modulators maintain the temporal and spatial fidelity of native orthosteric ligand. Furthermore, allosteric modulators have a “ceiling effect”, and their modulatory effect is saturated above certain concentrations. In this review, we summarize the progresses made in the identification of allosteric drugs for dopamine and serotonin receptors, which could lead to a new generation of atypical antipsychotics with a better profile, especially in terms of reduced side effects.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Marco Carli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Marco Scarselli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
- Correspondence:
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK;
| |
Collapse
|
24
|
Ågren R, Sahlholm K. Voltage-Dependent Dopamine Potency at D 1-Like Dopamine Receptors. Front Pharmacol 2020; 11:581151. [PMID: 33117177 PMCID: PMC7577048 DOI: 10.3389/fphar.2020.581151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 01/17/2023] Open
Abstract
In recent years, transmembrane voltage has been found to modify agonist potencies at several G protein-coupled receptors (GPCRs). Whereas the voltage sensitivities of the Gαi/o-coupled dopamine D2-like receptors (D2R, D3R, D4R) have previously been investigated, the putative impact of transmembrane voltage on agonist potency at the mainly Gαs/olf-coupled dopamine D1-like receptors (D1R, D5R) has hitherto not been reported. Here, we assayed the potency of dopamine in activating G protein-coupled inward rectifier potassium (GIRK) channels co-expressed with D1R and D5R in Xenopus oocytes, at -80 mV and at 0 mV. Furthermore, GIRK response deactivation rates upon dopamine washout were measured to estimate dopamine dissociation rate (koff) constants. Depolarization from -80 to 0 mV was found to reduce dopamine potency by about 7-fold at both D1R and D5R. This potency reduction was accompanied by an increase in estimated dopamine koffs at both receptors. While the GIRK response elicited via D1R was insensitive to pertussis toxin (PTX), the response evoked via D5R was reduced by 64% (-80 mV) and 71% (0 mV) in the presence of PTX. Injection of oocytes with Gαs antisense oligonucleotide inhibited the D1R-mediated response by 62% (-80 mV) and 76% (0 mV) and abolished the D5R response when combined with PTX. Our results suggest that depolarization decreases dopamine affinity at D1R and D5R. The voltage-dependent affinities of dopamine at D1R and D5R may be relevant to the functions of these receptors in learning and memory.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Desai A, Benner L, Wu R, Gertsik L, Uz T, Marek GJ, Zhu T. Pharmacokinetics of ASP4345 from Single Ascending-Dose and Multiple Ascending-Dose Phase I Studies. Clin Pharmacokinet 2020; 60:79-88. [PMID: 32533536 PMCID: PMC7808976 DOI: 10.1007/s40262-020-00911-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Cognitive impairment is a core feature of schizophrenia. While first- and second-generation antipsychotic drugs treat psychotic exacerbations, no treatment is approved for the cognitive dysfunction. We have identified ASP4345, a positive allosteric modulator of the dopamine type 1 (D1) receptor that selectively binds to, and enhances the activity of, D1 receptors. ASP4345 has the potential to be an effective and well-tolerated treatment option for cognitive impairment associated with schizophrenia. Objective The objective of this study was to determine the pharmacokinetics of ASP4345 in two phase I single ascending-dose and multiple ascending-dose studies. Methods Both phase I studies were randomized, double blind, and placebo controlled. The single dose-ascending study assessed pharmacokinetics of single oral doses of 3–900 mg of ASP4345 or placebo in the fasted state in healthy adult volunteers. This study also assessed cerebrospinal fluid pharmacokinetics, as well as the effects of food on pharmacokinetic parameters. The multiple ascending-dose study (NCT02720263) assessed the pharmacokinetics of multiple oral doses of 3–150 mg of ASP4345 in patients with schizophrenia or schizoaffective disorder receiving stable antipsychotic drug treatment. The pharmacokinetic data from both studies were summarized using descriptive statistics. Results The plasma concentration–time profile in both studies showed a rapid increase in concentrations of ASP4345. The median time to maximum concentration range was 1.00–2.26 h in the single ascending-dose study in the fasted state and 1.25–3.02 h in the multiple ascending-dose study at steady state. There were less than dose-proportional increases in maximum concentration and area under the curve in the single ascending-dose study, where doses had a range from 3 to 900 mg, and in the multiple ascending-dose study in patients with stabilized schizophrenia or schizoaffective disorder, where doses had a range from 3 to 150 mg. The mean terminal elimination half-life was dose independent and had a range from 9.12 to 14.3 h in the single ascending-dose study and from 11.1 to 26.8 h in the multiple ascending-dose study. Additionally, in the single ascending-dose study, absorption of 300 mg of ASP4345 was slightly delayed when administered in the fed state compared with the fasted state; median time to maximum concentration was 1.5 h under the fasting state and 4.0 h under fed states. All other pharmacokinetic parameters were comparable for both conditions. ASP4345 appeared in the cerebrospinal fluid with some delay; time to maximum concentration range was from 2.48 to 7.98 h in cerebrospinal fluid compared with 0.75 to 1.03 h in plasma (median cerebrospinal fluid/plasma = 0.188). The ratio of cerebrospinal fluid to total plasma for area under the curve from 0 to 24 h (0.157–0.573%) and maximum concentration (0.0899–0.311%) and the ratio of cerebrospinal fluid to unbound plasma for maximum concentration (25.0–86.4%) confirm the distribution of ASP4345 into the brain. Conclusions The pharmacokinetics of ASP4345 suggest that single daily dosing is appropriate for ASP4345. Furthermore, the concentration of ASP4345 in cerebrospinal fluid compared to free drug concentrations in plasma provides evidence of penetration of ASP4345 into the brain.
Collapse
Affiliation(s)
- Amit Desai
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA.
| | - Lauren Benner
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Ruishan Wu
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Lev Gertsik
- California Clinical Trials Medical Group, Inc., Glendale, CA, USA
| | - Tolga Uz
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Gerard J Marek
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Tong Zhu
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| |
Collapse
|
26
|
Wonnenberg PM, Zestos AG. Polymer-Modified Carbon Fiber Microelectrodes for Neurochemical Detection of Dopamine and Metabolites. ECS TRANSACTIONS 2020; 97:901-927. [PMID: 33953827 PMCID: PMC8096166 DOI: 10.1149/09707.0901ecst] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbon-fiber microelectrodes (CFMEs) are considered to be the standard electrodes for neurotransmitter detection. Fast-scan cyclic voltammetry (FSCV), an electro analytical method, has the ability to follow neurochemical dynamics in real time using CFMEs. Improvements in neurochemical detection with CFMEs were previously made through the coating of polymers onto the surface of the carbon-fiber. Polymers such as PEI, PEDOT, and Nafion were electrodeposited onto the surface of the electrodes to enhance neurochemical detection. This work demonstrates applications for enhancements in co-detection of similarly structured neurochemicals such as dopamine, DOPAL, 3-methoxytyramine, DOPAC, and other neurotransmitters. Manipulating the charge and surface structure of the carbon electrode allows for the improvement of sensitivity and selectivity of neurotransmitter detection. The analytes are detected and differentiated by the shape and the peak positions of their respective cyclic voltammograms.
Collapse
Affiliation(s)
- P M Wonnenberg
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| | - A G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| |
Collapse
|
27
|
Haak AJ, Ducharme MT, Diaz Espinosa AM, Tschumperlin DJ. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis Therapies. Trends Pharmacol Sci 2020; 41:172-182. [PMID: 32008852 DOI: 10.1016/j.tips.2019.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
A variety of G protein-coupled receptors (GPCRs) have been implicated in the pathogenesis of pulmonary fibrosis, largely through their promotion of profibrotic fibroblast activation. By contrast, recent work has highlighted the beneficial effects of Gαs-coupled GPCRs on reducing fibroblast activation and fibrosis. This review highlights how fibrosis-promoting and -inhibiting GPCR signaling converges on downstream signaling and transcriptional effectors, and how the diversity and dynamics of GPCR expression challenge efforts to identify effective therapies for idiopathic pulmonary fibrosis (IPF). Next-generation strategies to overcome these challenges, focusing on target selection, polypharmacology, and personalized medicine approaches, are discussed as a path towards more effective GPCR-targeted therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Merrick T Ducharme
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Felsing DE, Jain MK, Allen JA. Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics. Curr Top Med Chem 2019; 19:1365-1380. [PMID: 31553283 DOI: 10.2174/1568026619666190712210903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.
Collapse
Affiliation(s)
- Daniel E Felsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - Manish K Jain
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - John A Allen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| |
Collapse
|
29
|
Hao J, Beck JP, Schaus JM, Krushinski JH, Chen Q, Beadle CD, Vidal P, Reinhard MR, Dressman BA, Massey SM, Boulet SL, Cohen MP, Watson BM, Tupper D, Gardinier KM, Myers J, Johansson AM, Richardson J, Richards DS, Hembre EJ, Remick DM, Coates DA, Bhardwaj RM, Diseroad BA, Bender D, Stephenson G, Wolfangel CD, Diaz N, Getman BG, Wang XS, Heinz BA, Cramer JW, Zhou X, Maren DL, Falcone JF, Wright RA, Mitchell SN, Carter G, Yang CR, Bruns RF, Svensson KA. Synthesis and Pharmacological Characterization of 2-(2,6-Dichlorophenyl)-1-((1 S,3 R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dihydroisoquinolin-2(1 H)-yl)ethan-1-one (LY3154207), a Potent, Subtype Selective, and Orally Available Positive Allosteric Modulator of the Human Dopamine D1 Receptor. J Med Chem 2019; 62:8711-8732. [PMID: 31532644 DOI: 10.1021/acs.jmedchem.9b01234] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical development of catechol-based orthosteric agonists of the dopamine D1 receptor has thus far been unsuccessful due to multiple challenges. To address these issues, we identified LY3154207 (3) as a novel, potent, and subtype selective human D1 positive allosteric modulator (PAM) with minimal allosteric agonist activity. Conformational studies showed LY3154207 adopts an unusual boat conformation, and a binding pose with the human D1 receptor was proposed based on this observation. In contrast to orthosteric agonists, LY3154207 showed a distinct pharmacological profile without a bell-shaped dose-response relationship or tachyphylaxis in preclinical models. Identification of a crystalline form of free LY3154207 from the discovery lots was not successful. Instead, a novel cocrystal form with superior solubility was discovered and determined to be suitable for development. This cocrystal form was advanced to clinical development as a potential first-in-class D1 PAM and is now in phase 2 studies for Lewy body dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel S Richards
- AMRI UK Ltd , Erl Wood Manor, Sunninghill Road , Windlesham , Surrey , GU20 6PH , United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Svensson KA, Hao J, Bruns RF. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:273-305. [PMID: 31378255 DOI: 10.1016/bs.apha.2019.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dopamine D1 receptor plays an important role in motor activity, reward, and cognition. Efforts to develop D1 agonists have been mixed due to poor drug-like properties, tachyphylaxis, and inverted U-shaped dose-response curves. Recently, positive allosteric modulators (PAMs) for the dopamine D1 receptor were discovered and initial pharmacological profiling has suggested that several of the above issues could be addressed with this mechanism. This paper presents an overview of key findings for DETQ (2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one), which is currently the only D1 PAM for which published in vivo data is available. In vitro studies showed selective potentiation of the human D1 receptor without significant allosteric agonist effects. Due to a species difference in affinity for DETQ, transgenic mice expressing the human D1 receptor (hD1 mice) were used in vivo. In contrast to D1 agonists, DETQ increased locomotor activity over a wide dose-range without inverted U-shaped dose response or tachyphylaxis. DETQ also reversed hypo-activity in mice with dopamine depletion due to reserpine pretreatment, suggesting potential for treatment of motor symptoms in Parkinson's disease. Potential pro-cognitive effects were supported by improved performance in the novel object recognition task, enhanced release of cortical acetylcholine and histamine, and increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB. In addition, DETQ enhanced wakefulness in EEG studies and decreased immobility in the forced-swim test. Together, these results provide support for potential utility of D1 PAMs in the treatment of several neuropsychiatric disorders. LY3154207, a close analog of DETQ, is currently in phase 2 clinical trials.
Collapse
Affiliation(s)
- Kjell A Svensson
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States.
| | - Junliang Hao
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| | - Robert F Bruns
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| |
Collapse
|
31
|
Coughlin Q, Hopper AT, Blanco MJ, Tirunagaru V, Robichaud AJ, Doller D. Allosteric Modalities for Membrane-Bound Receptors: Insights from Drug Hunting for Brain Diseases. J Med Chem 2019; 62:5979-6002. [PMID: 30721063 DOI: 10.1021/acs.jmedchem.8b01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Medicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation. Investigations using allosteric drug candidates and chemical tools suggest that their functional effects may be tailored with a high degree of translational alignment, making them molecular tools to correct pathophysiological functional tone and enable personalized medicine when a causative target-to-disease link is known. We present select examples of functional molecular fine-tuning of allosterism and discuss consequences relevant to drug design.
Collapse
|
32
|
Hall A, Provins L, Valade A. Novel Strategies To Activate the Dopamine D 1 Receptor: Recent Advances in Orthosteric Agonism and Positive Allosteric Modulation. J Med Chem 2018; 62:128-140. [PMID: 30525590 DOI: 10.1021/acs.jmedchem.8b01767] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The five dopamine receptor subtypes (D1-5) are activated by the endogenous catecholamine dopamine. Sustained research has sought to identify selective ligands for receptor subtypes. In particular, activation of the D1 receptor has attracted attention due to its promising role in neurological diseases. Initial attempts to identify agonists yielded catechol derivatives, mimicking dopamine, with suboptimal DMPK parameters and low selectivity over the D5 subtype. However, more recent efforts to identify ligands capable of activating the D1 receptor have made substantial progress with the identification of non-catechol agonists with suitable properties to progress to clinical studies. In addition, several research groups have identified positive allosteric modulators that offer new potential. Furthermore, structural studies have surprisingly uncovered two potential allosteric binding sites, the most characterized of which appears to be on intracellular loop 2 (ICL2). This review highlights the recent progress in the field, covering both orthosteric and allosteric modes of activation, discusses the elucidation of the allosteric binding sites, and summarizes the clinical development status of various compounds.
Collapse
Affiliation(s)
- Adrian Hall
- UCB Pharma , Avenue de l'Industrie , Braine-L'Alleud 1420 , Belgium
| | - Laurent Provins
- UCB Pharma , Avenue de l'Industrie , Braine-L'Alleud 1420 , Belgium
| | - Anne Valade
- UCB Pharma , Avenue de l'Industrie , Braine-L'Alleud 1420 , Belgium
| |
Collapse
|