1
|
Catalani V, Floresta G, Botha M, Corkery JM, Guirguis A, Vento A, Abbate V, Schifano F. In silico studies on recreational drugs: 3D quantitative structure activity relationship prediction of classified and de novo designer benzodiazepines. Chem Biol Drug Des 2023; 101:40-51. [PMID: 35838189 DOI: 10.1111/cbdd.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Currently, increasing availability and popularity of designer benzodiazepines (DBZDs) constitutes a primary threat to public health. To assess this threat, the biological activity/potency of DBZDs was investigated using in silico studies. Specific Quantitative Structure Activity Relationship (QSAR) models were developed in Forge™ for the prediction of biological activity (IC50 ) on the γ-aminobutyric acid A receptor (GABA-AR) of previously identified classified and unclassified DBDZs. A set of new potential ligands resulting from scaffold hopping studies conducted with MOE® was also evaluated. Two generated QSAR models (i.e. 3D-field QSAR and RVM) returned very good performance statistics (r2 = 0.98 [both] and q2 = 0.75 and 0.72, respectively). The DBZDs predicted to be the most active were flubrotizolam, clonazolam, pynazolam and flucotizolam, consistently with what reported in literature and/or drug discussion fora. The scaffold hopping studies strongly suggest that replacement of the pendant phenyl moiety with a five-membered ring could increase biological activity and highlight the existence of a still unexplored chemical space for DBZDs. QSAR could be of use as a preliminary risk assessment model for (newly) identified DBZDs, as well as scaffold hopping for the creation of computational libraries that could be used by regulatory bodies as support tools for scheduling procedures.
Collapse
Affiliation(s)
- Valeria Catalani
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Michelle Botha
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - John Martin Corkery
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Amira Guirguis
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Swansea University Medical School, The Grove, Swansea University, Swansea, UK
| | - Alessandro Vento
- Department of Psychology, Guglielmo Marconi University, Rome, Italy
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
2
|
Moustafa RE, Tarbah F, Saeed HS, Sharif SI. Designer benzodiazepines versus prescription benzodiazepines: can structural relation predict the next step? Crit Rev Toxicol 2021; 51:249-263. [PMID: 34038656 DOI: 10.1080/10408444.2021.1907303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Designer benzodiazepines are a part of the recently discovered abuse synthetic drugs called Novel Psychoactive Substances (NPS) which need to be controlled due to their constantly growing market. Most of them are derived from the medically approved benzodiazepines used nowadays yet, may possess stronger effects, more toxicity, and longer durations of action. Some differences have also been observed in their detection and characteristics, in addition to the variations discovered in postmortem redistribution and drug stability. All these major alterations in features can result from only minor structural modifications. For example, a classic benzodiazepine (BZD) like diazepam only lacks one fluorine atom which exists in its derivatized designer drug, diclazepam, making substantial differences in activity. For this reason, it is essential to study the designer drugs in order to identify their dangers and distinguish them thus rule out their abuse and control the spread of such drugs. This review would highlight the distinct characteristics of some of the most commonly abused designer benzodiazepine analogies in relation to their original prescription BZD compounds.
Collapse
Affiliation(s)
- Raneem E Moustafa
- Department of Pharmacy Practice & Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Fuad Tarbah
- Department of Pharmacy Practice & Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Huda Sulaiman Saeed
- General Department of Forensic Science and Criminology, Toxicology Section, Dubai Police Head Quarter, Dubai, United Arab Emirates
| | - Suleiman I Sharif
- Department of Pharmacy Practice & Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Lehmann S, Sczyslo A, Froch-Cortis J, Rothschild MA, Thevis M, Andresen-Streichert H, Mercer-Chalmers-Bender K. Organ distribution of diclazepam, pyrazolam and 3-fluorophenmetrazine. Forensic Sci Int 2019; 303:109959. [PMID: 31546164 DOI: 10.1016/j.forsciint.2019.109959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022]
Abstract
The organ distribution of 3-fluorophenmetrazine (3-FPM), pyrazolam, diclazepam as well as its main metabolites delorazepam, lormetazepam and lorazepam, was investigated. A solid phase extraction (SPE) and a QuEChERS (acronym for quick, easy, cheap, effective, rugged and safe) - approach were used for the extraction of the analytes from human tissues, body fluids and stomach contents. The detection was performed on a liquid chromatography-tandem mass spectrometry system (LCMS/MS). The analytes of interest were detected in all body fluids and tissues. Results showed femoral blood concentrations of 10 μg/L for 3-FPM, 28 μg/L for pyrazolam, 1 μg/L for diclazepam, 100 μg/L for delorazepam, 6 μg/L for lormetazepam, and 22 μg/L for lorazepam. Tissues (muscle, kidney and liver) and bile exhibited higher concentrations of the mentioned analytes than in blood. Additional positive findings in femoral blood were for 2-fluoroamphetamine (2-FA, approx. 89 μg/L), 2-flourometamphetamine (2-FMA, hint), methiopropamine (approx. 2.2 μg/L), amphetamine (approx. 21 μg/L) and caffeine (positive). Delorazepam showed the highest ratio of heart (C) and femoral blood (P) concentration (C/P ratio = 2.5), supported by the concentrations detected in psoas muscle (430 μg/kg) and stomach content (approx. 210 μg/L, absolute 84 μg). The C/P ratio indicates that delorazepam displays susceptibility for post-mortem redistribution (PMR), supported by the findings in muscle tissue. 3-FPM, pyrazolam, diclazepam, lorazepam and lormetazepam did apparently not exhibit any PMR. The cause of death, in conjunction with autopsy findings was concluded as a positional asphyxia promoted by poly-drug intoxication by arising from designer benzodiazepines and the presence of synthetic stimulants.
Collapse
Affiliation(s)
- Sabrina Lehmann
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Alissa Sczyslo
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Judith Froch-Cortis
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Mario Thevis
- Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | | | - Katja Mercer-Chalmers-Bender
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany; Institute of Forensic Medicine, University of Basel - Health Department Basel, Switzerland.
| |
Collapse
|
4
|
Robinson LC, Barat O, Mellott JG. GABAergic and glutamatergic cells in the inferior colliculus dynamically express the GABA AR γ 1 subunit during aging. Neurobiol Aging 2019; 80:99-110. [PMID: 31112831 DOI: 10.1016/j.neurobiolaging.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 01/20/2023]
Abstract
Age-related hearing loss may result, in part, from declining levels of γ-amino butyric acid (GABA) in the aging inferior colliculus (IC). An upregulation of the GABAAR γ1 subunit, which has been shown to increase sensitivity to GABA, occurs in the aging IC. We sought to determine whether the upregulation of the GABAAR γ1 subunit was specific to GABAergic or glutamatergic IC cells. We used immunohistochemistry for glutamic acid decarboxylase and the GABAAR γ1 subunit at 4 age groups in the IC of Fisher Brown Norway rats. The percentage of somas that expressed the γ1 subunit and the number of subunits on each soma were quantified. Our results show that GABAergic and glutamatergic IC cells increasingly expressed the γ1 subunit from young age until expression peaked during middle age. At old age (∼77% of life span), the number of GABAAR γ1 subunits per cell sharply decreased for both cell types. These results, along with previous studies, suggest inhibitory and excitatory IC circuits may express the GABAAR γ1 subunit in response to the age-related decline of available GABA.
Collapse
Affiliation(s)
- Lauren C Robinson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Biology, Kent State University, Kent, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
5
|
Özdemir Z, Sari S, Karakurt A, Dalkara S. Synthesis, anticonvulsant screening, and molecular modeling studies of new arylalkylimidazole oxime ether derivatives. Drug Dev Res 2018; 80:269-280. [DOI: 10.1002/ddr.21491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Zeynep Özdemir
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryInonu University Malatya Turkey
| | - Suat Sari
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryHacettepe University Ankara Turkey
| | - Arzu Karakurt
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryInonu University Malatya Turkey
| | - Sevim Dalkara
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryHacettepe University Ankara Turkey
| |
Collapse
|
6
|
Synthesis, anticonvulsant activity, and molecular modeling studies of novel 1-phenyl/1-(4-chlorophenyl)-2-(1H-triazol-1-yl)ethanol ester derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2225-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Sari S, Dalkara S, Kaynak FB, Reynisson J, Saraç S, Karakurt A. New Anti-Seizure (Arylalkyl)azole Derivatives: Synthesis,In VivoandIn SilicoStudies. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Suat Sari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Hacettepe University; Ankara Turkey
| | - Sevim Dalkara
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Hacettepe University; Ankara Turkey
| | - Filiz Betül Kaynak
- Faculty of Engineering, Department of Physics Engineering; Hacettepe University; Ankara Turkey
| | - Jóhannes Reynisson
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Selma Saraç
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Hacettepe University; Ankara Turkey
| | - Arzu Karakurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Inonu University; Malatya Turkey
| |
Collapse
|
8
|
Sari S, Karakurt A, Uslu H, Kaynak FB, Çalış Ü, Dalkara S. New (arylalkyl)azole derivatives showing anticonvulsant effects could have VGSC and/or GABA AR affinity according to molecular modeling studies. Eur J Med Chem 2016; 124:407-416. [PMID: 27597416 DOI: 10.1016/j.ejmech.2016.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/11/2016] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
(Arylalkyl)azoles (AAAs) emerged as a novel class of antiepileptic agents with the invention of nafimidone and denzimol. Several AAA derivatives with potent anticonvulsant activities have been reported so far, however neurotoxicity was usually an issue. We prepared a set of ester derivatives of 1-(2-naphthyl)-2-(1H-1,2,4-triazol-1-yl)ethanone oxime and evaluated their anticonvulsant and neurotoxic effects in mice. Most of our compounds were protective against maximal electroshock (MES)- and/or subcutaneous metrazol (s.c. MET)-induced seizures whereas none of them showed neurotoxicity. Nafimidone and denzimol have an activity profile similar to that of phenytoin or carbamazepine, both of which are known to inhibit voltage-gated sodium channels (VGSCs) as well as to enhance γ-aminobutiric acid (GABA)-mediated response. In order to get insights into the effects of our compounds on VGSCs and A-type GABA receptors (GABAARs) we performed docking studies using homology model of Na+ channel inner pore and GABAAR as docking scaffolds. We found that our compounds bind VGSCs in similar ways as phenytoin, carbamazepine, and lamotrigine. They showed strong affinity to benzodiazepine (BZD) binding site and their binding interactions were mainly complied with the experimental data and the reported BZD binding model.
Collapse
Affiliation(s)
- Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Ankara, Turkey
| | - Arzu Karakurt
- İnönü University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 44280, Malatya, Turkey.
| | - Harun Uslu
- İnönü University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 44280, Malatya, Turkey
| | - F Betül Kaynak
- Hacettepe University, Faculty of Engineering, Department of Physics Engineering, 06532, Ankara, Turkey
| | - Ünsal Çalış
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Ankara, Turkey
| | - Sevim Dalkara
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Ankara, Turkey
| |
Collapse
|
9
|
Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat Chem Biol 2016; 12:822-30. [DOI: 10.1038/nchembio.2150] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
10
|
Crockett S, Baur R, Kunert O, Belaj F, Sigel E. A new chromanone derivative isolated from Hypericum lissophloeus (Hypericaceae) potentiates GABAA receptor currents in a subunit specific fashion. Bioorg Med Chem 2015; 24:681-5. [PMID: 26791864 DOI: 10.1016/j.bmc.2015.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/26/2022]
Abstract
A phytochemical investigation of the lipophilic extract of Hypericum lissophloeus (smoothbark St. John's wort, Hypericaceae) was conducted, resulting in the isolation and identification of a new chromanone derivative: 5,7-dihydroxy-2,3-dimethyl-6-(3-methyl-but-2-enyl)-chroman-4-one (1). This compound was demonstrated to act as a potent stimulator of currents elicited by GABA in recombinant α1β2γ2 GABAA receptors, with a half-maximal potentiation observed at a concentration of about 4μM and a maximal potentiation of >4000%. Significant potentiation was already evident at a concentration as low as 0.1μM. Extent of potentiation strongly depends on the type of α subunit, the type of β subunit and the presence of the γ subunit.
Collapse
Affiliation(s)
- Sara Crockett
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstraße 28, CH-3012 Bern, Switzerland
| | - Olaf Kunert
- Institute of Pharmaceutical Chemistry, Department of Pharmaceutical Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Department of Inorganic Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstraße 28, CH-3012 Bern, Switzerland
| |
Collapse
|
11
|
Middendorp SJ, Maldifassi MC, Baur R, Sigel E. Positive modulation of synaptic and extrasynaptic GABAA receptors by an antagonist of the high affinity benzodiazepine binding site. Neuropharmacology 2015; 95:459-67. [DOI: 10.1016/j.neuropharm.2015.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 02/07/2023]
|
12
|
Middendorp SJ, Hurni E, Schönberger M, Stein M, Pangerl M, Trauner D, Sigel E. Relative positioning of classical benzodiazepines to the γ2-subunit of GABAA receptors. ACS Chem Biol 2014; 9:1846-53. [PMID: 24918742 DOI: 10.1021/cb500186a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Benzodiazepine exert their action via a high affinity-binding site at the α/γ subunit interface on some of these receptors. Diazepam has sedative, hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects. It acts by potentiating the current evoked by the agonist GABA. Understanding specific interaction of benzodiazepines in the binding pocket of different GABAA receptor isoforms might help to separate these divergent effects. As a first step, we characterized the interaction between diazepam and the major GABAA receptor isoform α1β2γ2. We mutated several amino acid residues on the γ2-subunit assumed to be located near or in the benzodiazepine binding pocket individually to cysteine and studied the interaction with three ligands that are modified with a cysteine-reactive isothiocyanate group (-NCS). When the reactive NCS group is in apposition to the cysteine residue this leads to a covalent reaction. In this way, three amino acid residues, γ2Tyr58, γ2Asn60, and γ2Val190 were located relative to classical benzodiazepines in their binding pocket on GABAA receptors.
Collapse
Affiliation(s)
- Simon J. Middendorp
- Institute
of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Evelyn Hurni
- Institute
of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schönberger
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Marco Stein
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Michael Pangerl
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Dirk Trauner
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Erwin Sigel
- Institute
of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
13
|
Moosmann B, Bisel P, Auwärter V. Characterization of the designer benzodiazepine diclazepam and preliminary data on its metabolism and pharmacokinetics. Drug Test Anal 2014; 6:757-63. [DOI: 10.1002/dta.1628] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Bjoern Moosmann
- Institute of Forensic Medicine, Forensic Toxicology Department; University Medical Center Freiburg; Albertstr. 9 79104 Freiburg Germany
- Hermann Staudinger Graduate School; University of Freiburg; Hebelstr. 27 79104 Freiburg Germany
| | - Philippe Bisel
- Institute for Pharmaceutical Sciences; University of Freiburg; Albertstr. 25 79104 Freiburg Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology Department; University Medical Center Freiburg; Albertstr. 9 79104 Freiburg Germany
| |
Collapse
|
14
|
Xie HB, Sha Y, Wang J, Cheng MS. Some insights into the binding mechanism of the GABAA receptor: a combined docking and MM-GBSA study. J Mol Model 2013; 19:5489-500. [DOI: 10.1007/s00894-013-2049-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/21/2013] [Indexed: 02/02/2023]
|
15
|
Chen YC. The Molecular Dynamic Simulation of Zolpidem Interaction with Gamma Aminobutyric Acid Type A Receptor. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200700093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
A unified model of the GABA(A) receptor comprising agonist and benzodiazepine binding sites. PLoS One 2013; 8:e52323. [PMID: 23308109 PMCID: PMC3538749 DOI: 10.1371/journal.pone.0052323] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/16/2012] [Indexed: 11/19/2022] Open
Abstract
We present a full-length α(1)β(2)γ(2) GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and the backbone of β(2)S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and β(2)F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β(2)S156 and β(2)Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α(1)T206 and γ(2)T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α(1)H101 and the N-methyl group near α(1)Y159, α(1)T206, and α(1)Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABA(A) receptor is made available as Model S1.
Collapse
|
17
|
Richter L, de Graaf C, Sieghart W, Varagic Z, Mörzinger M, de Esch IJP, Ecker GF, Ernst M. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat Chem Biol 2012; 8:455-64. [PMID: 22446838 DOI: 10.1038/nchembio.917] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 02/02/2012] [Indexed: 11/09/2022]
Abstract
Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABA(A) receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an unbiased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design.
Collapse
Affiliation(s)
- Lars Richter
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In 1950, γ-aminobutyric acid (GABA) was discovered in the brain and in 1967 it was recognized as an inhibitory neurotransmitter. The discovery of the benzodiazepines Librium® (launched in 1960) and Valium® by Sternbach initiated huge research activities resulting in 50 marketed drugs. In 1975, Haefely found that GABA is involved in the actions of benzodiazepines. The baclofen-sensitive, bicuculline-insensitive GABAB receptor was discovered by Bowery in 1980, and the baclofen-insensitive, bicuculline-insensitive GABAC receptor by Johnston in 1984. Barnard & Seeburg reported the cloning of the GABAA receptor in 1987, Cutting the GABAC receptor in 1991 and Bettler the GABAB1a and GABAB1b receptors in 1997. Six groups cloned the GABAB2 receptor in 1998/1999 showing that the GABAB receptor functions as a heterodimer with GABAB1b/GABAB2 mediating postsynaptic inhibition and GABAB1a/GABAB2 mediating presynaptic inhibition. Möhler and McKernan dissected the pharmacology of the benzodiazepine-receptor subtypes. Antagonists and positive allosteric modulators of GABAB receptors were discovered in 1987 and 2001, respectively. GABA transporter inhibitor, tiagabine, was launched in 1996, a GABA aminotransferase inhibitor, vigabatrin, in 1998 and a glutamic acid decarboxylase activator, pregabalin, in 2004. Most recently, brain-penetrating GABAC-receptor antagonists were reported in 2009.
Collapse
|
19
|
Yin W, Majumder S, Clayton T, Petrou S, VanLinn ML, Namjoshi OA, Ma C, Cromer BA, Roth BL, Platt DM, Cook JM. Design, synthesis, and subtype selectivity of 3,6-disubstituted β-carbolines at Bz/GABA(A)ergic receptors. SAR and studies directed toward agents for treatment of alcohol abuse. Bioorg Med Chem 2010; 18:7548-64. [PMID: 20888240 PMCID: PMC2972656 DOI: 10.1016/j.bmc.2010.08.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 11/29/2022]
Abstract
A series of 3,6-disubstituted β-carbolines was synthesized and evaluated for their in vitro affinities at α(x)β(3)γ(2) GABA(A)/benzodiazepine receptor subtypes by radioligand binding assays in search of α(1) subtype selective ligands to treat alcohol abuse. Analogues of β-carboline-3-carboxylate-t-butyl ester (βCCt, 1) were synthesized via a CDI-mediated process and the related 6-substituted β-carboline-3-carboxylates 6 including WYS8 (7) were synthesized via a Sonogashira or Stille coupling processes from 6-iodo-βCCt (5). The bivalent ligands of βCCt (32 and 33) were also designed and prepared via a palladium-catalyzed homocoupling process to expand the structure-activity relationships (SAR) to larger ligands. Based on the pharmacophore/receptor model, a preliminary SAR study on 34 analogues illustrated that large substituents at position-6 of the β-carbolines were well tolerated. As expected, these groups are proposed to project into the extracellular domain (L(Di) region) of GABA(A)/Bz receptors (see 32 and 33). Moreover, substituents located at position-3 of the β-carboline nucleus exhibited a conserved stereo interaction in lipophilic pocket L(1), while N(2) presumably underwent a hydrogen bonding interaction with H(1). Three novel β-carboline ligands (βCCt, 3PBC and WYS8), which preferentially bound to α1 BzR subtypes permitted a comparison of the pharmacological efficacies with a range of classical BzR antagonists (flumazenil, ZK93426) from several different structural groups and indicated these β-carbolines were 'near GABA neutral antagonists'. Based on the SAR, the most potent (in vitro) α(1) selective ligand was the 6-substituted acetylenyl βCCt (WYS8, 7). Earlier both βCCt and 3PBC had been shown to reduce alcohol self-administration in alcohol preferring (P) and high alcohol drinking (HAD) rats but had little or no effect on sucrose self-administration.(1-3) Moreover, these two β-carbolines were orally active, and in addition, were anxiolytic in P rats but were only weakly anxiolytic in rodents. These data prompted the synthesis of the β-carbolines presented here.
Collapse
Affiliation(s)
- Wenyuan Yin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201-0413
| | - Samarpan Majumder
- Department of Pharmacology and Division of Medicinal Chemistry, University of North Carolina-Chapel Hill Medical School and School of Pharmacy and NIMH Psychoactive Drug Screening Program, 120 Mason Farm Road, 4072 Genetics Medicine Bldg, Chapel Hill, NC 27599-7365
| | - Terry Clayton
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201-0413
| | - Steven Petrou
- Howard Florey Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael L. VanLinn
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201-0413
| | | | - Chunrong Ma
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201-0413
| | - Brett A. Cromer
- Howard Florey Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bryan L. Roth
- Department of Pharmacology and Division of Medicinal Chemistry, University of North Carolina-Chapel Hill Medical School and School of Pharmacy and NIMH Psychoactive Drug Screening Program, 120 Mason Farm Road, 4072 Genetics Medicine Bldg, Chapel Hill, NC 27599-7365
| | - Donna M. Platt
- Harvard Medical School, New England Primate Research Center, One Pine Hill Drive, Box 9102, Southborough, MA 01772-9102
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201-0413
| |
Collapse
|
20
|
Tan KR, Brown M, Labouèbe G, Yvon C, Creton C, Fritschy JM, Rudolph U, Lüscher C. Neural bases for addictive properties of benzodiazepines. Nature 2010; 463:769-74. [PMID: 20148031 PMCID: PMC2871668 DOI: 10.1038/nature08758] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/02/2009] [Indexed: 12/19/2022]
Abstract
Benzodiazepines are widely used in clinics and for recreational purposes,
but will lead to addiction in vulnerable individuals. Addictive drugs increase
the levels of dopamine and also trigger long-lasting synaptic adaptations in the
mesolimbic reward system that ultimately may induce the pathological behavior.
The neural basis for the addictive nature of benzodiazepines however remains
elusive. Here we show that benzodiazepines increase firing of dopamine neurons
of the ventral tegmental area through the positive modulation of
GABAA receptors in nearby interneurons. Such disinhibition, which
relies on α1-containing GABAARs expressed in these cells,
triggers drug-evoked synaptic plasticity in excitatory afferents onto dopamine
neurons and underlies drug reinforcement. Taken together, our data provide
evidence that benzodiazepines share defining pharmacological features of
addictive drugs through cell type-specific expression of α1-containing
GABAARs in the ventral tegmental area. The data also suggest that
subunitselective benzodiazepines sparing α1 may be devoid of addiction
liability.
Collapse
Affiliation(s)
- Kelly R Tan
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tan KR, Baur R, Charon S, Goeldner M, Sigel E. Relative positioning of diazepam in the benzodiazepine-binding-pocket of GABA receptors. J Neurochem 2009; 111:1264-73. [PMID: 19804380 DOI: 10.1111/j.1471-4159.2009.06419.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of alpha(1)S205C and alpha(1)T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (-NCS). We also provide new data that identify alpha(1)H101C and alpha(1)N102C as exclusive sites of the reaction of a diazepam derivative where the -Cl atom is replaced by a -NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of alpha(1)beta(2)gamma(2) receptors.
Collapse
Affiliation(s)
- Kelly R Tan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Berezhnoy D, Gibbs TT, Farb DH. Docking of 1,4-benzodiazepines in the alpha1/gamma2 GABA(A) receptor modulator site. Mol Pharmacol 2009; 76:440-50. [PMID: 19483108 PMCID: PMC2713131 DOI: 10.1124/mol.109.054650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/29/2009] [Indexed: 11/22/2022] Open
Abstract
Positive allosteric modulation of the GABA(A) receptor (GABA(A)R) via the benzodiazepine recognition site is the mechanism whereby diverse chemical classes of therapeutic agents act to reduce anxiety, induce and maintain sleep, reduce seizures, and induce conscious sedation. The binding of such therapeutic agents to this allosteric modulatory site increases the affinity of GABA for the agonist recognition site. A major unanswered question, however, relates to how positive allosteric modulators dock in the 1,4-benzodiazepine (BZD) recognition site. In the present study, the X-ray structure of an acetylcholine binding protein from the snail Lymnea stagnalis and the results from site-directed affinity-labeling studies were used as the basis for modeling of the BZD binding pocket at the alpha(1)/gamma(2) subunit interface. A tethered BZD was introduced into the binding pocket, and molecular simulations were carried out to yield a set of candidate orientations of the BZD ligand in the binding pocket. Candidate orientations were refined based on known structure-activity and stereospecificity characteristics of BZDs and the impact of the alpha(1)H101R mutation. Results favor a model in which the BZD molecule is oriented such that the C5-phenyl substituent extends approximately parallel to the plane of the membrane rather than parallel to the ion channel. Application of this computational modeling strategy, which integrates site-directed affinity labeling with structure-activity knowledge to create a molecular model of the docking of active ligands in the binding pocket, may provide a basis for the design of more selective GABA(A)R modulators with enhanced therapeutic potential.
Collapse
Affiliation(s)
- D Berezhnoy
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
23
|
Hanson SM, Morlock EV, Satyshur KA, Czajkowski C. Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different. J Med Chem 2009; 51:7243-52. [PMID: 18973287 DOI: 10.1021/jm800889m] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The sleep-aids zolpidem and eszopiclone exert their effects by binding to and modulating gamma-aminobutyric acid type-A receptors (GABA(A)Rs), but little is known about the structural requirements for their actions. We made 24 cysteine mutations in the benzodiazepine (BZD) binding site of alpha(1)beta(2)gamma(2) GABA(A)Rs and measured zolpidem, eszopiclone, and BZD-site antagonist binding. Mutations in gamma(2)loop D and alpha(1)loops A and B altered the affinity of all ligands tested, indicating that these loops are important for BZD pocket structural integrity. In contrast, gamma(2)loop E and alpha(1)loop C mutations differentially affected ligand affinity, suggesting that these loops are important for ligand selectivity. In agreement with our mutagenesis data, eszopiclone docking yielded a single model stabilized by several hydrogen bonds. Zolpidem docking yielded three equally populated orientations with few polar interactions, suggesting that unlike eszopiclone, zolpidem relies more on shape recognition of the binding pocket than on specific residue interactions and may explain why zolpidem is highly alpha(1)- and gamma(2)-subunit selective.
Collapse
Affiliation(s)
- Susan M Hanson
- Department of Physiology and Program in Molecular and Cellular Pharmacology, University of Wisconsin Madison, Madison, Wisconsin 53711, USA
| | | | | | | |
Collapse
|
24
|
Anzini M, Braile C, Valenti S, Cappelli A, Vomero S, Marinelli L, Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A, Ghelardini C, Norcini M, Makovec F, Giorgi G, Ian Fryer R. Ethyl 8-Fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as Novel, Highly Potent, and Safe Antianxiety Agent. J Med Chem 2008; 51:4730-43. [DOI: 10.1021/jm8002944] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maurizio Anzini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Carlo Braile
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Salvatore Valenti
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Salvatore Vomero
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Luciana Marinelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Vittorio Limongelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Ettore Novellino
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Laura Betti
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Gino Giannaccini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Antonio Lucacchini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Carla Ghelardini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Monica Norcini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Francesco Makovec
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Gianluca Giorgi
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - R. Ian Fryer
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| |
Collapse
|
25
|
Tierney ML, Luu T, Gage PW. Functional asymmetry of the conserved cystine loops in alphabetagamma GABA A receptors revealed by the response to GABA activation and drug potentiation. Int J Biochem Cell Biol 2007; 40:968-79. [PMID: 18083058 DOI: 10.1016/j.biocel.2007.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022]
Abstract
Ligand-gated ion channels respond to specific neurotransmitters by transiently opening an integral membrane ion-selective pore, allowing ions to move down their electrochemical gradient. A distinguishing feature of all members of the ligand-gated ion channel superfamily is the presence of a 13-amino acid disulfide loop (Cys-loop) in the extracellular ligand-binding domain. Structural data derived from the acetylcholine receptor place this loop at the interface between the ligand-binding domain and the transmembrane pore-forming domain where it is ideally located to participate in coupling ligand binding to channel opening. We have introduced specific mutations into a conserved motif at the mid-point of the Cys-loop of the GABA A receptor subunits alpha1, beta2 and gamma2S where the sequence reads aromatic, proline, aliphatic (ArProAl motif). Receptors carrying a mutation in the Cys-loop of one of their subunits were expressed in L929 cells and responses to both GABA and drugs were assessed using the whole-cell patch clamp technique. Drug potentiation and direct activation were significantly enhanced by mutations in this Cys-loop but these effects were subunit-dependent. Currents in response to agonists were larger when mutations were carried in the alpha and beta subunits but not in the gamma subunit. In contrast, potentiation of current responses by diazepam, etomidate and pentobarbital were all enhanced when mutations were carried in the alpha and gamma subunits, but not the beta subunit. Since the disruption of interactions mediated through the ArProAl motif enhances the mutant receptor's response to both agonist and drugs we suggest that this motif in the Cys-loop of the wild-type receptor participates in interactions that create activation barriers to conformational changes during channel gating.
Collapse
Affiliation(s)
- M Louise Tierney
- Division of Molecular Bioscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
26
|
Tan KR, Baur R, Gonthier A, Goeldner M, Sigel E. Two neighboring residues of loop A of the alpha1 subunit point towards the benzodiazepine binding site of GABAA receptors. FEBS Lett 2007; 581:4718-22. [PMID: 17854801 DOI: 10.1016/j.febslet.2007.08.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/13/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022]
Abstract
Benzodiazepines are widely used drugs exerting sedative, anxiolytic, muscle relaxant, and anticonvulsant effects by acting through specific high affinity binding sites on some GABA(A) receptors. It is important to understand how these ligands are positioned in this binding site. We are especially interested here in the conformation of loop A of the alpha(1)beta(2)gamma(2) GABA(A) receptor containing a key residue for the interaction of benzodiazepines: alpha(1)H101. We describe a direct interaction of alpha(1)N102 with a diazepam- and an imidazobenzodiazepine-derivative. Our observations help to better understand the conformation of this region of the benzodiazepine pocket in GABA(A) receptor.
Collapse
Affiliation(s)
- Kelly R Tan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Tan KR, Gonthier A, Baur R, Ernst M, Goeldner M, Sigel E. Proximity-accelerated Chemical Coupling Reaction in the Benzodiazepine-binding Site of γ-Aminobutyric Acid Type A Receptors. J Biol Chem 2007; 282:26316-25. [PMID: 17626010 DOI: 10.1074/jbc.m702153200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzodiazepines are widely used drugs. They exert sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects and act through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid type A (GABA(A)) receptor. Ligands of the benzodiazepine-binding site are classified into three groups depending on their mode of action: positive and negative allosteric modulators and antagonists. To rationally design ligands of the benzodiazepine site in different isoforms of the GABA(A) receptor, we need to understand the relative positioning and overlap of modulators of different allosteric properties. To solve these questions, we used a proximity-accelerated irreversible chemical coupling reaction. GABA(A) receptor residues thought to reside in the benzodiazepine-binding site were individually mutated to cysteine and combined with a cysteine-reactive benzodiazepine site ligand. Direct apposition of reaction partners is expected to lead to a covalent reaction. We describe here such a reaction of predominantly alpha(1)H101C and also three other mutants (alpha(1)G157C, alpha(1)V202C, and alpha(1)V211C) with an Imid-NCS derivative in which a reactive isothiocyanate group (-NCS) replaces the azide group (-N(3)) in the partial negative allosteric modulator Ro15-4513. Our results show four contact points of imidazobenzodiazepines with the receptor, alpha(1)H101C being shared by classical benzodiazepines. Taken together with previous data, a similar orientation of these ligands within the benzodiazepine-binding pocket may be proposed.
Collapse
Affiliation(s)
- Kelly R Tan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern CH-3012, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Sancar F, Ericksen SS, Kucken AM, Teissére JA, Czajkowski C. Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol Pharmacol 2007; 71:38-46. [PMID: 17012619 DOI: 10.1124/mol.106.029595] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The imidazopyridine zolpidem (Ambien) is one of the most commonly prescribed sleep aids in the United States (Rush, 1998). Similar to classic benzodiazepines (BZDs), zolpidem binds at the extracellular N-terminal alpha/gamma subunit interface of the GABA-A receptor (GABAR). However, zolpidem differs significantly from classic BZDs in chemical structure and neuropharmacological properties. Thus, classic BZDs and zolpidem are likely to have different requirements for high-affinity binding to GABARs. To date, three residues--gamma2Met57, gamma2Phe77, and gamma2Met130--have been identified as necessary for high-affinity zolpidem binding (Proc Natl Acad Sci USA 94:8824-8829, 1997; Mol Pharmacol 52:874-881, 1997). In this study, we used radioligand binding techniques, gamma2/alpha1 chimeric subunits (chi), site-directed mutagenesis, and molecular modeling to identify additional gamma2 subunit residues important for high-affinity zolpidem binding. Whereas alpha1beta2chi receptors containing only the first 161 amino-terminal residues of the gamma2 subunit bind the classic BZD flunitrazepam with wild-type affinity, zolpidem affinity is decreased approximately 8-fold. By incrementally restoring gamma2 subunit sequence, we identified a seven-amino acid stretch in the gamma2 subunit loop F region (amino acids 186-192) that is required to confer high-affinity zolpidem binding to GABARs. When mapped to a homology model, these seven amino acids make up part of loop F located at the alpha/gamma interface. Based on in silico zolpidem docking, three residues within loop F, gamma2Glu189, gamma2Thr193, and gamma2Arg194, emerge as being important for stabilizing zolpidem in the BZD binding pocket and probably interact with other loop F residues to maintain the structural integrity of the BZD binding site.
Collapse
Affiliation(s)
- Feyza Sancar
- Department of Physiology, University of Wisconsin-Madison, 601 Science Dr, Madison, WI 53711, USA
| | | | | | | | | |
Collapse
|
29
|
Fedi M, Berkovic SF, Marini C, Mulligan R, Tochon-Danguy H, Reutens DC. A GABAA receptor mutation causing generalized epilepsy reduces benzodiazepine receptor binding. Neuroimage 2006; 32:995-1000. [PMID: 16875845 DOI: 10.1016/j.neuroimage.2006.05.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/22/2022] Open
Abstract
Understanding the consequences of newly discovered single gene mutations causing human epilepsy has the potential to yield new insights into the underlying mechanisms of this disorder. A mutation of the gamma2 subunit of the GABA(A) receptor, which substitutes glutamine for arginine at position 43 (R43Q) has been found in a familial generalized epilepsy. We tested the hypothesis that individuals affected by the GABRG2(R43Q) mutation have reduced binding to the GABA(A) receptor complex using positron emission tomography (PET) and the benzodiazepine receptor ligand [(11)C]-flumazenil. Fourteen subjects with the GABRG2(R43Q) mutation and 20 controls were studied. Benzodiazepine receptor binding was reduced in subjects with the mutation (mean whole brain binding potential for [(11)C]-flumazenil: GABA(A) mutation 0.66+/-0.1; controls 0.89+/-0.1; P<0.003). The greatest change in benzodiazepine binding occurred anteriorly, with peak differences in insular and anterior cingulate cortices revealed by statistical parametric mapping. Our findings provide in vivo evidence of reduced benzodiazepine receptor binding in subjects with the mutation. As synaptic inhibition in the human brain is largely mediated by the GABA(A) receptor, these findings are likely to represent an important clue to the mechanisms linking this gene defect and the epilepsy phenotype.
Collapse
Affiliation(s)
- Marco Fedi
- Department of Medicine, The University of Melbourne, Austin Health Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The glycine and gamma-aminobutyric acid receptors (GlyR and GABA(A)R, respectively) are the major inhibitory neurotransmitter-gated receptors in the central nervous system of animals. Given the important role of these receptors in neuronal inhibition, they are prime targets of many therapeutic agents and are the object of intense studies aimed at correlating their structure and function. In this review, the structure and dynamics of these and other homologous members of the nicotinicoid superfamily are described. The modulatory actions of the major biological macromolecules that bind and allosterically affect these receptors are also discussed.
Collapse
Affiliation(s)
- Michael Cascio
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Ogris W, Pöltl A, Hauer B, Ernst M, Oberto A, Wulff P, Höger H, Wisden W, Sieghart W. Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABA(A) receptor gamma2 subunit. Biochem Pharmacol 2005; 68:1621-9. [PMID: 15451405 DOI: 10.1016/j.bcp.2004.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/07/2004] [Indexed: 11/26/2022]
Abstract
The benzodiazepine binding site of GABA(A) receptors is located at the interface of the alpha and gamma subunits. Certain point mutations in these subunits have been demonstrated to dramatically reduce the affinity of benzodiazepine binding site ligands for these receptors. Recently, mice were generated with a phenylalanine (F) to isoleucine (I) substitution at position 77 in the gamma2 subunit of GABA(A) receptors. Here we tested the potency of 24 benzodiazepine binding site ligands from 16 different structural classes for inhibition of [(3)H]flunitrazepam binding to brain membranes of these gamma2F77I mice. Results indicate that the potency of the classical 1,4-benzodiazepines, of the 1,4-thienodiazepine clotiazepam, the 1,5-benzodiazepine clobazam, or the pyrazoloquinoline CGS 9896 is only 2-7-fold reduced by this gamma2F77I point mutation. The potency of the imidazopyrimidines Ru 32698, Ru 33203, and Ru 33356, of the imidazoquinoline Ru 31719, or the pyrazolopyridine CGS 20625 is reduced 10-20-fold, whereas the potency of some imidazobenzodiazepines, beta-carbolines, cyclopyrrolones, imidazopyridines, triazolopyridazines, or quinolines is 100-1000-fold reduced. Interestingly, the extent of potency reduction induced by the gamma2F77I point mutation varied within the structural classes of compounds. Results support and significantly extend previous observations indicating that the residue gamma2F77 is important for high affinity binding of some, but not all benzodiazepine site ligands.
Collapse
Affiliation(s)
- Waltraud Ogris
- Division of Biochemistry and Molecular Biology, Brain Research Institute, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The physiological significance of the large diversity of GABA A receptors is poorly understood. Using mice, which carry a point mutation that renders specific subtypes of GABA A receptors diazepam insensitive, it was recently discovered that particular types of GABA A receptors are involved in specific, behaviorally relevant signaling pathways. We have used these mice to study inhibitory synaptic transmission in the amygdala. GABA A receptor-mediated inhibitory postsynaptic currents (IPSCs) per se were not affected by the point mutations. Their modulation by diazepam, however, was altered depending on the genotype of the mice studied. Based on the different responses to diazepam, we found that IPSCs in the lateral/basolateral amygdala were mediated by both alpha2- and alpha1-subunit-containing GABA A receptors whereas those in the central amygdala were mediated only by alpha2-subunit-containing GABA A receptors. Immunohistochemical staining corroborated these findings at a morphological level. To investigate a possible link between interneuron and receptor diversity, we selectively depressed release from the subset of GABAergic terminals carrying type 1 cannabinoid receptors. These receptors are known to modulate amygdala-mediated behavior. Application of a type 1 cannabinoid receptor agonist resulted in a selective reduction of inhibitory current mediated by alpha1-subunit-containing GABA A receptors. Mice with specific diazepam-insensitive GABA A receptor subtypes therefore provide a novel tool to investigate GABA A receptor distribution and the organization of inhibitory circuits at a functional level. The crucial role of the amygdala for the mediation of anxiety is in agreement with the part that alpha2-subunit-containing GABA A receptors play in anxiolysis and their important function in this area of the brain.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057, Switzerland
| | | | | |
Collapse
|
33
|
Berezhnoy D, Nyfeler Y, Gonthier A, Schwob H, Goeldner M, Sigel E. On the benzodiazepine binding pocket in GABAA receptors. J Biol Chem 2003; 279:3160-8. [PMID: 14612433 DOI: 10.1074/jbc.m311371200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzodiazepines are used for their sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsive effects. They exert their actions through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid, type A (GABA(A)) receptor channel, where they act as positive allosteric modulators. To start to elucidate the relative positioning of benzodiazepine binding site ligands in their binding pocket, GABA(A) receptor residues thought to reside in the site were individually mutated to cysteine and combined with benzodiazepine analogs carrying substituents reactive to cysteine. Direct apposition of such reactive partners is expected to lead to an irreversible site-directed reaction. We describe here the covalent interaction of alpha(1)H101C with a reactive group attached to the C-7 position of diazepam. This interaction was studied at the level of radioactive ligand binding and at the functional level using electrophysiological methods. Covalent reaction occurs concomitantly with occupancy of the binding pocket. It stabilizes the receptor in its allosterically stimulated conformation. Covalent modification is not observed in wild type receptors or when using mutated alpha(1)H101C-containing receptors in combination with the reactive ligand pre-reacted with a sulfhydryl group, and the modification rate is reduced by the binding site ligand Ro15-1788. We present in addition evidence that gamma(2)Ala-79 is probably located in the access pathway of the ligand to its binding pocket.
Collapse
Affiliation(s)
- Dmytro Berezhnoy
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Kucken AM, Teissére JA, Seffinga-Clark J, Wagner DA, Czajkowski C. Structural requirements for imidazobenzodiazepine binding to GABA(A) receptors. Mol Pharmacol 2003; 63:289-96. [PMID: 12527800 DOI: 10.1124/mol.63.2.289] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several structural subclasses of ligands bind to the benzodiazepine (BZD) binding site of the GABA(A) receptor. Previous studies from this laboratory have suggested that imidazobenzodiazepines (i-BZDs, e.g., Ro 15-1788) require domains in the BZD binding site for high-affinity binding that are distinct from the requirements of classic BZDs (e.g., flunitrazepam). Here, we used systematic mutagenesis and the substituted cysteine accessibility method to map the recognition domain of i-BZDs near two residues implicated in BZD binding, gamma(2)A79 and gamma(2)T81. Both classic BZDs and i-BZDs protect cysteines substituted at gamma(2)A79 and gamma(2)T81 from covalent modification, suggesting that these ligands may occupy common volumetric spaces during binding. However, the binding of i-BZDs is more sensitive to mutations at gamma(2)A79 than classic BZDs or BZDs that lack a 3'-imidazo substituent (e.g., midazolam). The effect that gamma(2)A79 mutagenesis has on the binding affinities of a series of structurally rigid i-BZDs is related to the volume of the 3'-imidazo substituents. Furthermore, larger amino acid side chains introduced at gamma(2)A79 cause correspondingly larger decreases in the binding affinities of i-BZDs with bulky 3' substituents. These data are consistent with a model in which gamma(2)A79 lines a subsite within the BZD binding pocket that accommodates the 3' substituent of i-BZDs. In agreement with our experimental data, computer-assisted docking of Ro 15-4513 into a molecular model of the BZD binding site positions the 3'-imidazo substituent of Ro 15-4513 near gamma(2)A79.
Collapse
Affiliation(s)
- Amy M Kucken
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
35
|
Sawyer GW, Chiara DC, Olsen RW, Cohen JB. Identification of the bovine gamma-aminobutyric acid type A receptor alpha subunit residues photolabeled by the imidazobenzodiazepine [3H]Ro15-4513. J Biol Chem 2002; 277:50036-45. [PMID: 12388542 DOI: 10.1074/jbc.m209281200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligands binding to the benzodiazepine-binding site in gamma-aminobutyric acid type A (GABA(A)) receptors may allosterically modulate function. Depending upon the ligand, the coupling can either be positive (flunitrazepam), negative (Ro15-4513), or neutral (flumazenil). Specific amino acid determinants of benzodiazepine binding affinity and/or allosteric coupling have been identified within GABA(A) receptor alpha and gamma subunits that localize the binding site at the subunit interface. Previous photolabeling studies with [(3)H]flunitrazepam identified a primary site of incorporation at alpha(1)His-102, whereas studies with [(3)H]Ro15-4513 suggested incorporation into the alpha(1) subunit at unidentified amino acids C-terminal to alpha(1)His-102. To determine the site(s) of photoincorporation by Ro15-4513, we affinity-purified ( approximately 200-fold) GABA(A) receptor from detergent extracts of bovine cortex, photolabeled it with [(3)H]Ro15-4513, and identified (3)H-labeled amino acids by N-terminal sequence analysis of subunit fragments generated by sequential digestions with a panel of proteases. The patterns of (3)H release seen after each digestion of the labeled fragments determined the number of amino acids between the cleavage site and labeled residue, and the use of sequential proteolytic fragmentation identified patterns of cleavage sites unique to the different alpha subunits. Based upon this radiochemical sequence analysis, [(3)H]Ro15-4513 was found to selectively label the homologous tyrosines alpha(1)Tyr-210, alpha(2)Tyr-209, and alpha(3)Tyr-234, in GABA(A) receptors containing those subunits. These results are discussed in terms of a homology model of the benzodiazepine-binding site based on the molluscan acetylcholine-binding protein structure.
Collapse
Affiliation(s)
- Gregory W Sawyer
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The GABA(A) receptor is the primary mediator of inhibitory neurotransmission in the brain and is a major target for neuromodulatory drugs such as benzodiazepines, barbiturates, ethanol and anaesthetics. However, our understanding of the molecular details of this receptor has been limited by a lack of high-resolution structural information. This article presents a new model for the extracellular, ligand-binding domain of the GABA(A) receptor, that is based on the recently determined structure of a soluble acetylcholine-binding protein. The model puts existing mutational and biochemical data into a three-dimensional context, shows details of the GABA- and benzodiazepine-binding sites, and highlights the importance of other regions in allosteric conformational change. This provides a new perspective on existing data and an exciting new framework for understanding this important family of receptors.
Collapse
Affiliation(s)
- Brett A Cromer
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | | | |
Collapse
|
37
|
Kelly MD, Smith A, Banks G, Wingrove P, Whiting PW, Atack J, Seabrook GR, Maubach KA. Role of the histidine residue at position 105 in the human alpha 5 containing GABA(A) receptor on the affinity and efficacy of benzodiazepine site ligands. Br J Pharmacol 2002; 135:248-56. [PMID: 11786501 PMCID: PMC1573121 DOI: 10.1038/sj.bjp.0704459] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2001] [Revised: 09/21/2001] [Accepted: 10/25/2001] [Indexed: 11/09/2022] Open
Abstract
1. A histidine residue in the N-terminal extracellular region of alpha 1,2,3,5 subunits of the human GABA(A) receptor, which is replaced by an arginine in alpha 4 and alpha 6 subunits, is a major determinant for high affinity binding of classical benzodiazepine (BZ)-site ligands. The effect of mutating this histidine at position 105 in the alpha 5 subunit to an arginine (alpha 5H105R) on BZ-site pharmacology has been investigated using radioligand binding on HEK293 and L(tk-) cells and two electrode voltage clamp recording on Xenopus oocytes in which GABA(A) receptors of subtypes alpha 5, alpha 5H105R, alpha 4 and alpha 6 were co-expressed with beta 3 gamma 2s. 2. The classical BZs, diazepam and flunitrazepam (full agonists on the alpha 5 receptor) showed negligible affinity and therefore negligible efficacy on alpha 5H105R receptors. The beta-carbolines DMCM and beta CCE (inverse agonists on the alpha 5 receptor) retained some affinity but did not exhibit inverse agonist efficacy at alpha 5H105R receptors. Therefore, the alpha 5H105R mutation confers an alpha 4/alpha 6-like pharmacology to the classical BZs and beta-carbolines. 3. Ro15-4513, flumazenil, bretazenil and FG8094, which share a common imidazobenzodiazepine core structure, retained high affinity and were higher efficacy agonists on alpha 5H105R receptors than would be predicted from an alpha 4/alpha 6 pharmacological profile. This effect was antagonized by DMCM, which competes for the BZ-site and therefore is likely to be mediated via the BZ-site. 4. These data indicate that the conserved histidine residue in the alpha subunit is not only a key determinant in the affinity of BZ-site ligands on alpha 5 containing GABA(A) receptors, but also influences ligand efficacy.
Collapse
Affiliation(s)
- M D Kelly
- De Nova Pharmacauticals, St Andrews House, 59 St Andrews Street, Cambridge, CB2 3DD
| | - A Smith
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - G Banks
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - P Wingrove
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - P W Whiting
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - J Atack
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - G R Seabrook
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - K A Maubach
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| |
Collapse
|
38
|
A (beta)-strand in the (gamma)2 subunit lines the benzodiazepine binding site of the GABA A receptor: structural rearrangements detected during channel gating. J Neurosci 2001. [PMID: 11438573 DOI: 10.1523/jneurosci.21-14-04977.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Benzodiazepines (BZDs) exert their effects in the CNS by binding to a modulatory site on GABA(A) receptors. Individual amino acids have been implicated in BZD recognition and modulation of the GABA(A) receptor, but the secondary structure of the amino acids contributing to the BZD binding site has not been elucidated. In this report we used the substituted cysteine accessibility method to understand the structural dynamics of a region of the GABA(A) receptor implicated in BZD binding, gamma(2)Y72-gamma(2)Y83. Each residue within this region was mutated to cysteine and expressed with wild-type alpha(1) and beta(2) subunits in Xenopus oocytes. Methanethiosulfonate (MTS) reagents were used to modify covalently the engineered cysteines, and the subsequent effects on BZD modulation of the receptor were monitored functionally by two-electrode voltage clamp. We identified an alternating pattern of accessibility to sulfhydryl modification, indicating that the region gamma(2)T73-gamma(2)T81 adopts a beta-strand conformation. By monitoring the ability of BZD ligands to impede the covalent modification of accessible cysteines, we also identified two residues within this region, gamma(2)A79 and gamma(2)T81, that line the BZD binding site. Sulfhydryl modification of gamma(2)A79C or gamma(2)T81C allosterically shifts the GABA EC(50) of the receptor, suggesting that certain MTS compounds may act as tethered agonists at the BZD binding site. Last, we present structural evidence that a portion of the BZD binding site undergoes a conformational change in response to GABA binding and channel gating (opening and desensitization). These data represent an important step in understanding allosteric communication in ligand-gated ion channels.
Collapse
|
39
|
Klausberger T, Fuchs K, Mayer B, Ehya N, Sieghart W. GABA(A) receptor assembly. Identification and structure of gamma(2) sequences forming the intersubunit contacts with alpha(1) and beta(3) subunits. J Biol Chem 2000; 275:8921-8. [PMID: 10722739 DOI: 10.1074/jbc.275.12.8921] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(A) receptors are ligand-gated chloride channels composed of five homologous subunits that specifically recognize one another and assemble around an aqueous pore. To identify domains responsible for the specificity of subunit association, we constructed C-terminal truncated gamma(2) subunits, as well as mutated and chimeric fragments. From their ability to interfere with alpha(1)beta(3)gamma(2) receptor assembly and to associate with full-length subunits, we concluded that amino acid sequences gamma(2)-(91-104) and gamma(2)-(83-90) form the sites mediating assembly with alpha(1) and beta(3) subunits, respectively. Neural network-based secondary structure prediction, Monte Carlo optimization, and hydrophobicity analysis led to the conclusion that these sites also form the intersubunit contacts in the completely assembled receptor and provided important information on the benzodiazepine-binding site and structure of GABA(A) receptors.
Collapse
Affiliation(s)
- T Klausberger
- Section of Biochemical Psychiatry, University Clinic for Psychiatry, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
40
|
Sigel E, Buhr A, Baur R. Role of the conserved lysine residue in the middle of the predicted extracellular loop between M2 and M3 in the GABA(A) receptor. J Neurochem 1999; 73:1758-64. [PMID: 10501225 DOI: 10.1046/j.1471-4159.1999.731758.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In alpha1, beta2, and gamma2 subunits of the gamma-aminobutyric acid A (GABA(A)) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in alpha1 and beta2 subunits resulted each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the gamma subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the alpha1 subunit or the beta2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the alpha and beta subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the alpha subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the alpha1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the alpha1 and beta2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.
Collapse
Affiliation(s)
- E Sigel
- Department of Pharmacology, University of Bern, Switzerland
| | | | | |
Collapse
|