1
|
Ezenyi I, Madan E, Singhal J, Jain R, Chakrabarti A, Ghousepeer GD, Pandey RP, Igoli N, Igoli J, Singh S. Screening of traditional medicinal plant extracts and compounds identifies a potent anti-leishmanial diarylheptanoid from Siphonochilus aethiopicus. J Biomol Struct Dyn 2024; 42:2449-2463. [PMID: 37199276 DOI: 10.1080/07391102.2023.2212779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Available anti-leishmanial drugs are associated with toxic side effects, necessitating the search for safe and effective alternatives. This study is focused on identifying traditional medicinal plant natural products for anti-leishmanial potential and possible mechanism of action. Compounds S and T. cordifolia residual fraction (TC-5) presented the best anti-leishmanial activity (IC50: 0.446 and 1.028 mg/ml) against promastigotes at 48 h and less cytotoxicity to THP-1 macrophages. These test agents elicited increased expression of pro-inflammatory cytokines; TNFα and IL-12. In infected untreated macrophages, NO release was suppressed but was significantly (p < 0.05) increased in infected cells treated with compound S. Importantly, Compound S was found to interact with LdTopoIIdimer in silico, resulting in a likely reduced ability of nucleic acid (dsDNA)-remodelling and, as a result, parasite proliferation in vitro. Thereby, Compound S possesses anti-leishmanial activity and this effect occurs via a Th1-mediated pro-inflammatory response. An increase in NO release and its inhibitory effect on LdTopoII may also contribute to the anti-leishmanial effect of compound S. These results show the potential of this compound as a potential starting point for the discovery of novel anti-leishmanial leads.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ifeoma Ezenyi
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amrita Chakrabarti
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | | | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development, SRM University, Sonepat, Haryana, India
| | - Ngozichukwuka Igoli
- Centre for Food Technology and Research, Benue State University, Makurdi, Nigeria
| | - John Igoli
- Centre for Medicinal Plants and Propolis Research, Department of Chemical Sciences, Pen Resource University, Gombe, Nigeria
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Devi K, Singh Y, Kanojiya S, Moharana B. Aurintricarboxylic acid mitigates cigarette smoke extract induced oxidative stress and pulmonary inflammation via inhibition of NF-ҡB/p65 signaling. Toxicol Mech Methods 2023; 33:83-94. [PMID: 35706141 DOI: 10.1080/15376516.2022.2090302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Cigarette smoke (CS) induced emphysema and chronic pulmonary inflammation are major comorbidities of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. CS exposure exacerbates pulmonary inflammation and compromises immunity to various infections. Aurintricarboxylic acid (ATA) is a polyanionic aromatic compound especially recognized for its anti-inflammatory, nucleic acid, and protein interaction inhibition properties. The study was designed to investigate the anti-inflammatory role of ATA against cigarette smoke extract (CSE) induced pulmonary inflammation. Nicotine concentration was quantified in CSE by UPLC/MS technique. In vitro, fluorescence microscopy, and flow cytometry was performed in CSE stimulated alveolar epithelial cells to determine the effect of ATA on oxidative stress-mediated cellular apoptosis. In vivo, pulmonary inflammation was induced in male Wistar rats via a modified non-invasive intratracheal instillation of cigarette smoke extract (100 µl/animal) twice a week for 8 weeks and post-treated with ATA (10 mg/kg) intraperitoneally for 15 days. Lung homogenates were assessed for MDA and GSH. Lung tissues were subjected to western blotting and histopathological analysis. As result, ATA reduced CSE-induced chromatin condensation, fragmentation, cellular apoptosis in alveolar epithelial cells, and apoptotic biomarkers expression including BAX and Caspase-3 in the lungs. ATA reduced inflammation by normalizing redox balance reflected by MDA/GSH levels. ATA obviated airspace enlargement, fiber deposition, and immune cell infiltration. Reduced inflammation was accompanied by inhibition of inflammatory biomarkers TNF-α, TNFR1, TWEAK, and NF-ҡB/p65 activation and nuclear translocation. ATA efficaciously diminished the oxidative stress and pulmonary inflammation associated with lung pathogenesis through TNF-α/TNFR1/NF-ҡB/p65 signaling pathway. HIGHLIGHTSATA treatment attenuates CSE-stimulated chromatin condensation, fragmentation, and cellular apoptosis in alveolar epithelial cells.ATA treatment inhibits CSE stimulated activation and nuclear translocation of NF-ҡB/p65.ATA treatment diminishes CSE-induced oxidant injury, apoptosis, and emphysema-like phenotypic changes in the lungs.ATA inhibits lung inflammation via suppression of the NF-ҡB/p65 signaling pathway.
Collapse
Affiliation(s)
- Kusum Devi
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, India
| | - Yatendra Singh
- Division of Sophisticated Analytical Instrument Facility (SAIF), CSIR-Central Drug Research Institute, Lucknow, India
| | - Sanjeev Kanojiya
- Division of Sophisticated Analytical Instrument Facility (SAIF), CSIR-Central Drug Research Institute, Lucknow, India
| | - Baisakhi Moharana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, India
| |
Collapse
|
3
|
Cho YW, Lim HJ, Han MH, Kim BC, Han S. Small molecule inhibitors of IκB kinase β: A chip-based screening and molecular docking simulation. Bioorg Med Chem 2020; 28:115440. [DOI: 10.1016/j.bmc.2020.115440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
|
4
|
Riegger J, Huber-Lang M, Brenner RE. Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthritis Cartilage 2020; 28:685-697. [PMID: 31981738 DOI: 10.1016/j.joca.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Innate immune response and particularly terminal complement complex (TCC) deposition are thought to be involved in the pathogenesis of posttraumatic osteoarthritis. However, the possible role of TCC in regulated cell death as well as chondrocyte hypertrophy and senescence has not been unraveled so far and was first addressed using an ex vivo human cartilage trauma-model. DESIGN Cartilage explants were subjected to blunt impact (0.59 J) and exposed to human serum (HS) and cartilage homogenate (HG) with or without different potential therapeutics: RIPK1-inhibitor Necrostatin-1 (Nec), caspase-inhibitor zVAD, antioxidant N-acetyl cysteine (NAC) and TCC-inhibitors aurintricarboxylic acid (ATA) and clusterin (CLU). Cell death and hypertrophy/senescence-associated markers were evaluated on mRNA and protein level. RESULTS Addition of HS resulted in significantly enhanced TCC deposition on chondrocytes and decrease of cell viability after trauma. This effect was potentiated by HG and was associated with expression of RIPK3, MLKL and CASP8. Cytotoxicity of HS could be prevented by heat-inactivation or specific inhibitors, whereby combination of Nec and zVAD as well as ATA exhibited highest cell protection. Moreover, HS+HG exposition enhanced the gene expression of CXCL1, IL-8, RUNX2 and VEGFA as well as secretion of IL-6 after cartilage trauma. CONCLUSIONS Our findings imply crucial involvement of the complement system and primarily TCC in regulated cell death and phenotypic changes of chondrocytes after cartilage trauma. Inhibition of TCC formation or downstream signaling largely modified serum-induced pathophysiologic effects and might therefore represent a therapeutic target to maintain the survival and chondrogenic character of cartilage cells.
Collapse
Affiliation(s)
- J Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - M Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - R E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany.
| |
Collapse
|
5
|
Villanueva R, Romero-Tamayo S, Laplaza R, Martínez-Olivan J, Velázquez-Campoy A, Sancho J, Ferreira P, Medina M. Redox- and Ligand Binding-Dependent Conformational Ensembles in the Human Apoptosis-Inducing Factor Regulate Its Pro-Life and Cell Death Functions. Antioxid Redox Signal 2019; 30:2013-2029. [PMID: 30450916 DOI: 10.1089/ars.2018.7658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aims: The human apoptosis-inducing factor (hAIF) supports OXPHOS biogenesis and programmed cell death, with missense mutations producing neurodegenerative phenotypes. hAIF senses the redox environment of cellular compartments, stabilizing a charge transfer complex (CTC) dimer that modulates the protein interaction network. In this context, we aimed to evaluate the subcellular pH, CTC formation, and pathogenic mutations effects on hAIF stability, and a thermal denaturation high-throughput screening (HTS) assay to discover AIF binders. Results: Apoptotic hAIFΔ1-101 is not stable at intermembrane mitochondrial space (IMS) pH, but the 77-101 residues confer stability to the mitochondrial isoform. hAIF and its CTC populate different conformational ensembles with redox switch to the CTC producing a less stable and compact protein. The pathogenic G308E, ΔR201, and E493V mutations modulate hAIF stability; particularly, ΔR201 causes a population shift to a less stable conformation that remodels active site structure and dynamics. We have identified new molecules that modulate the hAIF reduced nicotinamide adenine dinucleotide (NADH)/oxidized nicotinamide adenine dinucleotide (NAD+) association/dissociation equilibrium and regulate its catalytic efficiency. Innovation: Biophysical methods allow evaluating the regulation of hAIF functional ensembles and to develop an HTS assay to discover small molecules that might modulate hAIF stability and activities. Conclusions: The mitochondrial soluble 54-77 portion stabilizes hAIF at the IMS pH. NADH-redox-linked conformation changes course with strong NAD+ binding and protein dimerization, but they produce a negative impact in overall hAIF stability. Loss of functionality in the R201 deletion is due to distortion of the active site architecture. We report molecules that may serve as leads in the development of hAIF bioactive compounds.
Collapse
Affiliation(s)
- Raquel Villanueva
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Romero-Tamayo
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Ruben Laplaza
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,2 Departamento de Química Física, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Martínez-Olivan
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,3 Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain.,4 Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,5 Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Sancho
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,4 Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Ferreira
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Horiguchi Y, Ohta N, Yamamoto S, Koide M, Fujino Y. Midazolam suppresses the lipopolysaccharide-stimulated immune responses of human macrophages via translocator protein signaling. Int Immunopharmacol 2019; 66:373-382. [DOI: 10.1016/j.intimp.2018.11.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
|
7
|
Roos A, Dhruv HD, Mathews IT, Inge LJ, Tuncali S, Hartman LK, Chow D, Millard N, Yin HH, Kloss J, Loftus JC, Winkles JA, Berens ME, Tran NL. Identification of aurintricarboxylic acid as a selective inhibitor of the TWEAK-Fn14 signaling pathway in glioblastoma cells. Oncotarget 2017; 8:12234-12246. [PMID: 28103571 PMCID: PMC5355340 DOI: 10.18632/oncotarget.14685] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/26/2016] [Indexed: 12/30/2022] Open
Abstract
The survival of patients diagnosed with glioblastoma (GBM), the most deadly form of brain cancer, is compromised by the proclivity for local invasion into the surrounding normal brain, which prevents complete surgical resection and contributes to therapeutic resistance. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor (TNF) superfamily, can stimulate glioma cell invasion and survival via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the transcription factor NF-κB. To discover small molecule inhibitors that disrupt the TWEAK-Fn14 signaling axis, we utilized a cell-based drug-screening assay using HEK293 cells engineered to express both Fn14 and a NF-κB-driven firefly luciferase reporter protein. Focusing on the LOPAC1280 library of 1280 pharmacologically active compounds, we identified aurintricarboxylic acid (ATA) as an agent that suppressed TWEAK-Fn14-NF-κB dependent signaling, but not TNFα-TNFR-NF-κB driven signaling. We demonstrated that ATA repressed TWEAK-induced glioma cell chemotactic migration and invasion via inhibition of Rac1 activation but had no effect on cell viability or Fn14 expression. In addition, ATA treatment enhanced glioma cell sensitivity to both the chemotherapeutic agent temozolomide (TMZ) and radiation-induced cell death. In summary, this work reports a repurposed use of a small molecule inhibitor that targets the TWEAK-Fn14 signaling axis, which could potentially be developed as a new therapeutic agent for treatment of GBM patients.
Collapse
Affiliation(s)
- Alison Roos
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Ian T Mathews
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Landon J Inge
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85004, USA
| | - Serdar Tuncali
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Lauren K Hartman
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Donald Chow
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Nghia Millard
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Holly H Yin
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Jean Kloss
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Jeffrey A Winkles
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| |
Collapse
|
8
|
Huang KW, Hsu KC, Chu LY, Yang JM, Yuan HS, Hsiao YY. Identification of Inhibitors for the DEDDh Family of Exonucleases and a Unique Inhibition Mechanism by Crystal Structure Analysis of CRN-4 Bound with 2-Morpholin-4-ylethanesulfonate (MES). J Med Chem 2016; 59:8019-29. [PMID: 27529560 DOI: 10.1021/acs.jmedchem.6b00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DEDDh family of exonucleases plays essential roles in DNA and RNA metabolism in all kingdoms of life. Several viral and human DEDDh exonucleases can serve as antiviral drug targets due to their critical roles in virus replication. Here using RNase T and CRN-4 as the model systems, we identify potential inhibitors for DEDDh exonucleases. We further show that two of the inhibitors, ATA and PV6R, indeed inhibit the exonuclease activity of the viral protein NP exonuclease of Lassa fever virus in vitro. Moreover, we determine the crystal structure of CRN-4 in complex with MES that reveals a unique inhibition mechanism by inducing the general base His179 to shift out of the active site. Our results not only provide the structural basis for the inhibition mechanism but also suggest potential lead inhibitors for the DEDDh exonucleases that may pave the way for designing nuclease inhibitors for biochemical and biomedical applications.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei 11031, Taiwan
| | - Lee-Ya Chu
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Nankang, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University , 101 Kuang-Fu Road Section 2, Hsinchu 30013, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Center for Bioinformatics Research, National Chiao Tung University , Hsinchu 30068, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University , Hsinchu 30068, Taiwan
| |
Collapse
|
9
|
Kuban-Jankowska A, Sahu KK, Niedzialkowski P, Gorska M, Tuszynski JA, Ossowski T, Wozniak M. Redox process is crucial for inhibitory properties of aurintricarboxylic acid against activity of YopH: virulence factor of Yersinia pestis. Oncotarget 2016; 6:18364-73. [PMID: 26286963 PMCID: PMC4621896 DOI: 10.18632/oncotarget.4625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/09/2015] [Indexed: 01/14/2023] Open
Abstract
YopH is a bacterial protein tyrosine phosphatase, which is essential for the viability and pathogenic virulence of the plague-causing Yersinia sp. bacteria. Inactivation of YopH activity would lead to the loss of bacterial pathogenicity. We have studied the inhibitory properties of aurintricarboxylic acid (ATA) against YopH phosphatase and found that at nanomolar concentrations ATA reversibly decreases the activity of YopH. Computational docking studies indicated that in all binding poses ATA binds in the YopH active site. Molecular dynamics simulations showed that in the predicted binding pose, ATA binds to the essential Cys403 and Arg409 residues in the active site and has a stronger binding affinity than the natural substrate (pTyr). The cyclic voltammetry experiments suggest that ATA reacts remarkably strongly with molecular oxygen. Additionally, the electrochemical reduction of ATA in the presence of a negative potential from −2.0 to 2.5 V generates a current signal, which is observed for hydrogen peroxide. Here we showed that ATA indicates a unique mechanism of YopH inactivation due to a redox process. We proposed that the potent inhibitory properties of ATA are a result of its strong binding in the YopH active site and in situ generation of hydrogen peroxide near catalytic cysteine residue.
Collapse
Affiliation(s)
| | - Kamlesh K Sahu
- Department of Physics, University of Alberta, Edmonton, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Pawel Niedzialkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Salutary effect of aurintricarboxylic acid on endotoxin- and sepsis-induced changes in muscle protein synthesis and inflammation. Shock 2015; 41:420-8. [PMID: 24430547 DOI: 10.1097/shk.0000000000000128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Small molecule nonpeptidyl molecules are potentially attractive drug candidates as adjunct therapies in the treatment of sepsis-induced metabolic complications. As such, the current study investigates the use of aurintricarboxylic acid (ATA), which stimulates insulinlike growth factor 1 receptor and AKT signaling, for its ability to ameliorate the protein metabolic effects of endotoxin (lipopolysaccharide [LPS]) + interferon γ (IFN-γ) in C2C12 myotubes and sepsis in skeletal muscle. Aurintricarboxylic acid dose- and time-dependently increases mTOR (mammalian or mechanistic target of rapamycin)-dependent protein synthesis. Pretreatment with ATA prevents the LPS/IFN-γ-induced decrease in protein synthesis at least in part by maintaining mTOR kinase activity, whereas posttreatment with ATA is able to increase protein synthesis when added up to 6 h after LPS/IFN-γ. Aurintricarboxylic acid also reverses the amino acid resistance, which is detected in response to nutrient deprivation. Conversely, ATA decreases the basal rate of protein degradation and prevents the LPS/IFN-γ increase in proteolysis, and the latter change is associated reduced atrogin 1 and MuRF1 mRNA. The ability of ATA to antagonize LPS/IFN-γ-induced changes in protein metabolism was associated with its ability to prevent the increases in interleukin 6 and nitric oxide synthase 2 and decreases in insulinlike growth factor 1. In vivo studies indicate ATA acutely increases skeletal muscle, but not cardiac, protein synthesis and attenuates the loss of lean body mass over 5 days. These data suggest ATA and other small molecule agonists of endogenous anabolic hormones may prove beneficial in treating sepsis by decreasing the inflammatory response and improving muscle protein balance.
Collapse
|
11
|
Karabay AZ, Aktan F, Sunguroğlu A, Buyukbingol Z. Methylsulfonylmethane modulates apoptosis of LPS/IFN-γ-activated RAW 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP proteins. Immunopharmacol Immunotoxicol 2014; 36:379-89. [DOI: 10.3109/08923973.2014.956752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Pechan P, Ardinger J, Ketavarapu J, Rubin H, Wadsworth SC, Scaria A. Aurintricarboxylic acid increases yield of HSV-1 vectors. Mol Ther Methods Clin Dev 2014; 1:6. [PMID: 26015945 PMCID: PMC4365865 DOI: 10.1038/mtm.2013.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/15/2013] [Indexed: 01/07/2023]
Abstract
Production of large quantities of viral vectors is crucial for the success of gene therapy in the clinic. There is a need for higher titers of herpes simplex virus-1 (HSV-1) vectors both for therapeutic use as well as in the manufacturing of clinical grade adeno-associated virus (AAV) vectors. HSV-1 yield increased when primary human fibroblasts were treated with anti-inflammatory drugs like dexamethasone or valproic acid. In our search for compounds that would increase HSV-1 yield, we investigated another anti-inflammatory compound, aurintricarboxylic acid (ATA). Although ATA has been previously shown to have antiviral effects, we find that low (micromolar) concentrations of ATA increased HSV-1 vector production yields. Our results showing the use of ATA to increase HSV-1 titers have important implications for the production of certain HSV-1 vectors as well as recombinant AAV vectors.
Collapse
Affiliation(s)
- Peter Pechan
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | - Jeffery Ardinger
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | - Jyothi Ketavarapu
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | - Hillard Rubin
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | | | - Abraham Scaria
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| |
Collapse
|
13
|
Shadrick WR, Mukherjee S, Hanson AM, Sweeney NL, Frick DN. Aurintricarboxylic acid modulates the affinity of hepatitis C virus NS3 helicase for both nucleic acid and ATP. Biochemistry 2013; 52:6151-9. [PMID: 23947785 DOI: 10.1021/bi4006495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aurintricarboxylic acid (ATA) is a potent inhibitor of many enzymes needed for cell and virus replication, such as polymerases, helicases, nucleases, and topoisomerases. This study examines how ATA interacts with the helicase encoded by the hepatitis C virus (HCV) and reveals that ATA interferes with both nucleic acid and ATP binding to the enzyme. We show that ATA directly binds HCV helicase to prevent the enzyme from interacting with nucleic acids and to modulate the affinity of HCV helicase for ATP, the fuel for helicase action. Amino acid substitutions in the helicase DNA binding cleft or its ATP binding site alter the ability of ATA to disrupt helicase-DNA interactions. These data, along with molecular modeling results, support the notion that an ATA polymer binds between Arg467 and Glu493 to prevent the helicase from binding either ATP or nucleic acids. We also characterize how ATA affects the kinetics of helicase-catalyzed ATP hydrolysis, and thermodynamic parameters describing the direct interaction between HCV helicase and ATA using microcalorimetry. The thermodynamics of ATA binding to HCV helicase reveal that ATA binding does not mimic nucleic acid binding in that ATA binding is driven by a smaller enthalpy change and an increase in entropy.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee , 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | | | | | | | | |
Collapse
|
14
|
Hussner J, Ameling S, Hammer E, Herzog S, Steil L, Schwebe M, Niessen J, Schroeder HWS, Kroemer HK, Ritter CA, Völker U, Bien S. Regulation of interferon-inducible proteins by doxorubicin via interferon γ-Janus tyrosine kinase-signal transducer and activator of transcription signaling in tumor cells. Mol Pharmacol 2012; 81:679-88. [PMID: 22323498 DOI: 10.1124/mol.111.075994] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the immune system is a way for host tissue to defend itself against tumor growth. Hence, treatment strategies that are based on immunomodulation are on the rise. Conventional cytostatic drugs such as the anthracycline doxorubicin can also activate immune cell functions of macrophages and natural killer cells. In addition, cytotoxicity of doxorubicin can be enhanced by combining this drug with the cytokine interferon-γ (IFNγ). Although doxorubicin is one of the most applied cytostatics, the molecular mechanisms of its immunomodulation ability have not been investigated thoroughly. In microarray analyses of HeLa cells, a set of 19 genes related to interferon signaling was significantly over-represented among genes regulated by doxorubicin exposure, including signal transducer and activator of transcription (STAT) 1 and 2, interferon regulatory factor 9, N-myc and STAT interactor, and caspase 1. Regulation of these genes by doxorubicin was verified with real-time polymerase chain reaction and immunoblotting. An enhanced secretion of IFNγ was observed when HeLa cells were exposed to doxorubicin compared with untreated cells. IFNγ-neutralizing antibodies and inhibition of Janus tyrosine kinase (JAK)-STAT signaling [aurintricarboxylic acid (ATA), (E)-2-cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide (AG490), STAT1 small interfering RNA] significantly abolished doxorubicin-stimulated expression of interferon signaling-related genes. Furthermore, inhibition of JAK-STAT signaling significantly reduced doxorubicin-induced caspase 3 activation and desensitized HeLa cells to doxorubicin cytotoxicity. In conclusion, we demonstrate that doxorubicin induces interferon-responsive genes via IFNγ-JAK-STAT1 signaling and that this pathway is relevant for doxorubicin's cytotoxicity in HeLa cells. Immunomodulation is a promising strategy in anticancer treatment, so this novel mode of action of doxorubicin may help to further improve the use of this drug among different types of anticancer treatment strategies.
Collapse
Affiliation(s)
- J Hussner
- Department of Pharmacology, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lim DG, Park YH, Kim SE, Kim YH, Park CS, Kim SC, Park CG, Han DJ. Aurintricarboxylic acid promotes the conversion of naive CD4+CD25- T cells into Foxp3-expressing regulatory T cells. Int Immunol 2011; 23:583-92. [PMID: 21750147 DOI: 10.1093/intimm/dxr058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Naive peripheral CD4(+)CD25(-) T cells can be converted into Foxp3-expressing regulatory T cells under appropriate stimulation conditions. Considering that continuous exposure to antigens is one of the prerequisites for the differentiation and maintenance of Treg cells, we investigated whether preventing activation-induced cell death while providing continuous TCR stimulation could promote the expression of Foxp3 in murine naive CD4(+) T cells. Among the several anti-apoptotic agents tested, aurintricarboxylic acid (ATA) was found to induce the in vitro conversion of naive CD4(+) T cells into Foxp3(+) Treg cells with suppressive activity. Neutralizing studies with an antibody against transforming growth factor (TGF)-β revealed that ATA requires the presence of TGF-β to induce Foxp3 expression in naive CD4(+)CD25(-) T cells. Although ATA itself did not activate the Smad signaling pathway, it down-regulated the extracellular signal-regulated kinase and mammalian target of rapamycin signaling cascade in activated T cells. Lastly, combined exposure to ATA and TGF-β had a synergistic effect on the rate of induction and maintenance of Foxp3 expression. These results indicate that ATA could be exploited to efficiently prepare inducible regulatory T cells in vitro and may aid in more precisely identifying the specific signaling pathways that drive Foxp3 expression in T cells.
Collapse
Affiliation(s)
- Dong-Gyun Lim
- Department of Surgery, Ulsan University College of Medicine and Asan Medical Center, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Aurintricarboxylic acid inhibits the nuclear factor-κB-dependent expression of intercellular cell adhesion molecule-1 and endothelial cell selectin on activated human endothelial cells. Blood Coagul Fibrinolysis 2011; 22:132-9. [PMID: 21245742 DOI: 10.1097/mbc.0b013e32834356b6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the vascular endothelium and increased adhesion of circulating leukocytes to the activated endothelium are important events in inflammation and coagulation. Aurintricarboxylic acid (ATA), a triphenylmethyl dye compound, is known to inhibit platelet adhesion by interfering with the binding of von Willebrand factor to platelet glycoprotein Ib. However, the effect of ATA on the inflammatory response of endothelial cells has not yet been investigated. Here, we investigated the functional role and molecular mechanism of ATA on the activation of human endothelial cells. ATA inhibited the expression of intercellular adhesion molecule-1 (ICAM-1), and endothelial cell selectin (E-selectin) was upregulated on human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α or lipopolysaccharide (LPS). We also observed the inhibitory effect of ATA on LPS-induced mRNA expression of ICAM-1 and E-selectin. Furthermore, ATA inhibited the binding of leukocytes to activated HUVECs. ATA significantly inhibited the nuclear translocation of nuclear factor-κB (NF-κB) and degradation of IκB on activated HUVECs, suggesting that ATA inhibits NF-κB signaling. Finally, three NF-κB inhibitors effectively inhibited the expressions of ICAM-1 and E-selectin on activated endothelial cells. The present data suggest that ATA exerts beneficial effect in various inflammation conditions through inhibition of adhesion molecule expression in activated endothelial cells and the resulting inhibition of leukocytes tissue accumulation.
Collapse
|
17
|
De Clercq E. The next ten stories on antiviral drug discovery (part E): advents, advances, and adventures. Med Res Rev 2011; 31:118-60. [PMID: 19844936 PMCID: PMC7168424 DOI: 10.1002/med.20179] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review article presents the fifth part (part E) in the series of stories on antiviral drug discovery. The ten stories belonging to this fifth part are dealing with (i) aurintricarboxylic acid; (ii) alkenyldiarylmethanes; (iii) human immunodeficiency virus (HIV) integrase inhibitors; (iv) lens epithelium‐derived growth factor as a potential target for HIV proviral DNA integration; (v) the status presens of neuraminidase inhibitors NAIs in the control of influenza virus infections; (vi) the status presens on respiratory syncytial virus inhibitors; (vii) tricyclic (1,N‐2‐ethenoguanine)‐based acyclovir and ganciclovir derivatives; (viii) glycopeptide antibiotics as antivirals targeted at viral entry; (ix) the potential (off‐label) use of cidofovir in the treatment of polyoma (JC and BK) virus infections; and (x) finally, thymidine phosphorylase as a target for both antiviral and anticancer agents. © 2009 Wiley Periodicals, Inc. Med Res Rev, 31, No. 1, 118–160, 2010
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
18
|
Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: Steady state/time resolved spectroscopic and docking studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 102:11-9. [PMID: 20863713 DOI: 10.1016/j.jphotobiol.2010.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/26/2010] [Accepted: 08/30/2010] [Indexed: 11/21/2022]
Abstract
In this paper, the nature of the interactions between bovine serum albumin (BSA) and aurintricarboxylic acid (ATA) has been investigated by measuring steady state and time-resolved fluorescence, circular dichroism (CD), FT-IR and fluorescence anisotropy in protein environment under physiological conditions. From the analysis of the steady state and time-resolved fluorescence quenching of BSA in aqueous solution in presence of ATA it has been inferred that the nature of the quenching originates from the combined effect of static and dynamic modes. From the determination of the thermodynamic parameters obtained from temperature-dependent changes in K(b) (binding constant) it was apparent that the combined effect of hydrophobic association and electrostatic attraction is responsible for the interaction of ATA with BSA. The effect of ATA on the conformation of BSA has been examined by analyzing CD spectrum. Though the observed results demonstrate some conformational changes in BSA in presence of ATA but the secondary structure of BSA, predominantly of α-helix, is found to retain its identity. Molecular docking of ATA with BSA also indicates that ATA docks through hydrophobic interaction.
Collapse
|
19
|
Hashem AM, Flaman AS, Farnsworth A, Brown EG, Van Domselaar G, He R, Li X. Aurintricarboxylic acid is a potent inhibitor of influenza A and B virus neuraminidases. PLoS One 2009; 4:e8350. [PMID: 20020057 PMCID: PMC2792043 DOI: 10.1371/journal.pone.0008350] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/19/2009] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Influenza viruses cause serious infections that can be prevented or treated using vaccines or antiviral agents, respectively. While vaccines are effective, they have a number of limitations, and influenza strains resistant to currently available anti-influenza drugs are increasingly isolated. This necessitates the exploration of novel anti-influenza therapies. METHODOLOGY/PRINCIPAL FINDINGS We investigated the potential of aurintricarboxylic acid (ATA), a potent inhibitor of nucleic acid processing enzymes, to protect Madin-Darby canine kidney cells from influenza infection. We found, by neutral red assay, that ATA was protective, and by RT-PCR and ELISA, respectively, confirmed that ATA reduced viral replication and release. Furthermore, while pre-treating cells with ATA failed to inhibit viral replication, pre-incubation of virus with ATA effectively reduced viral titers, suggesting that ATA may elicit its inhibitory effects by directly interacting with the virus. Electron microscopy revealed that ATA induced viral aggregation at the cell surface, prompting us to determine if ATA could inhibit neuraminidase. ATA was found to compromise the activities of virus-derived and recombinant neuraminidase. Moreover, an oseltamivir-resistant H1N1 strain with H274Y was also found to be sensitive to ATA. Finally, we observed additive protective value when infected cells were simultaneously treated with ATA and amantadine hydrochloride, an anti-influenza drug that inhibits M2-ion channels of influenza A virus. CONCLUSIONS/SIGNIFICANCE Collectively, these data suggest that ATA is a potent anti-influenza agent by directly inhibiting the neuraminidase and could be a more effective antiviral compound when used in combination with amantadine hydrochloride.
Collapse
Affiliation(s)
- Anwar M. Hashem
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Anathea S. Flaman
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Aaron Farnsworth
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Earl G. Brown
- Department of Biochemistry, Microbiology and Immunology, and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Runtao He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Xuguang Li
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Kim HK, Kim JE, Wi HC, Lee SW, Kim JY, Kang HJ, Kim YT. Aurintricarboxylic acid inhibits endothelial activation, complement activation, and von Willebrand factor secretion in vitro and attenuates hyperacute rejection in an ex vivo model of pig-to-human pulmonary xenotransplantation. Xenotransplantation 2009; 15:246-56. [PMID: 18957047 DOI: 10.1111/j.1399-3089.2008.00481.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the xenotransplantation of vascularized organs, such as the lung, a large area of endothelial cell layer is a big hurdle to be overcome. We investigated the potential protective effect of aurintricarboxylic acid (ATA), a known inhibitor of platelet adhesion, on endothelial damage induced by xenogeneic serum. We also assessed its role in hyperacute xenograft rejection using a porcine ex vivo lung perfusion model. METHODS Porcine endothelial cells were incubated with human serum and other inflammatory stimuli. For the evaluation of von Willebrand factor (vWF) secretion and tissue factor (TF) expression, we used human endothelial cells. E-selectin expression, complement activation, TF expression and platelet activation were investigated by flow cytometry. In an ex vivo porcine lung perfusion model, the porcine lungs were perfused with fresh human whole blood: unmodified blood (n = 5), ATA-treated blood (n = 5), and ATA and lepirudin-treated blood (n = 5). RESULTS Aurintricarboxylic acid significantly inhibited TNF-alpha- or lipopolysaccharide-induced endothelial E-selectin expression in a dose-dependent manner. ATA also prevented human serum induced-E-selectin expression and human monocytic cell adhesion to porcine endothelial cells. Moreover, ATA abolished thrombin-induced vWF secretion as well as complement activation. However, ATA induced endothelial TF expression and platelet activation in vitro. In ex-vivo experiments, ATA treatment improved pulmonary function and attenuated sequestration of leukocytes. Although ATA did not influence thrombin generation, we were able to minimize its activity by adding lepirudin to the blood with ATA. CONCLUSIONS Our study demonstrated in vitro protective effect of ATA on the inhibition of endothelial activation and vWF secretion and confirmed detrimental effect of ATA on induction of endothelial TF and platelet activation. The combination of ATA and lepirudin may act beneficially by preventing coagulation perturbation while maintaining improved xenograft survival.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Hung HC, Tseng CP, Yang JM, Ju YW, Tseng SN, Chen YF, Chao YS, Hsieh HP, Shih SR, Hsu JTA. Aurintricarboxylic acid inhibits influenza virus neuraminidase. Antiviral Res 2008; 81:123-31. [PMID: 19014974 PMCID: PMC7114187 DOI: 10.1016/j.antiviral.2008.10.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 05/29/2008] [Accepted: 10/15/2008] [Indexed: 12/25/2022]
Abstract
There is a continuing threat that the highly pathogenic avian influenza virus will cause future influenza pandemics. In this study, we screened a library of compounds that are biologically active and structurally diverse for inhibitory activity against influenza neuraminidase (NA). We found that aurintricarboxylic acid (ATA) is a potent inhibitor of NA activity of both group-1 and group-2 influenza viruses with IC50s (effective concentration to inhibit NA activity by 50%) values at low micromolar concentrations. ATA was equally potent in inhibiting the NA activity derived from wild-type NA and its H274Y mutant which renders NA resistance to inhibition by oseltamivir. Although ATA is structurally distinct from sialic acid, molecular modeling experiments suggested that ATA binds to NA at the enzyme’s substrate binding site. These results indicate that ATA may be a good starting material for the design of a novel class of NA inhibitors for the treatment influenza viruses.
Collapse
Affiliation(s)
- Hui-Chen Hung
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chang LC, Tsao LT, Chang CS, Chen CJ, Huang LJ, Kuo SC, Lin RH, Wang JP. Inhibition of nitric oxide production by the carbazole compound LCY-2-CHO via blockade of activator protein-1 and CCAAT/enhancer-binding protein activation in microglia. Biochem Pharmacol 2008; 76:507-519. [PMID: 18586011 DOI: 10.1016/j.bcp.2008.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
Excessive nitric oxide (NO) production by activated microglia plays a critical role in neurodegenerative disorders. In this study, we found that 9-(2-chlorobenyl)-9H-carbazole-3-carbaldehyde (LCY-2-CHO) suppressed the NO production in lipopolysaccharide (LPS)/interferon-gamma (IFNgamma)-stimulated murine microglial N9 and BV-2 cells and in LPS-stimulated N9 cells and rat primary microglia. LCY-2-CHO had no cytotoxic effect on microglia. In activated N9 cells, LCY-2-CHO abolished the expression of inducible nitric oxide synthase (iNOS) protein and mRNA but failed to alter the stability of expressed iNOS mRNA and the enzymatic activity of expressed iNOS protein. LCY-2-CHO did not block DNA-binding activity of nuclear factor-kappaB (NF-kappaB) or cyclic AMP response element-binding protein (CREB), but abolished that of activator protein-1 (AP-1), CCAAT/enhancer-binding protein (C/EBP) and nuclear factor IL6 (NF-IL6). LCY-2-CHO attenuated the nuclear levels of c-Jun and C/EBPbeta, but not those of p65, p50, C/EBPdelta, signal transducer and activator of transcription-1 (STAT-1) or the nuclear expression of IFN regulatory factor-1 (IRF-1). LCY-2-CHO had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), MAPK-activated protein kinase-2 (MAPKAPK-2), STAT-1, CREB or c-Jun in LPS/IFNgamma-stimulated N9 cells, whereas it attenuated the phosphorylation of C/EBPbeta at Ser105 and Thr235 residues, which occurred concomitantly with LCY-2-CHO inhibition of C/EBPbeta expression and phosphorylation. Taken together, these results suggest that LCY-2-CHO inhibits NO production in microglia through the blockade of AP-1 and C/EBP activation.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 403, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Antipova AA, Stockwell BR, Golub TR. Gene expression-based screening for inhibitors of PDGFR signaling. Genome Biol 2008; 9:R47. [PMID: 18312689 PMCID: PMC2397499 DOI: 10.1186/gb-2008-9-3-r47] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Revised: 12/25/2007] [Accepted: 03/01/2008] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of the platelet derived growth factor receptor (PDGFR) signaling pathway are isolated using gene expression-based high-throughput screening (GE-HTS), a method that is applicable to other pathways. Here we describe a proof-of-concept experiment designed to explore the possibility of using gene expression-based high-throughput screening (GE-HTS) to find inhibitors of a signaling cascade, using platelet derived growth factor receptor (PDGFR) signaling as the example. The previously unrecognized ability of aurintricarboxylic acid to inhibit PDGFR signaling, discovered through a screen of 1,739 compounds, demonstrates the feasibility and generalizability of GE-HTS for the discovery of small molecule modulators of any signaling pathway of interest.
Collapse
Affiliation(s)
- Alena A Antipova
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge Center, Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
24
|
Lin MW, Tsao LT, Chang LC, Chen YL, Huang LJ, Kuo SC, Tzeng CC, Lee MR, Wang JP. Inhibition of lipopolysaccharide-stimulated NO production by a novel synthetic compound CYL-4d in RAW 264.7 macrophages involving the blockade of MEK4/JNK/AP-1 pathway. Biochem Pharmacol 2007; 73:1796-806. [PMID: 17379190 DOI: 10.1016/j.bcp.2007.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/15/2007] [Accepted: 02/15/2007] [Indexed: 12/25/2022]
Abstract
In the present study, a novel synthetic compound 4-(2-(cyclohex-2-enylidene)hydrazinyl)quinolin-2(1H)-one (CYL-4d) was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production without affecting cell viability or enzyme activity of expressed inducible NO synthase (iNOS) in RAW 264.7 macrophages. CYL-4d exhibited parallel inhibition of LPS-induced expression of iNOS protein, iNOS mRNA and iNOS promoter activity in the same concentration range. LPS-induced activator protein-1 (AP-1) DNA binding, AP-1-dependent reporter gene activity and c-Jun nuclear translocation were all markedly inhibited by CYL-4d with similar efficacy, whereas CYL-4d produced a weak inhibition of nuclear factor-kappaB (NF-kappaB) DNA binding, NF-kappaB-dependent reporter gene activity and p65 nuclear translocation without affecting inhibitory factor-kappa B alpha (I kappa B alpha) degradation. CYL-4d had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and its upstream activator MAPK kinase (MEK) 3, whereas it significantly attenuated the phosphorylation of c-Jun, c-Jun NH(2)-terminal kinase (JNK) and its upstream activator MEK4 in a parallel concentration-dependent manner. Other Toll-like receptors (TLRs) ligands (peptidoglycans, double-stranded RNA, and oligonucleotide containing unmethylated CpG motifs)-induced iNOS protein expression were also inhibited by CYL-4d. Furthermore, the NO production from BV-2 microglial cells as well as rat alveolar macrophages in response to LPS was diminished by CYL-4d. These results indicate that the blockade of NO production by CYL-4d in LPS-stimulated RAW 264.7 cells is attributed mainly to interference in the MEK4-JNK-AP-1 signaling pathway. CYL-4d inhibition of NO production is not restricted to TLR4 activation and immortalized macrophage-like cells.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Myskiw C, Deschambault Y, Jefferies K, He R, Cao J. Aurintricarboxylic acid inhibits the early stage of vaccinia virus replication by targeting both cellular and viral factors. J Virol 2006; 81:3027-32. [PMID: 17192307 PMCID: PMC1865980 DOI: 10.1128/jvi.02531-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aurintricarboxylic acid (ATA) has been shown to inhibit the replication of viruses from several different families, including human immunodeficiency virus, vesicular stomatitis virus, and the coronavirus causing severe acute respiratory syndrome. This study characterizes the inhibitory effect of ATA on vaccinia virus replication in HeLa, Huh7, and AD293 cells. Vaccinia virus replication is significantly abrogated upon ATA treatment, which is associated with the inhibition of early viral gene transcription. This inhibitory effect may be attributed to two findings. First, ATA blocks the phosphorylation of extracellular signal-regulated kinase 1/2, an event shown to be essential for vaccinia virus replication. Second, ATA inhibits the phosphatase activity of the viral enzyme H1L, which is required to initiate viral transcription. Thus, ATA inhibits vaccinia virus replication by targeting both cellular and viral factors essential for the early stage of replication.
Collapse
Affiliation(s)
- Chad Myskiw
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | | | | | | | | |
Collapse
|
26
|
Li G, Dong B, Butz DE, Park Y, Pariza MW, Cook ME. NF-κB independent inhibition of lipopolysaccharide-induced cyclooxygenase by a conjugated linoleic acid cognate, conjugated nonadecadienoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:969-72. [PMID: 16962824 DOI: 10.1016/j.bbalip.2006.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/27/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
10t, 12c-CLA was shown to inhibit COX-2 expression through the NF-kappaB pathway. In the current study, conjugated nonadecadienoic acid (CNA) was shown to decrease inducible COX-2 protein and mRNA and PGE(2) release to the similar extent as 10t, 12c-CLA in Raw264.7 macrophage. However, unlike 10t, 12c-CLA, inhibition of COX-2 mRNA/protein by CNA was independent of the NF-kappaB pathway. The data indicate the regulation of COX-2 by select conjugated fatty acids and hence their anti-inflammatory actions could operate through different signal transduction pathways.
Collapse
Affiliation(s)
- Guangming Li
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
27
|
Tsatsanis C, Androulidaki A, Dermitzaki E, Charalampopoulos I, Spiess J, Gravanis A, Margioris AN. Urocortin 1 and Urocortin 2 induce macrophage apoptosis via CRFR2. FEBS Lett 2005; 579:4259-64. [PMID: 16054139 DOI: 10.1016/j.febslet.2005.06.057] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 06/11/2005] [Accepted: 06/19/2005] [Indexed: 11/24/2022]
Abstract
Macrophages undergo apoptosis as a mechanism of regulating their activation and the inflammatory reaction. Macrophages express the Corticotropin-Releasing Factor Receptor-2 (CRFR2) the endogenous agonists of which, the urocortins, are also present at the site of inflammation. We have found that urocortins induced macrophage apoptosis in a dose- and time-dependent manner via CRFR2. In contrast to lipopolysaccharide (LPS)-induced apoptosis, the pro-apoptosis pathway activated by urocortins involved the pro-apoptotic Bax and Bad proteins and not nitric oxide, JNK and p38MAPK characteristic of LPS. In conclusion, our data suggest that endogenous CRFR2 ligands exert an anti-inflammatory effect via induction of macrophage apoptosis.
Collapse
Affiliation(s)
- Christos Tsatsanis
- Department of Clinical Chemistry-Biochemistry, School of Medicine, University of Crete, Heraklion, Crete GR-710 03, Greece.
| | | | | | | | | | | | | |
Collapse
|
28
|
Thierry S, Marechal V, Rosenzwajg M, Sabbah M, Redeuilh G, Nicolas JC, Gozlan J. Cell cycle arrest in G2 induces human immunodeficiency virus type 1 transcriptional activation through histone acetylation and recruitment of CBP, NF-kappaB, and c-Jun to the long terminal repeat promoter. J Virol 2004; 78:12198-206. [PMID: 15507606 PMCID: PMC525107 DOI: 10.1128/jvi.78.22.12198-12206.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In human immunodeficiency virus type 1 (HIV-1)-infected cells, a cell cycle arrest in G(2) increases viral expression and may represent a strategy for the virus to optimize its expression. In latently infected cells, balance between viral silencing and reactivation relies on the nucleosomal organization of the integrated long terminal repeat (LTR). It is shown here that nucleosome nuc-1, which is located downstream of the TATA box, is specifically modified when latently infected cells are arrested in G(2) by chemical inducers. Notably, histones H3 and H4 are hyperacetylated, and this modification is associated with an increased LTR-driven transcription. nuc-1 hyperacetylation is also associated with the recruitment of histone acetyltransferase CBP and transcription factors NF-kappaB and c-Jun. NF-kappaB and/or c-Jun binding to the LTR in G(2)-arrested cells appears to be required for CBP recruitment as well as for nuc-1 remodeling and viral reactivation.
Collapse
Affiliation(s)
- Sylvain Thierry
- UMR 7079, Université Pierre et Marie Curie, 7 quai Saint-Bernard, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Shrestha S, Shim YS, Kim KC, Lee KH, Cho H. Evans Blue and other dyes as protein tyrosine phosphatase inhibitors. Bioorg Med Chem Lett 2004; 14:1923-6. [PMID: 15050628 DOI: 10.1016/j.bmcl.2004.01.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 01/26/2004] [Accepted: 01/27/2004] [Indexed: 11/28/2022]
Abstract
Commonly used dyes including Evans Blue and Trypan Blue were examined for their inhibitory activities against protein tyrosine phosphatases (PTPases), all of them showed inhibition of PTPases with different potencies. Of the 13 dyes tested, four exhibited IC(50) value of less than 10 microM, Evans Blue lowest IC(50) of 1.3 microM against PTP1B. Care must be taken in the use of dyes for clinical or biochemical experiments to avoid unwanted side effects. Some of the low molecular weight dyes might be useful as lead compounds for the development of potent and selective PTPase inhibitors.
Collapse
Affiliation(s)
- Suja Shrestha
- Department of Chemistry and Institute of Molecular Cell Biology, Inha University, 253 Yonghyun-dong, Nam-ku, Incheon 402-751, South Korea
| | | | | | | | | |
Collapse
|
30
|
Marchisio M, Grimley PM, Di Baldassarre A, Santavenere E, Miscia S. Novel shift of Jak/Stat signalling characterizes the protective effect of aurintricarboxylic acid (ATA) from tumor necrosis factor-alpha toxicity in human B lymphocytes. Int J Immunopathol Pharmacol 2004; 17:5-14. [PMID: 15000861 DOI: 10.1177/039463200401700102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previous results demonstrated that the occurrence of death in human peripheral B lymphocytes by TNF-alpha was paralleled by the activation of the cytoplasmic Jak1 and Tyk2 protein kinases, along with the recruitment of transcription factors Stat3 and Stat5b. In this study we demonstrate that the balance of survival signals in the presence of TNF-alpha was altered by the addition of a salicylate compound, the endonuclease inhibitor aurintricarboxylic acid (ATA). Apoptosis effected by TNF-alpha alone was suppressed by ATA and this event was paralleled by phosphorylation and nuclear translocation of Jak2, Stat2, Stat4 and NF-kB, along with inhibition of caspase activation. These results confirm that among the different cellular responses evoked by TNF-alpha in human B cells, recruitment of Jak/Stat proteins and possible related gene modulation represent contributing factors and address the issue of the development of potential therapeutic strategies aimed at the control of systemic or local effects produced by TNF-alpha.
Collapse
Affiliation(s)
- M Marchisio
- Cell Signaling Unit, Department of Biomorphology, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
31
|
Kocic G, Pavlovic D, Pavlovic R, Nikolic G, Cvetkovic T, Stojanovic I, Jevtovic T, Kocic R, Sokolovic D. Sodium nitroprusside and peroxynitrite effect on hepatic DNases: an in vitro and in vivo study. COMPARATIVE HEPATOLOGY 2004; 3:6. [PMID: 15339333 PMCID: PMC516785 DOI: 10.1186/1476-5926-3-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 08/31/2004] [Indexed: 01/09/2023]
Abstract
Background It has been documented that nitric oxide (NO) donor sodium nitroprusside (SNP) and authentic peroxynitrite are capable of promoting apoptosis in a number of different cell types. Various endonucleases have been proposed as candidates responsible for the internucleosomal cleavage of the genomic DNA observed during apoptosis, but the main effect is attributed to the alkaline-DNases (Mg2+- and caspase-dependent) and acid-DNase. The aim of this study was to examine an in vivo and in vitro possibility for alkaline- and acid-DNases to be activated by SNP and peroxynitrite. Results The effect on liver tissue alkaline and acid DNase activity together with the markers of tissue and plasma oxidative and nitrosative stress (lipid peroxidation, SH group content, carbonyl groups and nitrotyrosine formation) was investigated in plasma and liver tissue. The activity of liver alkaline DNase increased and that of acid DNase decreased after in vivo treatment with either SNP or peroxynitrite. A difference observed between the in vivo and in vitro effect of oxide donor (i.e., SNP) or peroxynitrite upon alkaline DNase activity existed, and it may be due to the existence of the "inducible" endonuclease. After a spectrophotometric scan analysis of purified DNA, it was documented that both SNP and peroxynitrite induce various DNA modifications (nitroguanine formation being the most important one) whereas DNA fragmentation was not significantly increased. Conclusion Alkaline DNase activation seems to be associated with the programmed destruction of the genome, leading to the fragmentation of damaged DNA sites. Thus, the elimination of damaged cells appears to be a likely factor in prevention against mutation and carcinogenesis.
Collapse
Affiliation(s)
- Gordana Kocic
- Institute of Biochemistry, Medical Faculty University of Nis, Serbia and Montenegro
| | - Dusica Pavlovic
- Institute of Biochemistry, Medical Faculty University of Nis, Serbia and Montenegro
| | - Radmila Pavlovic
- Institute of Chemistry, Medical Faculty University of Nis, Serbia and Montenegro
| | - Goran Nikolic
- Institute of Chemistry, Medical Faculty University of Nis, Serbia and Montenegro
| | - Tatjana Cvetkovic
- Institute of Biochemistry, Medical Faculty University of Nis, Serbia and Montenegro
| | - Ivana Stojanovic
- Institute of Biochemistry, Medical Faculty University of Nis, Serbia and Montenegro
| | - Tatjana Jevtovic
- Institute of Biochemistry, Medical Faculty University of Nis, Serbia and Montenegro
| | - Radivoj Kocic
- Clinic for Endocrinology, Faculty of Medicine University of Nis, Serbia and Montenegro
| | - Dusan Sokolovic
- Institute of Biochemistry, Medical Faculty University of Nis, Serbia and Montenegro
| |
Collapse
|
32
|
Kim SH, Johnson VJ, Shin TY, Sharma RP. Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med (Maywood) 2004; 229:203-13. [PMID: 14734799 DOI: 10.1177/153537020422900209] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS) produces reactive oxygen species (ROS) and nitric oxide (NO) in macrophages. These molecules are involved in inflammation associated with endotoxic shock. Selenium (Se), a biologically essential trace element, modulates the functions of many regulatory proteins involved in signal transduction and affects a variety of cellular activities, including cell growth and survival. We demonstrate that Se attenuated LPS-induced ROS and NO production in murine macrophage cultures in vitro. This Se-decreased production of NO was demonstrated by decreases in both mRNA and protein expression for inducible NO synthase (iNOS). The preventive effects of Se on iNOS were p38 mitogen-activated protein kinase- and nuclear factor-kappaB-dependent. Se specifically blocked the LPS-induced activation of p38 but not that of c-jun-N-terminal kinase and extracellular signal-regulated kinase; the p38-specific pathway was confirmed using p38 inhibitor SB 203580. These results suggest that the mechanism by which Se may act as an anti-inflammatory agent and that Se may be considered as a possible preventive intervention for endotoxemia, particularly in Se-deficient locations. However, the efficacy and safety of Se need to be further investigated, because long-term intake > 0.4 mg Se/day in adults can produce adverse effects.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, 30602, USA
| | | | | | | |
Collapse
|
33
|
Ho FM, Lai CC, Huang LJ, Kuo TC, Chao CM, Lin WW. The anti-inflammatory carbazole, LCY-2-CHO, inhibits lipopolysaccharide-induced inflammatory mediator expression through inhibition of the p38 mitogen-activated protein kinase signaling pathway in macrophages. Br J Pharmacol 2004; 141:1037-47. [PMID: 14980980 PMCID: PMC1574272 DOI: 10.1038/sj.bjp.0705700] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/18/2003] [Accepted: 01/15/2004] [Indexed: 11/09/2022] Open
Abstract
1. The present study was undertaken to investigate the anti-inflammatory effects of a synthetic compound, LCY-2-CHO, on the expression of inducible nitric oxide synthase (iNOS), COX-2, and TNF-alpha in murine RAW264.7 macrophages. 2. Within 1-30 microm, LCY-2-CHO concentration-dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E(2) (PGE(2)), and tumor necrosis factor-alpha (TNF-alpha) formation, with IC(50) values of 2.3, 1, and 0.8 microm, respectively. Accompanying inhibition of LPS-induced iNOS, cyclooxygenase-2 (COX-2), and pro-TNF-alpha proteins was observed. 3. Reverse transcription-polymerase chain reaction (RT-PCR) and promoter analyses indicated that iNOS expression was inhibited at the transcriptional level (IC(50)=2.3 microm), that inhibition of COX-2 expression only partially depended on gene transcription (IC(50)=7.6 microm), and that TNF-alpha transcription was unaffected. 4. Transcriptional assays revealed that activation of AP-1, but not NF-kappaB, was concomitantly blocked by LCY-2-CHO. Our results showed that LCY-2-CHO was capable of interfering with post-transcriptional regulation, altering the stability of COX-2 and TNF-alpha mRNAs. 5. Since the 3'-untranslated region (3' UTR) of both COX-2 and TNF-alpha mRNA contains a p38 mitogen-activated protein kinase (MAPK)-regulated element involved in mRNA stability, we assessed the effect of LCY-2-CHO on p38 MAPK. Our data clearly indicated an inhibition (IC(50)=1.7 microm) of LPS-mediated p38 MAPK activity, but not of extracellular signal-regulated kinase (ERK) or c-Jun N-terminal kinase (JNK) activity. However, kinase assays ruled out a direct inhibition of p38 MAPK action. The selective p38 MAPK inhibitor, SB203580, inhibited the promoter activities of iNOS and COX-2 rather than that of TNF-alpha. 6. In conclusion, LCY-2-CHO downregulates inflammatory iNOS, COX-2, and TNF-alpha gene expression in macrophages through interfering with p38 MAPK and AP-1 activation.
Collapse
Affiliation(s)
- Feng-Ming Ho
- Department of Internal Medicine, Tao-Yuan General Hospital, Department of Health, the Executive Yuan, Taiwan
| | - Chih-Chang Lai
- Department of Internal Medicine, Tao-Yuan General Hospital, Department of Health, the Executive Yuan, Taiwan
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical College, Taichung, Taiwan
| | - Tsun Cheng Kuo
- Department of Cosmetic Science, Chia-Nan University of Pharmacy, Tainan, Taiwan
| | - Chien M Chao
- Department of Orthopedics, National Taiwan University College of Medicine, Taipei, Taiwan and
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
34
|
Chen CW, Chao Y, Chang YH, Hsu MJ, Lin WW. Inhibition of cytokine-induced JAK-STAT signalling pathways by an endonuclease inhibitor aurintricarboxylic acid. Br J Pharmacol 2002; 137:1011-20. [PMID: 12429573 PMCID: PMC1573578 DOI: 10.1038/sj.bjp.0704955] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Inducible nitric oxide (iNOS) is thought to involve in host defence and tissue damage in inflammatory loci. In previous study, we have found that the endonuclease inhibitor aurintricarboxylic acid (ATA) can protect macrophages from cell death induced by bacterial lipopolysaccharide. This action is through the interruption with signalling pathways for NF-kappa B and AP-1 activation, and thus iNOS expression. In this study we have addressed the effects of ATA on JAK-STAT signalling pathways. 2. In murine RAW 264.7 macrophages, IFN-gamma-mediated NO production and iNOS expression were concentration-dependently reduced by the presence of 3-100 micro M ATA. 3. IFN-gamma-induced STAT1 activation, as assessed from its tyrosine phosphorylation, nuclear translocation, binding to specific DNA response element and evoked IRF-1 reporter gene assay, were concomitantly inhibited by ATA. However, ATA did not alter IFN-gamma binding to RAW 264.7 cells. 4. The activities of JAK1 and JAK2, the upstream kinases essential for STAT1 signalling in response to IFN-gamma, were also reduced by ATA. 5. Moreover, IL-4, IL-10, GM-CSF and M-CSF elicited tyrosine phosphorylation of STAT3, STAT5 and/or STAT6 in macrophages were diminished by the presence of ATA. 6. Taken together, we conclude that ATA can interfere JAK-STAT signalling pathways in response to cytokines. This action contributes to the inhibition of IFN-gamma-induced iNOS expression.
Collapse
Affiliation(s)
- Ching-Wen Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yee Chao
- Cancer Center, Veterans General Hospital, Taipei, Taiwan
| | - Ying-Hsin Chang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Author for correspondence:
| |
Collapse
|