1
|
Datta NS, Chukkapalli S, Vengalil N, Zhan E, Przyklenk K, Lasley R. Parathyroid hormone-related peptide protects cardiomyocytes from oxidative stress-induced cell death: First evidence of a novel endocrine-cardiovascular interaction. Biochem Biophys Res Commun 2015; 468:202-7. [PMID: 26518653 DOI: 10.1016/j.bbrc.2015.10.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
Abstract
Although there is a growing interest in the molecular cross-talk between the endocrine and cardiovascular systems, the cardiac effects of calcium-regulating hormones (i.e., parathyroid hormone-related peptide (PTHrP)) have not been explored. In this study, we examined the effect of PTHrP on the viability of isolated adult mouse cardiomyocytes subjected to oxidative stress. Myocytes from 19 to 22 week old male 129J/C57BL6 mice were exposed to oxidative insult in the form of H2O2 which led to more than 70% loss of cell viability. Herein we demonstrate, for the first time, that pretreatment with 100 nM PTHrP prior to 100 μM H2O2 incubation prevents H2O2 -induced cell death by more than 50%. Immunoblot analysis revealed H2O2 induction of MKP-1 protein expression while PTHrP decreased MKP-1 expression. Moreover, myocytes derived from MKP1 KO mice were resistant to oxidative injury. No added benefit of PTHrP treatment was noted in MKP-1 null cardiomyocytes. Using specific pharmacological inhibitors we demonstrated that P-p38, P-ERK and P-AKT mediated PTHrP's cardioprotective action. These data provide novel evidence that: i) down-regulation of MKP1 affords profound protection against oxidative stress; and ii) PTHrP is cardioprotective, possibly via down-regulation of MKP-1 and activation of MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sahiti Chukkapalli
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nathan Vengalil
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Enbo Zhan
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Karin Przyklenk
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert Lasley
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Ischemic injury and the parathyroid hormone-related protein system: friend or foe? Basic Res Cardiol 2009; 104:424-6. [PMID: 19377853 DOI: 10.1007/s00395-009-0784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Ischemic injury activates PTHrP and PTH1R expression in human ventricular cardiomyocytes. Basic Res Cardiol 2009; 104:427-34. [DOI: 10.1007/s00395-008-0774-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
|
4
|
Halapas A, Lembessis P, Mourouzis I, Pantos C, Cokkinos DV, Sourla A, Koutsilieris M. Experimental hyperthyroidism increases expression of parathyroid hormone-related peptide and type-1 parathyroid hormone receptor in rat ventricular myocardium of the Langendorff ischaemia-reperfusion model. Exp Physiol 2007; 93:237-46. [PMID: 17911357 DOI: 10.1113/expphysiol.2007.039594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is released under ischaemic conditions and it improves contractile function of stunned myocardium. The actions of PTHrP are mediated primarily by the type 1 parathyroid hormone receptor (PTH.1R), while PTHrP and PTH.1R expression levels are increased in ventricular hypertrophy associated with experimental hyperthyroidism. Since chronic administration of thyroxine (T4) improves postischaemic recovery in isolated heart models subjected to ischaemia-reperfusion stress, we tested the hypothesis that experimentally induced hyperthyroidism is associated with elevated expression of PTHrP and PTH.1R in rat myocardium. Hyperthyroid and control male Wistar rats were subjected to ischaemia-reperfusion stress using the Langendorff technique, and the PTHrP and PTH.1R expression was assessed by relative quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis and immunohistochemistry. In the Langendorff model, the recovery of left ventricular developed pressure at the end of the stablization period and 45 min into the reperfusion period was used to assess the cardioprotective actions of T4 administration. Our data show that hyperthyroid animals had increased tolerance to the ischaemia-reperfusion stress and that this was associated with an increase of PTHrP and PTH.1R expression levels compared with those of control animals. In the control animals, the expression of PTHrP was increased 45 min into the reperfusion phase, while the PTH.1R expression pattern was significantly and gradually decreased throughout the ischaemia and reperfusion phases. In the hyperthyroid animals, the PTHrP and PTH.1R expression pattern was significantly higher throughout the ischaemia and reperfusion phases compared with that of control hearts. Our data suggest that increasing levels of PTHrP and PTH.1R expression can mediate, at least in part, the T4 administration-induced cardioprotection in rat ventricular myocardium.
Collapse
Affiliation(s)
- Antonios Halapas
- Department of Experimental Physiology, Medical School, University of Athens, 75 Micras Asias Goudi-Athens, 115 27 Greece
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Angiogenesis, the generation of new blood vessels from pre-existing vessels, is an integral component of wound healing, responses to inflammation and other physiologic processes. It is also an essential part of tumor growth; in the absence of new vessel formation, tumors cannot expand beyond a small volume. Although much is known about angiogenesis and its regulation, there is no overall theory that describes or explains this process. It is here suggested that the intracrine hypothesis, which ascribes to certain extracellular signaling peptides (whether hormones, growth factors, DNA-binding proteins or enzymes) a role in both intracellular biology and extracellular signaling, can contribute to a more general understanding of angiogenesis. Intracrine factors participate in angiogenesis in the following ways: (1) they can act within the cells that synthesized them (type I intracrine action), (2) they can be secreted and then taken up by their cell of synthesis to act intracellularly (type II intracrine action ), or (3) they can be secreted and internalized by a distant target cell (type III intracrine action). The parallels between the intracrine growth factor mechanisms cancer cells employ in stimulating their own growth and the mechanisms operative in endothelial cell proliferation during angiogenesis ("intracrine reciprocity") are discussed. Collectively, these explorations lead to testable hypotheses regarding the regulation of normal and pathological angiogenesis, and point to similarities between tumor-induced angiogenesis and tissue differentiation.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|
6
|
Rodríguez-Ayala E, Avila-Díaz M, Foyo-Niembro E, Amato D, Ramirez-San-Juan E, Paniagua R. Effect of parathyroidectomy on cardiac fibrosis and apoptosis: possible role of aldosterone. Nephron Clin Pract 2006; 103:p112-8. [PMID: 16557029 DOI: 10.1159/000092244] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 10/16/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM It has been demonstrated that parathyroidectomy prevents left ventricular hypertrophy in uremic animals. Although this effect may be mediated by direct actions of parathormone (PTH), it may also be exerted through regulation of profibrotic factors such as aldosterone. In adrenal cortex cell cultures, PTH increases aldosterone release. The objective of this work is to assess the effect of parathyroidectomy on aldosterone levels and on cardiac fibrosis and apoptosis in uremic rats. METHODS Four groups of rats were studied: C, control; 5/6Nx, 5/6 nephrectomy; PTx, parathyroidectomy, and 5/6NxPTx, 5/6 nephrectomy plus parathyroidectomy. Thirty days after the last surgical procedure the animals were sacrificed. Serum creatinine, ionized calcium, aldosterone, PTH, cardiac weight, fibrosis and apoptosis were measured. RESULTS Serum creatinine levels were significantly higher in 5/6Nx and 5/6NxPTx groups (1.62 +/- 0.21 and 1.38 +/- 0.15 mg/dl) than in C and PTx groups (0.66 +/- 0.02 and 0.47 +/- 0.01 mg/dl, p < 0.001). Potassium levels were significantly higher in the 5/6Nx and 5/6NxPTx groups (5.2 +/- 0.3 and 5.4 +/- 0.3 mg/dl) than in the C group (4.3 +/- 0.06 mg/dl, p < 0.05). Values in 5/6Nx and 5/6NxPTx groups were not significantly different from each other. PTH levels were significantly higher in the 5/6Nx group (470.5 +/- 156.3 microg/ml) than in the controls (102.3 +/- 14.3 microg/ml). PTH levels in the PTx group (1.78 +/- 0.52 microg/ml) and in the 5/6NxPTx group (81.64 +/- 32.15 microg/ml) were similar to control values. Ionized calcium was lower in PTx and 5/6NxPTx groups (0.80 +/- 0.07 and 0.89 +/- 0.07 mmol/l) as compared with C and 5/6Nx groups (1.14 +/- 0.01 and 0.96 +/- 0.01 mmol/ l, p < 0.01). The heart weight as percentage of the body weight increased significantly in 5/6Nx animals (4.20 +/- 0.15%) compared to the C group (3.41 +/- 0.27%, p < 0.05); parathyroidectomy reversed the heart weight increment in the 5/6NxPTx animals (3.58 +/- 0.16%). Myocardial fibrosis was significantly higher in the 5/6Nx group (12.5 +/- 1.1%) than in the C group (7.3 +/- 1.5%, p < 0.001); in the 5/6NxPTx animals fibrosis returned towards control values (8.9 +/- 0.2%). Myocardial apoptosis rose significantly in 5/6Nx animals (24.3 +/- 1.2%) compared to the C group (6.7 +/- 0.83%, p < 0.001); parathyroidectomy reversed the apoptosis in the 5/6NxPTx animals (10.4 +/- 0.49%). Aldosterone levels increased significantly in the 5/6Nx group (2,461 +/- 257 pg/ml) compared to the C group (703 +/- 81 pg/ml, p < 0.001); in the 5/6NxPTx animals aldosterone levels were below control values (509 +/- 99 pg/ml). CONCLUSIONS Uremia was associated to myocardial hypertrophy, fibrosis and apoptosis. Surgically induced hypoparathyroidism prevented the development of these disorders. Our results suggest that in the remnant kidney rat model myocardial hypertrophy, fibrosis, and apoptosis are mediated by high circulating aldosterone levels. Aldosterone, in turn, may be regulated by PTH.
Collapse
Affiliation(s)
- Ernesto Rodríguez-Ayala
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México, DF.
| | | | | | | | | | | |
Collapse
|
7
|
Intrakrine, parakrine und autokrine Funktionen des PTH/PTHrP-Systems. MOLEKULARMEDIZINISCHE GRUNDLAGEN VON PARA- UND AUTOKRINEN REGULATIONSSTÖRUNGEN 2006. [PMCID: PMC7144038 DOI: 10.1007/3-540-28782-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Miao D, He B, Jiang Y, Kobayashi T, Sorocéanu MA, Zhao J, Su H, Tong X, Amizuka N, Gupta A, Genant HK, Kronenberg HM, Goltzman D, Karaplis AC. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest 2005; 115:2402-11. [PMID: 16138191 PMCID: PMC1193882 DOI: 10.1172/jci24918] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 06/27/2005] [Indexed: 01/13/2023] Open
Abstract
Mice heterozygous for targeted disruption of Pthrp exhibit, by 3 months of age, diminished bone volume and skeletal microarchitectural changes indicative of advanced osteoporosis. Impaired bone formation arising from decreased BM precursor cell recruitment and increased apoptotic death of osteoblastic cells was identified as the underlying mechanism for low bone mass. The osteoporotic phenotype was recapitulated in mice with osteoblast-specific targeted disruption of Pthrp, generated using Cre-LoxP technology, and defective bone formation was reaffirmed as the underlying etiology. Daily administration of the 1-34 amino-terminal fragment of parathyroid hormone (PTH 1-34) to Pthrp+/- mice resulted in profound improvement in all parameters of skeletal microarchitecture, surpassing the improvement observed in treated WT littermates. These findings establish a pivotal role for osteoblast-derived PTH-related protein (PTHrP) as a potent endogenous bone anabolic factor that potentiates bone formation by altering osteoblast recruitment and survival and whose level of expression in the bone microenvironment influences the therapeutic efficacy of exogenous PTH 1-34.
Collapse
Affiliation(s)
- Dengshun Miao
- Calcium Research Laboratory and Department of Medicine, Royal Victoria Hospital of the McGill University Health Centre, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Graupera M, March S, Engel P, Rodés J, Bosch J, García-Pagán JC. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol 2005; 288:G763-70. [PMID: 15550559 DOI: 10.1152/ajpgi.00300.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CCl(4) cirrhotic rat liver exhibits a hyperresponse to the alpha(1)-adrenergic agonist methoxamine (Mtx) that is associated with enhanced thromboxane A(2) (TXA(2)) production and is abrogated by indomethacin. To further elucidate the molecular mechanisms involved in the hyperresponse to vasoconstrictors, portal perfusion pressure dose-response curves to Mtx were performed in CCl(4) cirrhotic rats livers after preincubation with vehicle, the cyclooxygenase (COX)-1 selective inhibitor SC-560, and the COX-2 selective inhibitor SC-236. TXA(2) production was determined in samples of the perfusate. COX-1 expression was analyzed and quantified in hepatocytes, Kupffer cells, sinusoidal endothelial cells (SEC), and hepatic stellate cells (HSC) isolated from control and cirrhotic rat livers by double-immunofluorescence staining, with specific markers for each population using flow cytometry or Western blot analysis. COX-1 protein levels were not significantly increased in cirrhotic livers, but COX-2 protein expression was increased. COX-1 inhibition, but not COX-2, significantly attenuated the response to Mtx and prevented the increased production of TXA(2). Cirrhotic livers showed an increased expression of COX-1 in SEC and reduced expression in HSC compared with control livers, whereas COX-1 was similarly distributed in Kupffer cells. Despite abundant hepatic COX-2 expression, the increased response to Mtx of cirrhotic livers is mainly dependent of COX-1. Upregulation of COX-1 in cirrhotic SEC may be responsible for the hyperesponse to Mtx.
Collapse
Affiliation(s)
- Mariona Graupera
- Hepatic Hemodynamic Laboratory, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
El-Hashash AHK, Esbrit P, Kimber SJ. PTHrP promotes murine secondary trophoblast giant cell differentiation through induction of endocycle, upregulation of giant-cell-promoting transcription factors and suppression of other trophoblast cell types. Differentiation 2005; 73:154-74. [PMID: 15901283 DOI: 10.1111/j.1432-0436.2005.00013.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The murine trophoblast cell lineage represents an intriguing experimental cell model as it is composed of four trophoblast stem (TS)-derived cell types: trophoblast giant cells (TGCs), spongiotrophoblast, syncytotrophoblast, and glycogen trophoblast cells. To investigate the role of parathyroid hormone-related protein (PTHrP) in TGC differentiation, we analyzed the effect of exogenous PTHrP on secondary TGCs of day 8.5 p.c. ectoplacental cone explant culture. Secondary TGCs expressed PTHrP and PTHR1 receptor in vivo and in vitro. TGCs treated with PTHrP had reduced proliferation and decreased apoptosis starting from day 2 in culture, and enhanced properties of giant cell differentiation: increased DNA synthesis, number of cells with giant nuclei and expression of placental lactogen-II (PL-II). The induction of TGC formation by PTHrP correlated with downregulation of cyclin B1 and mSNA expression, but upregulation of cyclin D1, thus allowing mitotic-endocycle transition. Moreover, PTHrP treatment influenced TGC differentiation by inducing the expression of transcription factors known to stimulate giant cell formation: Stra13 and AP-2gamma, and inhibiting the formation of other trophoblast cell types by suppressing trophoblast progenitors and spongiotrophoblast-promoting factors, Eomes, Mash-2, and mSNA. Taken together with the spatial and temporal patterns of TGC formation and PTHrP synthesis in vivo, these findings indicate an important role for PTHrP in the differentiation of secondary TGCs during placentation.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
11
|
Maioli E, Fortino V, Pacini A. Parathyroid Hormone-Related Protein in Preeclampsia: A Linkage Between Maternal and Fetal Failures. Biol Reprod 2004; 71:1779-84. [PMID: 15286039 DOI: 10.1095/biolreprod.104.030932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Preeclampsia is a disorder associated with pregnancy that affects both the mother and the fetus. Typical features of the disease are maternal hypertension, proteinuria, and edema as well as fetal growth retardation. Although the etiological details are still being debated, a consensus exists that the starting point is deficient placentation in the first half of pregnancy. The crucial early steps are reduced trophoblast invasiveness and enhanced apoptotic death. In the present review, we demonstrate that parathyroid hormone-related protein is involved not only in the maternal and fetal failures but also in the etiological aspects of the disease. We hypothesize that reduced local production of the peptide is a major causative event.
Collapse
Affiliation(s)
- Emanuela Maioli
- Department of Physiology, Section of Immunoendocrinology and Reproductive Physiology, University of Siena, 8-53100 Siena, Italy.
| | | | | |
Collapse
|
12
|
Hastings RH. Parathyroid hormone-related protein and lung biology. Respir Physiol Neurobiol 2004; 142:95-113. [PMID: 15450473 DOI: 10.1016/j.resp.2004.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2004] [Indexed: 10/26/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is expressed in normal and malignant lung and has roles in development, homeostasis, and pathophysiology of injury and cancer. Its effects in developing lung include regulation of branching morphogenesis and type II cell maturation. In adult lung, PTHrP stimulates disaturated phosphatidylcholine secretion, inhibits type II cell growth, and sensitizes them to apoptosis. In lung cancer, PTHrP may play a role in carcinoma progression, or metastasis. The protein could be a useful marker for assessing lung maturity or type II cell function, predicting risk of injury, and detecting lung cancer. PTHrP-based therapies could also prove useful in lung injury and lung cancer.
Collapse
Affiliation(s)
- Randolph H Hastings
- Anesthesiology Service, VA San Diego Healthcare System, University of California, 3350 La Jolla Village Dr., Mailcode 125, San Diego, CA 92161-5085, USA.
| |
Collapse
|
13
|
Granata R, De Petrini M, Trovato L, Ponti R, Pons N, Ghè C, Graziani A, Ferry RJ, Muccioli G, Ghigo E. Insulin-like growth factor binding protein-3 mediates serum starvation- and doxorubicin-induced apoptosis in H9c2 cardiac cells. J Endocrinol Invest 2003; 26:1231-41. [PMID: 15055478 DOI: 10.1007/bf03349163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insulin-like growth factor binding protein 3 (IGFBP-3) modulates the activity of IGF-I, which exerts antiapoptotic action upon the myocardiocyte. IGFBP-3 also exerts IGF-independent actions to inhibit cell growth and induce apoptosis, mediating the effects of several antiproliferative agents. We hypothesized that IGFBP-3 mediates cardiomyocyte apoptosis. IGFBP-3 expression was studied in H9c2 rat cardiac cells cultured in serum-deprived medium in the absence or presence of 1 microM doxorubicin during a 72 h time-span. To a greater degree than serum withdrawal, doxorubicin induced IGFBP-3 up-regulation that was time-dependent. IGFBP-3 mRNA levels positively correlated with the degree of apoptosis. Exogenous IGFBP-3 decreased cell viability and induced apoptosis in serum-starved cells exposed to doxorubicin. IGFBP-3 antisense oligonucleotides markedly decreased apoptosis induced by either serum withdrawal or doxorubicin. Binding studies revealed specific high-affinity sites for IGFBP-3 in H9c2 cardiomyocytes, with binding characteristics typical of receptor-ligand interactions. These findings indicate that IGFBP-3 could play proapoptotic action at the myocardial level and suggest a novel role for this protein in cardiovascular dysfunction.
Collapse
Affiliation(s)
- R Granata
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hastings RH, Araiza F, Burton DW, Zhang L, Bedley M, Deftos LJ. Parathyroid hormone-related protein ameliorates death receptor-mediated apoptosis in lung cancer cells. Am J Physiol Cell Physiol 2003; 285:C1429-36. [PMID: 12917104 DOI: 10.1152/ajpcell.00269.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is expressed in more advanced, aggressive tumors and may play an active role in cancer progression. This study investigated the effects of PTHrP on apoptosis after UV irradiation, Fas ligation, or staurosporine treatment in BEN human squamous lung carcinoma cells. Cells at 70% confluency were treated for 24 h with 100 nM PTHrP-(1-34), PTHrP-(38-64), PTHrP-(67-86), PTHrP-(107-139), or PTHrP-(140-173) in media with serum, exposed for 30 min to UV-B radiation (0.9 mJ/cm2), and maintained for another 24 h. Caspase-3, caspase-8, and caspase-9 activities increased fivefold. Pretreatment with PTHrP-(1-34) and PTHrP-(140-173) ameliorated apoptosis after UV irradiation, as indicated by reduced caspase activities, increased cell protein, decreased nuclear condensation, and increased clonal survival. Other peptides had no effect on measures of apoptosis. PTHrP-(140-173) also reduced caspase activities after Fas ligation by activating antibody, but neither peptide had effects on caspase-3 or caspase-9 activity after 1 microM staurosporine. These data indicate that PTHrP-(1-34) and PTHrP-(140-173) protect against death receptor-induced apoptosis in BEN lung cancer cells but are ineffective against mitochondrial pathways. PTHrP contributes to lung cancer cell survival in culture and could promote cancer progression in vivo. The mechanism for the protective effect against apoptosis remains to be determined.
Collapse
Affiliation(s)
- Randolph H Hastings
- VA Medical Center (125 3350 La Jolla Village Dr., San Diego, CA 92161-5085, USA.
| | | | | | | | | | | |
Collapse
|