2
|
Schmiegelow K, Nersting J, Nielsen SN, Heyman M, Wesenberg F, Kristinsson J, Vettenranta K, Schrøeder H, Weinshilboum R, Jensen KL, Grell K, Rosthoej S. Maintenance therapy of childhood acute lymphoblastic leukemia revisited-Should drug doses be adjusted by white blood cell, neutrophil, or lymphocyte counts? Pediatr Blood Cancer 2016; 63:2104-2111. [PMID: 27447547 DOI: 10.1002/pbc.26139] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND 6-Mercaptopurine (6MP) and methotrexate (MTX) based maintenance therapy is a critical phase of childhood acute lymphoblastic leukemia treatment. Wide interindividual variations in drug disposition warrant frequent doses adjustments, but there is a lack of international consensus on dose adjustment guidelines. PROCEDURE To identify relapse predictors, we collected 28,255 data sets on drug doses and blood counts (median: 47/patient) and analyzed erythrocyte (Ery) levels of cytotoxic 6MP/MTX metabolites in 9,182 blood samples (median: 14 samples/patient) from 532 children on MTX/6MP maintenance therapy targeted to a white blood cell count (WBC) of 1.5-3.5 × 109 /l. RESULTS After a median follow-up of 13.8 years for patients in remission, stepwise Cox regression analysis did not find age, average doses of 6MP and MTX, hemoglobin, absolute lymphocyte counts, thrombocyte counts, or Ery levels of 6-thioguanine nucleotides or MTX (including its polyglutamates) to be significant relapse predictors. The parameters significantly associated with risk of relapse (N = 83) were male sex (hazard ratio [HR] 2.0 [1.3-3.1], P = 0.003), WBC at diagnosis (HR = 1.04 per 10 × 109 /l rise [1.00-1.09], P = 0.048), the absolute neutrophil count (ANC; HR = 1.7 per 109 /l rise [1.3-2.4], P = 0.0007), and Ery thiopurine methyltransferase activity (HR = 2.7 per IU/ml rise [1.1-6.7], P = 0.03). WBC was significantly related to ANC (Spearman correlation coefficient, rs = 0.77; P < 0.001), and only a borderline significant risk factor for relapse (HR = 1.28 [95% CI: 1.00-1.64], P = 0.046) when ANC was excluded from the Cox model. CONCLUSIONS This study indicates that a low neutrophil count is likely to be the best hematological target for dose adjustments of maintenance therapy.
Collapse
Affiliation(s)
- Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark. .,Faculty of Medicine, Institute of Clinical Medicine, University of Copenhagen, Denmark.
| | - Jacob Nersting
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Stine Nygaard Nielsen
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mats Heyman
- Astrid Lindgrens Barnsjukhus, Stockholm, Sweden
| | - Finn Wesenberg
- Department of Pediatric Oncology, The University Hospital Rikshospitalet, Oslo, Norway
| | - Jon Kristinsson
- Department of Pediatric Oncology, The National Hospital, Reykjavik, Iceland
| | - Kim Vettenranta
- Department of Pediatric Oncology, The University Hospital, Helsinki, Finland
| | - Henrik Schrøeder
- Department of Pediatric Oncology, Århus University Hospital, Denmark
| | | | - Katrine Lykke Jensen
- Section of Biostatistics, Department of Public Health, The University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Grell
- Section of Biostatistics, Department of Public Health, The University of Copenhagen, Copenhagen, Denmark
| | - Susanne Rosthoej
- Section of Biostatistics, Department of Public Health, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, Lin TN, Hoshitsuki K, Nersting J, Kihira K, Hofmann U, Komada Y, Kato M, McCorkle R, Li L, Koh K, Najera CR, Kham SKY, Isobe T, Chen Z, Chiew EKH, Bhojwani D, Jeffries C, Lu Y, Schwab M, Inaba H, Pui CH, Relling MV, Manabe A, Hori H, Schmiegelow K, Yeoh AEJ, Evans WE, Yang JJ. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 2016; 48:367-73. [PMID: 26878724 DOI: 10.1038/ng.3508] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
Abstract
Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by TPMT genetic polymorphisms. Recent studies identified germline NUDT15 variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four NUDT15 coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4-100% loss of nucleotide diphosphatase activity. Loss-of-function NUDT15 diplotypes were consistently associated with thiopurine intolerance across the three cohorts (P = 0.021, 2.1 × 10(-5) and 0.0054, respectively; meta-analysis P = 4.45 × 10(-8), allelic effect size = -11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity in vitro, and patients with defective NUDT15 alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating NUDT15 variants may inform personalized thiopurine therapy.
Collapse
Affiliation(s)
- Takaya Moriyama
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Rina Nishii
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Virginia Perez-Andreu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Federico Antillon Klussmann
- Unidad Nacional de Oncología Pediátrica, Guatemala City, Guatemala.,Francisco Marroquin Medical School, Guatemala City, Guatemala
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ting-Nien Lin
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Keito Hoshitsuki
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacob Nersting
- Department of Paediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kentaro Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Center for Child Health and Development, Tokyo, Japan
| | - Robert McCorkle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | | | - Shirley Kow-Yin Kham
- National University Cancer Institute, National University Health System, Singapore
| | - Tomoya Isobe
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zhiwei Chen
- National University Cancer Institute, National University Health System, Singapore
| | | | - Deepa Bhojwani
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Cynthia Jeffries
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yan Lu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Allen E J Yeoh
- National University Cancer Institute, National University Health System, Singapore.,Viva University Children's Cancer Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Panetta JC, Evans WE, Cheok MH. Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells. Br J Cancer 2006; 94:93-100. [PMID: 16333308 PMCID: PMC2361089 DOI: 10.1038/sj.bjc.6602893] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The antimetabolite mercaptopurine (MP) is widely used to treat childhood acute lymphoblastic leukaemia (ALL). To study the dynamics of MP on the cell cycle, we incubated human T-cell leukaemia cell lines (Molt-4 sensitive and resistant subline and P12 resistant) with 10 μM MP and measured total cell count, cell cycle distribution, percent viable, percent apoptotic, and percent dead cells serially over 72 h. We developed a mathematical model of the cell cycle dynamics after treatment with MP and used it to show that the Molt-4 sensitive controls had a significantly higher rate of cells entering apoptosis (2.7-fold, P<0.00001) relative to the resistant cell lines. Additionally, when treated with MP, the sensitive cell line showed a significant increase in the rate at which cells enter apoptosis compared to its controls (2.4-fold, P<0.00001). Of note, the resistant cell lines had a higher rate of antimetabolite incorporation into the DNA of viable cells (>1.4-fold, P<0.01). Lastly, in contrast to the other cell lines, the Molt-4 resistant subline continued to cycle, though at a rate slower relative to its control, rather than proceed to apoptosis. This led to a larger S-phase block in the Molt-4 resistant cell line, but not a higher rate of cell death. Gene expression of apoptosis, cell cycle, and repair genes were consistent with mechanistic dynamics described by the model. In summary, the mathematical model provides a quantitative assessment to compare the cell cycle effects of MP in cells with varying degrees of MP resistance.
Collapse
Affiliation(s)
- J C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 North Lauderdale St., Memphis, TN 38105, USA.
| | | | | |
Collapse
|
7
|
Davis IC, Lazarowski ER, Hickman-Davis JM, Fortenberry JA, Chen FP, Zhao X, Sorscher E, Graves LM, Sullender WM, Matalon S. Leflunomide prevents alveolar fluid clearance inhibition by respiratory syncytial virus. Am J Respir Crit Care Med 2005; 173:673-82. [PMID: 16387801 PMCID: PMC2662951 DOI: 10.1164/rccm.200508-1200oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Previously, we demonstrated that intranasal infection of BALB/c mice with respiratory syncytial virus (RSV) resulted in an early 40% reduction in alveolar fluid clearance (AFC), an effect mediated via P2Y purinergic receptors. OBJECTIVES To confirm that RSV-induced inhibition of AFC is mediated by uridine triphosphate (UTP), and to demonstrate that inhibition of de novo pyrimidine synthesis with leflunomide prevents increased UTP release after RSV infection, and thereby also prevents inhibition of AFC by RSV. METHODS BALB/c mice were infected intranasally with RSV strain A2. AFC was measured in anesthetized, ventilated mice by instillation of 5% bovine serum albumin into the dependent lung. Some mice were pretreated with leflunomide or 6-mercaptopurine. MEASUREMENTS AND MAIN RESULTS RSV-mediated inhibition of AFC is associated temporally with a 20-nM increase in UTP and ATP content of bronchoalveolar lavage fluid, hypoxemia, and altered nasal potential difference. RSV-mediated nucleotide release, AFC inhibition, and physiologic sequelae thereof can be prevented by pretreatment of mice with the de novo pyrimidine synthesis inhibitor leflunomide, which is not toxic to the mice, and which does not affect RSV replication in the lungs. In contrast, pretreatment of mice with 6-mercaptopurine, an inhibitor of de novo purine synthesis, has no beneficial effect on AFC or other indicators of disease progression. Finally, RSV-mediated inhibition of AFC is prevented by volume-regulated anion channel inhibitors. CONCLUSION Pyrimidine synthesis or release pathways may provide novel therapeutic targets to counter the pathophysiologic sequelae of impaired AFC in RSV disease.
Collapse
Affiliation(s)
- Ian C Davis
- Department of Anesthesiology, University of Alabama at Birmingham, 224 BMR II, 901 South 19th Street, Birmingham, AL 35205-3703, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|