1
|
Uno Y, Uehara S, Ijiri M, Kawaguchi H, Asano A, Shiraishi M, Banju K, Murayama N, Yamazaki H. Molecular and Functional Characterization of N-Acetyltransferases in Common Marmosets and Pigs. Drug Metab Dispos 2022; 50:1429-1433. [PMID: 35768074 DOI: 10.1124/dmd.122.000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes that are essential for the metabolism of endogenous substrates and xenobiotics. The molecular characteristics of NATs have been extensively investigated in humans but remain to be investigated in common marmosets and pigs, animal species that are often used in drug metabolism studies. In this study, marmoset NAT1 and pig NAT1 cDNAs were isolated from liver samples and were characterized by molecular analyses and drug-metabolism assays. These NAT genes were intronless and formed gene clusters with one other NAT gene in the genome, just as human NAT genes do. Marmoset NAT1 and pig NAT1 amino acid sequences showed high sequence identities (94% and 85%, respectively) to human NAT1. Phylogenetic analysis indicated that marmoset NAT1 and pig NAT1 were more closely clustered with human NATs than with rat or mouse NATs. Marmoset NAT1 and pig NAT1 mRNAs were expressed in all the tissue types analyzed, with the expression levels being highest in the small intestine. Metabolic assays using recombinant proteins found that marmoset NAT1 and pig NAT1 metabolized human NAT substrates p-aminobenzoic acid, 2-aminofluorene, sulfamethazine, and isoniazid. Marmoset NAT1 and pig NAT1 substantially acetylated p-aminobenzoic acid and 2-aminofluorene relevant human NAT1, but their activities were lower toward sulfamethazine and isoniazid than those of the relevant human NAT2. Therefore, marmoset and pig NATs are functional enzymes with molecular similarities to human NAT1, but their substrate specificities, while similar to human NAT1, differ somewhat from human NAT2. SIGNIFICANCE STATEMENT: Marmoset N-acetyltransferase NAT1 and pig NAT1 were identified and showed high sequence identities to human NAT1. These NAT mRNAs were expressed in various tissues. Marmoset and pig NAT1s acetylated typical human NAT substrates, although their substrate specificities differed somewhat from human NAT2. Marmoset NAT1 and pig NAT1 have similarities with human NAT1 in terms of molecular and enzymatic characteristics.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Shotaro Uehara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Moe Ijiri
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Hiroaki Kawaguchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Atsushi Asano
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Mitsuya Shiraishi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Kaito Banju
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.I., A.A., M.S.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan(S.U., K.B., N.M., H.Y.); and School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.)
| |
Collapse
|
2
|
Uno Y, Murayama N, Yamazaki H. Molecular and Functional Characterization of N-Acetyltransferases NAT1 and NAT2 in Cynomolgus Macaque. Chem Res Toxicol 2018; 31:1269-1276. [PMID: 30358977 DOI: 10.1021/acs.chemrestox.8b00236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes essential for the metabolism of endogenous substrates and xenobiotics, and their molecular characteristics have been extensively investigated in humans, but not in cynomolgus macaques, nonhuman primate species important for drug metabolism studies. In this study, cynomolgus NAT1 and NAT2 cDNAs were isolated from livers. NAT1 and NAT2 were characterized by molecular analyses and drug-metabolizing assays. A total of 9 transcript variants were found for cynomolgus NAT1, similar to human NAT1, and contained 1-4 exons with the coding region largely conserved with human NAT1. Genomic organization was similar between cynomolgus macaques and humans. Cynomolgus NAT1 and NAT2 amino acid sequences showed high sequence homology (95% and 89%, respectively) and showed close relationships with human NAT1 and NAT2 in a phylogenetic tree. Cynomolgus NAT2 mRNA was predominantly expressed in liver among the 10 different tissues analyzed, followed by kidney and jejunum. In contrast, cynomolgus NAT1 mRNA showed more ubiquitous expression with relatively more abundant expression in liver, kidney, and jejunum, along with testis. Metabolic assays using recombinant proteins showed that cynomolgus NAT1 and NAT2 metabolized human NAT substrates, including p-aminobenzoic acid, sulfamethazine, isoniazid, and 2-aminofluorene. Interestingly, p-aminobenzoic acid and isoniazid were largely metabolized by NAT1 and NAT2, respectively, in cynomolgus macaques and humans; sulfamethazine, a human NAT2 substrate, was metabolized by both NAT enzymes in cynomolgus macaques. These results suggest molecular and enzymatic similarities of NAT1 and NAT2 between cynomolgus macaques and humans, despite some small differences in substrate specificity of the enzymes.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd. , Kainan 642-0017 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-0042 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-0042 , Japan
| |
Collapse
|
4
|
Götz C, Pfeiffer R, Tigges J, Ruwiedel K, Hübenthal U, Merk HF, Krutmann J, Edwards RJ, Abel J, Pease C, Goebel C, Hewitt N, Fritsche E. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes. Exp Dermatol 2012; 21:364-9. [PMID: 22509834 DOI: 10.1111/j.1600-0625.2012.01478.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing.
Collapse
Affiliation(s)
- Christine Götz
- Leibniz-Institut für Umweltmedizinische Forschung (IUF), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Arylamine N-acetyltransferases (NATs) are phase II xenobiotic metabolizing enzymes, catalyzing acetyl-CoA-dependent N- and O-acetylation reactions. All NATs have a conserved cysteine protease-like Cys-His-Asp catalytic triad inside their active site cleft. Other residues determine substrate specificity, while the C-terminus may control hydrolysis of acetyl-CoA during acetyltransfer. Prokaryotic NAT-like coding sequences are found in >30 bacterial genomes, including representatives of Actinobacteria, Firmicutes and Proteobacteria. Of special interest are the nat genes of TB-causing Mycobacteria, since their protein products inactivate the anti-tubercular drug isoniazid. Targeted inactivation of mycobacterial nat leads to impaired mycolic acid synthesis, cell wall damage and growth retardation. In eukaryotes, genes for NAT are found in the genomes of certain fungi and all examined vertebrates, with the exception of canids. Humans have two NAT isoenzymes, encoded by highly polymorphic genes on chromosome 8p22. Syntenic regions in rodent genomes harbour two Nat loci, which are functionally equivalent to the human NAT genes, as well as an adjacent third locus with no known function. Vertebrate genes for NAT invariably have a complex structure, with one or more non-coding exons located upstream of a single, intronless coding region. Ubiquitously expressed transcripts of human NAT1 and its orthologue, murine Nat2, are initiated from promoters with conserved Sp1 elements. However, in humans, additional tissue-specific NAT transcripts may be expressed from alternative promoters and subjected to differential splicing. Laboratory animals have been widely used as models to study the effects of NAT polymorphism. Recently generated knockout mice have normal phenotypes, suggesting no crucial endogenous role for NAT. However, these strains will be useful for understanding the involvement of NAT in carcinogenesis, an area extensively investigated by epidemiologists, often with ambiguous results.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | | |
Collapse
|
7
|
So M, Hvastkovs EG, Bajrami B, Schenkman JB, Rusling JF. Electrochemical genotoxicity screening for arylamines bioactivated by N-acetyltransferase. Anal Chem 2008; 80:1192-200. [PMID: 18189370 DOI: 10.1021/ac701781y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genotoxicity screening sensors that measure DNA damage from metabolism of arylamines were developed and evaluated. The sensors feature ultrathin films containing DNA and N-acetyltransferase (NAT) on pyrolytic graphite (PG) electrodes. NAT in the film catalyzed the conversion of the arylamine 2-aminofluorene (2-AF) to 2-acetylaminofluorene (2-AAF) by acetyl coenzyme A (AcCoA) dependent N-acetylation, as verified by liquid chromatography. DNA damage in the films from exposure to reactive 2-AF metabolites was measured subsequent to the enzyme reaction using catalytic voltammetric oxidation with Ru(bpy)32+. Square wave voltammetric (SWV) peaks increased with enzyme reaction time, and relative DNA damage rates at pH 5.8 were measured within 2 min. Control incubations of DNA/NAT films without AcCoA gave no significant sensor response. CapLC-MS/MS analysis of 2-AAF/DNA reaction products was consistent with 2-AF-guanine adducts formed in the films. DNA damage occurred more rapidly under weakly acidic conditions (pH 5.5-5.8) than at neutral pH, suggesting that genotoxicity from arylamine metabolism by NAT could be more significant in slightly acidic environments.
Collapse
Affiliation(s)
- Minjeong So
- Department of Chemistry, 55 North Eagleville Road, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Arylamine N-acetyltransferases (NATs), known as drug- and carcinogen-metabolising enzymes, have had historic roles in cellular metabolism, carcinogenesis and pharmacogenetics, including epidemiological studies of disease susceptibility. NAT research in the past 5 years builds on that history and additionally paves the way for establishing the following new concepts in biology and opportunities in drug discovery: i) NAT polymorphisms can be used as tools in molecular anthropology to study human evolution; ii) tracing NAT protein synthesis and degradation within cells is providing insight into protein folding in cell biology; iii) studies on control of NAT gene expression may help to understand the increase in the human NAT isoenzyme, NAT1, in breast cancer; iv) a NAT homologue in mycobacteria plays an essential role in cell-wall synthesis and mycobacterial survival inside host macrophage, thus identifying a novel biochemical pathway; v) transgenic mice, with genetic modifications of all Nat genes, provide in vivo tools for drug metabolism; and vi) structures of NAT isoenzymes provide essential in silico tools for drug discovery.
Collapse
Affiliation(s)
- Edith Sim
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, UK.
| | | | | |
Collapse
|
10
|
Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble MEM, Sim E. Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 2005; 390:115-23. [PMID: 15869465 PMCID: PMC1184567 DOI: 10.1042/bj20050277] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/22/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
The NATs (arylamine N-acetyltransferases) are a well documented family of enzymes found in both prokaryotes and eukaryotes. NATs are responsible for the acetylation of a range of arylamine, arylhydrazine and hydrazine compounds. We present here an investigation into the catalytic triad of residues (Cys-His-Asp) and other structural features of NATs using a variety of methods, including site-directed mutagenesis, X-ray crystallography and bioinformatics analysis, in order to investigate whether each of the residues of the catalytic triad is essential for catalytic activity. The catalytic triad of residues, Cys-His-Asp, is a well defined motif present in several families of enzymes. We mutated each of the catalytic residues in turn to investigate the role they play in catalysis. We also mutated a key residue, Gly126, implicated in acetyl-CoA binding, to examine the effects on acetylation activity. In addition, we have solved the structure of a C70Q mutant of Mycobacterium smegmatis NAT to a resolution of 1.45 A (where 1 A=0.1 nm). This structure confirms that the mutated protein is correctly folded, and provides a structural model for an acetylated NAT intermediate. Our bioinformatics investigation analysed the extent of sequence conservation between all eukaryotic and prokaryotic NAT enzymes for which sequence data are available. This revealed several new sequences, not yet reported, of NAT paralogues. Together, these studies have provided insight into the fundamental core of NAT enzymes, and the regions where sequence differences account for the functional diversity of this family. We have confirmed that each of the three residues of the triad is essential for acetylation activity.
Collapse
Affiliation(s)
- James Sandy
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | |
Collapse
|