1
|
Mortensen M, Bright DP, Fagotti J, Dorovykh V, Cerna B, Smart TG. Forty Years Searching for Neurosteroid Binding Sites on GABA A Receptors. Neuroscience 2024:S0306-4522(24)00257-4. [PMID: 38852898 DOI: 10.1016/j.neuroscience.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Brain inhibition is a vital process for controlling and sculpting the excitability of the central nervous system in healthy individuals. This level of control is provided over several timescales and involves the neurotransmitter GABA acting at inhibitory synapses to: rapidly inhibit neurons by activating the GABAA receptor; over a slower timescale, to tonically activate extrasynaptic GABAA receptors to provide a low level of background inhibition; and finally, to activate G-protein coupled GABAB receptors to control transmitter release by inhibiting presynaptic Ca2+ channels whilst providing postsynaptic inhibition via K+ channel activation. From this plethora of roles for GABA and its receptors, the GABAA receptor isoform is of major interest due to its dynamic functional plasticity, which in part, is due to being targeted by modulatory brain neurosteroids derived from sex and stress hormones. This family of neurosteroids can, depending on their structure, potentiate, activate and also inhibit the activity of GABAA receptors to affect brain inhibition. This review tracks the methods that have been deployed in probing GABAA receptors, and charts the sterling efforts made by several groups to locate the key neurosteroid binding sites that affect these important receptors. Increasing our knowledge of these binding sites will greatly facilitate our understanding of the physiological roles of neurosteroids and will help to advance their use as novel therapeutics to combat debilitating brain diseases.
Collapse
Affiliation(s)
- Martin Mortensen
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Damian P Bright
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Juliane Fagotti
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Valentina Dorovykh
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Barbora Cerna
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Trevor G Smart
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
2
|
Germann AL, Reichert DE, Burbridge AB, Pierce SR, Evers AS, Steinbach JH, Akk G. Analysis of Modulation of the ρ1 GABA A Receptor by Combinations of Inhibitory and Potentiating Neurosteroids Reveals Shared and Distinct Binding Sites. Mol Pharmacol 2020; 98:280-291. [PMID: 32675382 PMCID: PMC7472123 DOI: 10.1124/mol.120.119842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022] Open
Abstract
The ρ1 GABAA receptor is prominently expressed in the retina and is present at lower levels in several brain regions and other tissues. Although the ρ1 receptor is insensitive to many anesthetic drugs that modulate the heteromeric GABAA receptor, it maintains a rich and multifaceted steroid pharmacology. The receptor is negatively modulated by 5β-reduced steroids, sulfated or carboxylated steroids, and β-estradiol, whereas many 5α-reduced steroids potentiate the receptor. In this study, we analyzed modulation of the human ρ1 GABAA receptor by several neurosteroids, individually and in combination, in the framework of the coagonist concerted transition model. Experiments involving coapplication of two or more steroids revealed that the receptor contains at least three classes of distinct, nonoverlapping sites for steroids, one each for the inhibitory steroids pregnanolone (3α5βP), 3α5βP sulfate, and β-estradiol. The site for 3α5βP can accommodate the potentiating steroid 5αTHDOC. The findings are discussed with respect to receptor modulation by combinations of endogenous neurosteroids. SIGNIFICANCE STATEMENT: The study describes modulation of the ρ1 GABAA receptor by neurosteroids. The coagonist concerted transition model was used to determine overlap of binding sites for several inhibitory and potentiating steroids.
Collapse
Affiliation(s)
- Allison L Germann
- Departments of Anesthesiology (A.L.G., A.B.B., S.R.P., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.) and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - David E Reichert
- Departments of Anesthesiology (A.L.G., A.B.B., S.R.P., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.) and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Ariel B Burbridge
- Departments of Anesthesiology (A.L.G., A.B.B., S.R.P., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.) and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Spencer R Pierce
- Departments of Anesthesiology (A.L.G., A.B.B., S.R.P., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.) and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Alex S Evers
- Departments of Anesthesiology (A.L.G., A.B.B., S.R.P., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.) and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Departments of Anesthesiology (A.L.G., A.B.B., S.R.P., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.) and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Departments of Anesthesiology (A.L.G., A.B.B., S.R.P., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.) and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Amin J, Subbarayan MS. Orthosteric- versus allosteric-dependent activation of the GABA A receptor requires numerically distinct subunit level rearrangements. Sci Rep 2017; 7:7770. [PMID: 28798394 PMCID: PMC5552871 DOI: 10.1038/s41598-017-08031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/07/2017] [Indexed: 12/05/2022] Open
Abstract
Anaesthetic molecules act on synaptic transmission via the allosteric modulation of ligand-gated chloride channels, such as hetero-oligomeric α1β2γ2 GABAA receptors. To elucidate the overall activation paradigm via allosteric versus orthosteric sites, we used highly homologous, but homo-oligomeric, ρ1 receptors that are contrastingly insensitive to anaesthetics and respond partially to several full GABA α1β2γ2 receptor agonists. Here, we coexpressed varying ratios of RNAs encoding the wild-type and the mutated ρ1 subunits, which are anaesthetic-sensitive and respond with full efficacy to partial GABA agonists, to generate distinct ensembles of receptors containing five, four, three, two, one, or zero mutated subunits. Using these experiments, we then demonstrate that, in the pentamer, three anaesthetic-sensitive ρ1 subunits are needed to impart full efficacy to the partial GABA agonists. By contrast, five anaesthetic-sensitive subunits are required for direct activation by anaesthetics alone, and only one anaesthetic-sensitive subunit is sufficient to confer the anaesthetic-dependent potentiation to the GABA current. In conclusion, our data indicate that GABA and anaesthetics holistically activate the GABAA ρ1 receptor through distinct subunit level rearrangements and suggest that in contrast to the global impact of GABA via orthosteric sites, the force of anaesthetics through allosteric sites may not propagate to the neighbouring subunits and, thus, may have only a local and limited effect on the ρ1 GABAA receptor model system.
Collapse
Affiliation(s)
- Jahanshah Amin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA.
| | - Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
4
|
Eaton MM, Lim YB, Covey DF, Akk G. Modulation of the human ρ1 GABAA receptor by inhibitory steroids. Psychopharmacology (Berl) 2014; 231:3467-78. [PMID: 24317445 PMCID: PMC4048647 DOI: 10.1007/s00213-013-3379-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/25/2013] [Indexed: 11/28/2022]
Abstract
RATIONALE Modulators of the ρ1 GABAA receptor may be useful in the treatment of visual, sleep, and cognitive disorders. Neuroactive steroids and analogues have been shown to modulate ρ1 receptor function, but the molecular mechanisms are poorly understood. OBJECTIVES We employed electrophysiology and voltage-clamp fluorometry to compare the actions of several neuroactive steroids and analogues on the human ρ1 GABAA receptor. RESULTS Results confirmed that P294S and T298F mutations affect modulation by steroids. The P294S mutation abolished inhibition by (3α,5β)-3-hydroxypregnan-20-one (3α5βP) while the T298F mutation eliminated inhibition by 17β-estradiol. Voltage-clamp fluorometry demonstrated that steroids differing in the presence of a charged group on C3 or nature of substituent on C17 uniquely modified fluorescence changes elicited by GABA in the extracellular domain. The I307Q mutation reversed the inhibitory effect of 3α5βP but was without effect on modulation by (3α,5β)-3-hydroxypregnan-20-one sulfate or 17β-estradiol. The effect of 3α5βP on the fluorescence change generated at Y241C was dependent on whether the steroid acted as an inhibitor or a potentiator. Further, the effect was limited to uncharged 5β-reduced steroids containing an acetyl group on C17. CONCLUSIONS The data demonstrate that steroids and analogues differ with respect to conformational changes elicited by these drugs as well as sensitivity to the effects of mutations. Steroids and analogues could be provisionally divided into three major groups based on their actions on the ρ1 GABAA receptor: 5β-reduced uncharged steroids, sulfated and carboxylated steroids, and 17β-estradiol. Further division among 5β-reduced uncharged steroids was based on substituent at position C17.
Collapse
Affiliation(s)
- Megan M Eaton
- Department of Anesthesiology, Washington University School of Medicine, Campus Box 8054, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | | | | | | |
Collapse
|
5
|
Ghosh B, Satyshur KA, Czajkowski C. Propofol binding to the resting state of the gloeobacter violaceus ligand-gated ion channel (GLIC) induces structural changes in the inter- and intrasubunit transmembrane domain (TMD) cavities. J Biol Chem 2013; 288:17420-31. [PMID: 23640880 PMCID: PMC3682542 DOI: 10.1074/jbc.m113.464040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/06/2013] [Indexed: 11/06/2022] Open
Abstract
General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428-431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state.
Collapse
Affiliation(s)
| | - Kenneth A. Satyshur
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53711
| | - Cynthia Czajkowski
- From the Molecular Biophysics Program and
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53711
| |
Collapse
|
6
|
Abstract
Many molecules can exist as right-handed and left-handed forms that are non-superimposable mirror images of each other. They are known as enantiomers or substances of opposite shape. Such compounds are also said to be chiral (Greek chiros meaning ‘hand’). Such chiral molecules are of great relevance to anaesthetic theory and practice. This review summarizes the basic concepts, pharmacokinetic and pharmacodynamic aspects of chirality, and some specific examples of their application in anaesthesia, along with recent advances to elucidate the anaesthetic mechanisms. Chirality is relevant to anaesthesia, simply because more than half of the synthetic agents used in anaesthesia practice are chiral drugs. Almost all these synthetic chiral drugs are administered as racemic mixture, rather than as single pure enantiomers. These mixtures are not drug formulations containing two or more therapeutic substances, but combination of isomeric substances, with the therapeutic activity residing mainly in one of the enantiomer. The other enantiomer can have undesirable properties, have different therapeutic activities or be pharmacologically inert. Specific examples of application of chirality in anaesthetic drugs include inhalational general anaesthetics (e.g. isoflurane), intravenous anaesthetics (e.g. etomidate, thiopentone), neuromuscular blocking agents (e.g. cisatracurium), local anaesthetics (e.g. ropivacaine and levobupivacaine) and other agents (e.g. levosimendan, dexmedetomidine, L-cysteine). In the recent advances, chirality study has not only helped new drug development as mentioned above, but has also contributed in a more profound way to the understanding of the mechanism of anaesthesia and anaesthetic drugs.
Collapse
Affiliation(s)
- Sukanya Mitra
- Departments of Anaesthesia and Intensive Care, Government Medical College and Hospital, Chandigarh, India
| | | |
Collapse
|
7
|
Korinek M, Kapras V, Vyklicky V, Adamusova E, Borovska J, Vales K, Stuchlik A, Horak M, Chodounska H, Vyklicky L. Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids 2011; 76:1409-18. [PMID: 21925193 DOI: 10.1016/j.steroids.2011.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
Glutamate is the main neurotransmitter released at synapses in the central nervous system of vertebrates. Its excitatory role is mediated through activation of specific glutamatergic ionotropic receptors, among which the N-methyl-D-aspartate (NMDA) receptor subtype has attracted considerable attention in recent years. Substantial progress has been made in elucidating the roles these receptors play under physiological and pathological conditions and in our understanding of the functional, structural, and pharmacological properties of NMDA receptors. Many pharmacological compounds have been identified that affect the activity of NMDA receptors, including neurosteroids. This review summarizes our knowledge about molecular mechanisms underlying the neurosteroid action at NMDA receptors as well as about the action of neurosteroids in animal models of human diseases.
Collapse
Affiliation(s)
- Miloslav Korinek
- Institute of Physiology, Academy of Sciences of the Czech Republic, vvi Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Covey DF. ent-Steroids: novel tools for studies of signaling pathways. Steroids 2009; 74:577-85. [PMID: 19103212 PMCID: PMC2668732 DOI: 10.1016/j.steroids.2008.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 12/24/2022]
Abstract
Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.
Collapse
Affiliation(s)
- Douglas F Covey
- Department of Developmental Biology, Campus Box 8103, Washington Univ. in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States.
| |
Collapse
|
9
|
Codocedo JF, Rodríguez FE, Huidobro-Toro JP. Neurosteroids differentially modulate P2X ATP-gated channels through non-genomic interactions. J Neurochem 2009; 110:734-44. [PMID: 19457083 DOI: 10.1111/j.1471-4159.2009.06166.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As neuroactive steroids modulate several ionotropic receptors, we assessed whether the ATP-gated currents elicited by P2X(4) receptors are modulated by these compounds. We transfected HEK293 cells or injected Xenopus laevis oocytes with the cDNA coding for rat P2X(4) receptor. Application of 0.1-10 microM alfaxolone potentiated within 60-s the 1 microM ATP-evoked currents with a maximal potentiation of 1.8 and 2.6-fold in HEK293 or oocytes cells respectively. Allopregnalolone or 3alpha, 21-dihydroxy-5alpha-pregnan-20-one (THDOC) also potentiated the ATP-gated currents but with a maximal effect only averaging 1.25 and 1.35-fold respectively. In contrast, 0.3-10 microM pregnanolone, but not its sulfated derivative, inhibited the ATP-gated currents; the maximal inhibition reached 40% in both cell types. THDOC, but not other neurosteroids increased significantly the tau(off) of the ATP-evoked currents, revealing another mode of neurosteroid modulation. Sexual steroids such as 17beta-estradiol or progesterone were inactive revealing explicit structural requirements. Alfaxolone or THDOC at concentrations 30- to 100-fold larger than required to modulate the receptor, gated the P2X(4) receptor eliciting ATP-like currents that were reduced with suramin or brilliant blue G, but potentiated the P2X(4) receptor more than 10-fold by 10 microM zinc. In conclusion, neurosteroids rapidly modulate via non-genomic mechanisms and with nanomolar potencies, the P2X4 receptor interacting likely at distinct modulator sites.
Collapse
Affiliation(s)
- Juan Francisco Codocedo
- Departamento de Fisiología, Centro de Regulación Celular y Patología, Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
10
|
Zylinska L, Kowalska I, Ferenc B. Calmodulin effects on steroids-regulated plasma membrane calcium pump activity. Cell Biochem Funct 2009; 27:111-7. [PMID: 19226536 DOI: 10.1002/cbf.1543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is now generally accepted that non-genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca(2+) is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca(2+) increase is ATP-consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non-excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca(2+) uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10(-9) to 10(-6) M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca(2+) uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30-40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca(2+) extrusion in membranes incubated with 17-beta-estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure.
Collapse
Affiliation(s)
- Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Lodz, Poland.
| | | | | |
Collapse
|
11
|
Conserved site for neurosteroid modulation of GABA A receptors. Neuropharmacology 2008; 56:149-54. [PMID: 18762201 DOI: 10.1016/j.neuropharm.2008.07.050] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 11/23/2022]
Abstract
This study addresses whether the potentiation site for neurosteroids on GABA(A) receptors is conserved amongst different GABA(A) receptor isoforms. The neurosteroid potentiation site was previously identified in the alpha1beta2gamma2S receptor by mutation of Q241 to methionine or leucine, which reduced the potentiation of GABA currents by the naturally occurring neurosteroids, allopregnanolone or tetrahydrodeoxycorticosterone (THDOC). By using heterologous expression of GABA(A) receptors in HEK cells, in combination with whole-cell patch clamp recording methods, a relatively consistent potentiation by allopregnanolone of GABA-activated currents was evident for receptors composed of one alpha subunit isoform (alpha2-5) assembled with beta3 and gamma2S subunits. Using mutant alphabetagamma receptors, the neurosteroid potentiation was universally dependent on the conserved glutamine residue in M1 of the respective alpha subunit. Studying wild-type and mutant receptors composed of alpha4beta3delta subunits revealed that the delta subunit is unlikely to contribute to the neurosteroid potentiation binding site and probably affects the efficacy of potentiation. Thus, in keeping with the ability of neurosteroids to potentiate GABA currents via a broad variety of GABA(A) receptor isoforms in neurons, the potentiation site is structurally highly conserved on this important neurotransmitter receptor family.
Collapse
|
12
|
alpha1beta2delta, a silent GABAA receptor: recruitment by tracazolate and neurosteroids. Br J Pharmacol 2008; 153:1062-71. [PMID: 18204487 DOI: 10.1038/sj.bjp.0707665] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the alpha(1)beta(2)delta isoform of the GABA(A) receptor that is presumably expressed in the forebrain. The functional and pharmacological properties of this receptor combination are largely unknown. EXPERIMENTAL APPROACH We expressed alpha(1)beta(2)delta GABA(A) receptors in Xenopus laevis oocytes. GABA-activated currents, in the presence and absence of modulators, were recorded using the two-electrode voltage clamp technique. KEY RESULTS The alpha(1)beta(2)delta isoform of the GABA(A) receptor exhibited an extremely small GABA-mediated current. Tracazolate increased the current amplitude evoked by a half-maximal concentration (EC(50)) of GABA by 59-fold. The maximum current was increased 23-fold in the presence of a saturating GABA concentration. Concomitant with the increase in the maximum, was a 4-fold decrease in the EC(50). Finally, a mutation in the second transmembrane domain of the delta subunit that increases receptor efficacy (L286S), eliminated the increase in the maximum GABA-activated current. The endogenous neurosteroid, tetrahydrodeoxycorticosterone (THDOC), also decreased the EC(50) and increased the maximum current amplitude, although to a lesser degree than that of tracazolate. CONCLUSIONS AND IMPLICATIONS Taken all together, these findings indicate that the small GABA-mediated currents in the absence of the modulator are due to a low efficacy for activation. In the absence of modulators, alpha(1)beta(2)delta GABA receptors would be effectively silent and therefore contribute little to inhibition in the CNS. In the presence of tracazolate or endogenous neurosteroids however, this particular receptor isoform could exert a profound inhibitory influence on neuronal activity.
Collapse
|
13
|
Twede V, Tartaglia AL, Covey DF, Bamber BA. The neurosteroids dehydroepiandrosterone sulfate and pregnenolone sulfate inhibit the UNC-49 GABA receptor through a common set of residues. Mol Pharmacol 2007; 72:1322-9. [PMID: 17715402 DOI: 10.1124/mol.107.034058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurosteroids are endogenous neuromodulators that bind and allosterically regulate GABA(A) receptors. Residues were recently identified in the first transmembrane domain (M1) of GABA(A) receptor subunits that are important for neurosteroid modulation. We are studying the inhibition of GABA(A) receptors by sulfated neurosteroids. One of these neurosteroid, pregnenolone sulfate (PS), depends on six identified M1 residues to inhibit the UNC-49 GABA receptor, a homomeric GABA receptor from Caenorhabditis elegans that is homologous to the mammalian GABA(A) receptor. Here, we investigate the inhibition of the UNC-49 GABA receptor by another sulfated neurosteroid, dehydroepiandrosterone sulfate (DHEAS). DHEAS is identical to PS except that it contains a carbonyl oxygen instead of an acetyl group at C17 on the steroid D ring. UNC-49 mutations that affect PS inhibition had broadly parallel effects on DHEAS, suggesting the two neurosteroids act through similar mechanisms. However, certain M1 mutations affected DHEAS differently than PS. Considering that first, the D ring contains the only structural difference between PS and DHEAS, and second, the strongest chemical and steric effects of a mutation are likely to be felt in the local environment of the altered residues, this result implies that the steroid D ring may contact M1 near the mutated residues. This possibility is interesting because current models of neurosteroid interactions with GABA(A) receptors, based on pregnane steroids, suggest that the steroid A ring binds M1, whereas the D ring binds M4. Our findings suggest that there may be considerable diversity in the way different classes of neurosteroids interact with GABA(A) receptors.
Collapse
Affiliation(s)
- Vernon Twede
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606-3390, USA
| | | | | | | |
Collapse
|
14
|
Mitchell EA, Herd MB, Gunn BG, Lambert JJ, Belelli D. Neurosteroid modulation of GABAA receptors: molecular determinants and significance in health and disease. Neurochem Int 2007; 52:588-95. [PMID: 18055067 DOI: 10.1016/j.neuint.2007.10.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/30/2007] [Accepted: 10/10/2007] [Indexed: 11/18/2022]
Abstract
Over the past 20 years it has become apparent that certain steroids, synthesised de novo in the brain, hence named neurosteroids, produce immediate changes (within seconds) in neuronal excitability, a time scale that precludes a genomic locus of action. Identified molecular targets underlying modulation of brain excitability include both the inhibitory GABA(A) and the excitatory NMDA receptor. Of particular interest is the interaction of certain neurosteroids with the GABA(A) receptor, the major inhibitory receptor in mammalian brain. During the last decade, compelling evidence has accrued to reveal that locally produced neurosteroids may selectively "fine tune" neuronal inhibition. A range of molecular mechanisms including the subunit composition of the receptor(s), phosphorylation and local steroid metabolism, underpin the region- and neuronal selectivity of action of neurosteroids at synaptic and extrasynaptic GABA(A) receptors. The relative contribution played by each of these mechanisms in a variety of physiological and pathophysiological scenarios is currently being scrutinised at a cellular and molecular level. However, it is not known how such mechanisms may act in concert to influence behavioural profiles in health and disease. An important question concerns the identification of the anatomical substrates mediating the repertoire of behaviours produced by neurosteroids. "Knock-in" mice expressing mutant GABA(A) subunits engineered to be insensitive to benzodiazepines or general anaesthetics have proved invaluable in evaluating the role of GABA(A) receptor subtypes in complex behaviours such as sedation, cognition and anxiety [Rudolph, U., Mohler, H., 2006. GABA-based therapeutic approaches: GABA(A) receptor subtype functions. Curr. Opin. Pharmacol. 6, 18-23]. However, the development of a similar approach for neurosteroids has been hampered by the limited knowledge that, until recently, has surrounded the identity of the amino acid residues contributing to the neurosteroid binding pocket. Here, we will review recent progress in identifying the neurosteroid binding site on the GABA(A) receptor, and discuss how these discoveries will impact on our understanding of the role of neurosteroids in health and disease.
Collapse
Affiliation(s)
- Elizabeth A Mitchell
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Li W, Jin X, Covey DF, Steinbach JH. Neuroactive steroids and human recombinant rho1 GABAC receptors. J Pharmacol Exp Ther 2007; 323:236-47. [PMID: 17636008 DOI: 10.1124/jpet.107.127365] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gamma-aminobutyric acid type C (GABAC) receptor is structurally related to the GABAA receptors, yet quite distinct physiologically and pharmacologically. Neuroactive steroids are known to be potent and efficacious modulators of the GABAA receptor, but they are less well characterized in their actions on the GABAC receptor. We have examined the actions of neuroactive steroids and analogs on rho1 (GABAC) receptors expressed in Xenopus laevis oocytes, with two goals in mind. First, we tested a larger number of endogenous steroids, to determine whether particularly potent steroids could be found. Second, we examined the structure-activity relationship for steroid actions, and some mechanistic features, to determine the possible numbers of steroid binding sites and mechanisms of action. In total, 41 compounds were examined. Estradiols are inhibitors, essentially equipotent with picrotoxinin. No endogenous steroid tested was highly efficacious at potentiation. The results of the structure-activity studies and the effects of two mutations to the second transmembrane region of the rho1 GABAC receptor indicate that there are several mechanisms by which steroids can inhibit the receptor. Surprisingly, estradiol shares some features with picrotoxin. Inhibition by negatively charged compounds was not sensitive to membrane potential, and inhibition by all compounds tested was reduced at higher concentrations of GABA. The data indicate that the binding sites mediating potentiation and inhibition differ from each other and that there are several (three or more) mechanisms for producing inhibition.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, USA
| | | | | | | |
Collapse
|
16
|
Hosie AM, Wilkins ME, Smart TG. Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 2007; 116:7-19. [PMID: 17560657 DOI: 10.1016/j.pharmthera.2007.03.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Controlling neuronal excitability is vitally important for maintaining a healthy central nervous system (CNS) and this relies on the activity of type A gamma-aminobutyric acid (GABA(A)) neurotransmitter receptors. Given this role, it is therefore important to understand how these receptors are regulated by endogenous modulators in the brain and determine where they bind to the receptor. One of the most potent groups of modulators is the neurosteroids which regulate the activity of synaptic and extrasynaptic GABA(A) receptors. This level of regulation is thought to be physiologically important and its dysfunction may be relevant to numerous neurological conditions. The aim of this review is to summarise those studies that over the last 20 years have focussed upon finding the binding sites for neurosteroids on GABA(A) receptors. We consider the nature of steroid binding sites in other proteins where this has been determined at atomic resolution and how their generic features were mapped onto GABA(A) receptors to help locate 2 putative steroid binding sites. Altogether, the findings strongly suggest that neurosteroids do bind to discrete sites on the GABA(A) receptor and that these are located within the transmembrane domains of alpha and beta receptor subunits. The implications for neurosteroid binding to other inhibitory receptors such as glycine and GABA(C) receptors are also considered. Identifying neurosteroid binding sites may enable the precise pathophysiological role(s) of neurosteroids in the CNS to be established for the first time, as well as providing opportunities for the design of novel drug entities.
Collapse
Affiliation(s)
- Alastair M Hosie
- University College London, Department of Pharmacology, Gower Street, London, WC1E 6BT
| | | | | |
Collapse
|
17
|
Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S. Mechanisms of neurosteroid interactions with GABA(A) receptors. Pharmacol Ther 2007; 116:35-57. [PMID: 17524487 PMCID: PMC2047817 DOI: 10.1016/j.pharmthera.2007.03.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 11/20/2022]
Abstract
Neuroactive steroids have some of their most potent actions by augmenting the function of GABA(A) receptors. Endogenous steroid actions on GABA(A) receptors may underlie important effects on mood and behavior. Exogenous neuroactive steroids have potential as anesthetics, anticonvulsants, and neuroprotectants. We have taken multiple approaches to understand more completely the interaction of neuroactive steroids with GABA(A) receptors. We have developed many novel steroid analogues in this effort. Recent work has resulted in synthesis of new enantiomer analogue pairs, novel ligands that probe various properties of the steroid pharmacophore, fluorescent neuroactive steroid analogues, and photoaffinity labels. Using these tools, combined with receptor binding and electrophysiological assays, we have begun to untangle the complexity of steroid actions at this important class of ligand-gated ion channel.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Douglas F. Covey
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Charles F. Zorumski
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Steven Mennerick
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
18
|
Hadley SH, Amin J. Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities. J Physiol 2007; 581:1001-18. [PMID: 17395622 PMCID: PMC2170852 DOI: 10.1113/jphysiol.2007.132886] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state of the alpha6beta2delta receptor modulates the granule neuron activity as well as potential mechanisms affecting its expression are discussed.
Collapse
Affiliation(s)
- Stephen H Hadley
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | |
Collapse
|
19
|
Alakoskela JM, Covey DF, Kinnunen PKJ. Lack of enantiomeric specificity in the effects of anesthetic steroids on lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:131-45. [PMID: 16945324 DOI: 10.1016/j.bbamem.2006.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/13/2006] [Accepted: 07/19/2006] [Indexed: 11/20/2022]
Abstract
The most important target protein for many anesthetics, including volatile and steroid anesthetics, appears to be the type A gamma-amino butyric acid receptor (GABA(A)R), yet direct binding remains to be demonstrated. Hypotheses of lipid-mediated anesthesia suggest that lipid bilayer properties are changed by anesthetics and that this in turn affects the functions of proteins. While other data could equally well support direct or lipid-mediated action, enantiomeric specificity displayed by some anesthetics is not reflected in their interactions with lipids. In the present study, we studied the effects of two pairs of anesthetic steroid enantiomers on bilayers of several compositions, measuring potentially relevant physical properties. For one of the pairs, allopregnanolone and ent-allopregnanolone, the natural enantiomer is 300% more efficacious as an anesthetic, while for the other, pregnanolone and ent-pregnanolone, there is little difference in anesthetic potency. For each enantiomer pair, we could find no differences. This strongly favors the view that the effects of these anesthetics on lipid bilayers are not relevant for the main features of anesthesia. These steroids also provide tools to distinguish in general the direct binding of steroids to proteins from lipid-mediated effects.
Collapse
Affiliation(s)
- Juha-Matti Alakoskela
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Biochemistry, P.O. Box 63, 00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
20
|
Li P, Covey DF, Steinbach JH, Akk G. Dual potentiating and inhibitory actions of a benz[e]indene neurosteroid analog on recombinant alpha1beta2gamma2 GABAA receptors. Mol Pharmacol 2006; 69:2015-26. [PMID: 16554408 DOI: 10.1124/mol.106.022590] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Benz[e]indenes are tricyclic analogs of neuroactive steroids and can be modulators of GABA(A) receptor activity. We have examined the mechanisms of action of the benz[e]indene compound [3S-(3alpha,3aalpha,5abeta,7beta,9aalpha,9bbeta)]-dodecahydro-7-(2-hydroxyethyl)-3a-methyl-1H-benz[e]indene-3-carbonitrile (BI-2) using single-channel patch-clamp and whole-cell recordings from human embryonic kidney cells transfected with rat GABA(A) receptor alpha1, beta2, and gamma2L subunits. The data demonstrate that BI-2 is a positive modulator of GABA(A) receptor activity with a peak effect at 2 microM. The mechanism of modulation is similar but not identical to that of neuroactive steroids. Similar to steroids, BI-2 acts by prolonging the mean open time duration through an effect on the duration and prevalence of the longest open time component. However, in contrast to many steroids, BI-2 does not selectively reduce the channel closing rate. The potentiating action of BI-2 seems to be mediated through interactions with the classic neuroactive steroid binding site. Mutation to the membrane-spanning region in the alpha1 subunit Q242W and the double mutation alpha1N408A/Y411F, previously shown to abolish potentiation by neurosteroids, also diminish potentiation by BI-2. At higher concentrations (>5 microM), BI-2 inhibits receptor function by enhancing the apparent rate of desensitization. From single-channel recordings, we estimate that the entry rate into the inhibited or blocked state, k(+B), is 0.50 microM(-1) s(-1). Based on the kinetic mechanism of action, and the finding that this effect is blocked by the alpha1V256S mutation, we propose that BI-2 acts through an inhibitory site first postulated for the inhibitory neurosteroid pregnenolone sulfate.
Collapse
Affiliation(s)
- Ping Li
- Department of Anesthesiology, Washington University in St. Louis, Campus Box 8054, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
21
|
Li W, Covey DF, Alakoskela JM, Kinnunen PKJ, Steinbach JH. Enantiomers of neuroactive steroids support a specific interaction with the GABA-C receptor as the mechanism of steroid action. Mol Pharmacol 2006; 69:1779-82. [PMID: 16527905 DOI: 10.1124/mol.106.022863] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroactive steroids can either potentiate or inhibit a variety of membrane channels. Most studies have suggested that the effects are mediated by specific association of the steroid with the affected channel. However, a recent study of the rho1 (GABA-C) receptor (Mol Pharmacol 66:56-69, 2004) concluded that the actions were consistent with an action of the steroid in the lipid bilayer to alter the lateral pressure profile in the membrane. The enantiomers of an optically active compound are expected to have identical physical properties, including interactions with hydrophobic portions of the cell membrane. We have used two pairs of enantiomers (pregnanolone and ent-pregnanolone, allopregnanolone and ent-allopregnanolone) and show that the ability to potentiate (allopregnanolone) or inhibit (pregnanolone) the rho1 receptor is enantioselective. Therefore, these results strongly suggest that the actions of these neuroactive steroids are mediated by interactions with chiral regions of the target protein, rather than by a change in membrane properties (including lateral pressure).
Collapse
Affiliation(s)
- Wenjun Li
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
22
|
Wardell B, Marik PS, Piper D, Rutar T, Jorgensen EM, Bamber BA. Residues in the first transmembrane domain of the Caenorhabditis elegans GABA(A) receptor confer sensitivity to the neurosteroid pregnenolone sulfate. Br J Pharmacol 2006; 148:162-72. [PMID: 16547524 PMCID: PMC1617053 DOI: 10.1038/sj.bjp.0706719] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/20/2006] [Accepted: 01/25/2006] [Indexed: 12/28/2022] Open
Abstract
The GABA(A) receptor is a target of endogenous and synthetic neurosteroids. Little is known about the residues required for neurosteroid action on GABA(A) receptors. We have investigated pregnenolone sulfate (PS) inhibition of the Caenorhabditis elegans UNC-49 GABA receptor, a close homolog of the mammalian GABA(A) receptor. The UNC-49 locus encodes two GABA receptor subunits, UNC-49B and UNC-49C. UNC-49C is sensitive to PS but UNC-49B is not sensitive. By analyzing chimeric receptors and receptors containing site-directed mutations, we identified two regions required for PS inhibition. Four residues in the first transmembrane domain are required for the majority of the sensitivity to PS, but a charged extracellular residue at the end of the M2 helix also plays a role. Strikingly, mutation of one additional M1 residue reverses the effect of PS from an inhibitor to an enhancer of receptor function. Mutating the M1 domain had little effect on sensitivity to the inhibitor picrotoxin, suggesting that these residues may mediate neurosteroid action specifically, and not allosteric regulation in general.
Collapse
Affiliation(s)
- Bryan Wardell
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, U.S.A
| | - Purba S Marik
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, U.S.A
| | - David Piper
- Department of Physiology, University of Utah, 410 Chipeta Way, Salt Lake City, UT 84108, U.S.A
| | - Tina Rutar
- Department of Biology, University of Utah, 257 South, 1400E Salt Lake City, UT 84112, U.S.A
| | - Erik M Jorgensen
- Department of Biology, University of Utah, 257 South, 1400E Salt Lake City, UT 84112, U.S.A
| | - Bruce A Bamber
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, U.S.A
| |
Collapse
|
23
|
Chen Y, Reilly K, Chang Y. Evolutionarily conserved allosteric network in the Cys loop family of ligand-gated ion channels revealed by statistical covariance analyses. J Biol Chem 2006; 281:18184-92. [PMID: 16595655 DOI: 10.1074/jbc.m600349200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Cys loop family of ligand-gated ion channels mediate fast synaptic transmission for communication between neurons. They are allosteric proteins, in which binding of a neurotransmitter to its binding site in the extracellular amino-terminal domain triggers structural changes in distant transmembrane domains to open a channel for ion flow. Although the locations of binding site and channel gating machinery are well defined, the structural basis of the activation pathway coupling binding and channel opening remains to be determined. In this paper, by analyzing amino acid covariance in a multiple sequence alignment, we have identified an energetically interconnected network in the Cys loop family of ligand-gated ion channels. Statistical coupling and correlated mutational analyses along with clustering revealed a highly coupled cluster. Mapping the positions in the cluster onto a three-dimensional structural model demonstrated that these highly coupled positions form an interconnected network linking experimentally identified binding domains through the coupling region to the gating machinery. In addition, these highly coupled positions are also condensed in the transmembrane domains, which are a recent focus for the sites of action of many allosteric modulators. Thus, our results revealed a genetically interconnected network that potentially plays an important role in the allosteric activation and modulation of the Cys loop family of ligand-gated ion channels.
Collapse
Affiliation(s)
- Yonghui Chen
- Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
24
|
GABAA (γ-aminobutyric acid). Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Cerný I, Pouzar V, Hill M, Havlíková H, Hampl R. Syntheses of 19-[O-(carboxymethyl)oxime] haptens of epipregnanolone and pregnanolone. Steroids 2006; 71:120-8. [PMID: 16242742 DOI: 10.1016/j.steroids.2005.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/16/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
O-(Carboxymethyl)oximes 1 and 2 derived from two epimeric 5beta-pregnanolones (3beta-hydroxy-5beta-pregnan-20-one and 3alpha-hydroxy-5beta-pregnan-20-one) in position 19 were prepared. Two synthetic routes were employed, both using protection of the 20-keto group after reduction into the (20R)-alcohol in the form of acetate. In the first route, (20R)-19-hydroxy-5beta-pregnan-3beta,20-diyl diacetate (3) was transformed into the corresponding 19-[O-(carboxymethyl)oxime] methyl ester 6, then deacetylated by acid and partially silylated with tert-butyldimethylsilyl chloride. The desired 3-O-silylated derivative 8 was separated, oxidized to the 20-ketone and protecting groups were sequentially removed to give the first title hapten 1. The second route started from (20R)-19-hydroxy-3-oxopregn-4-en-20-yl acetate (11), which was hydrogenated in the presence of base to the 5beta-pregnan-3-one derivative 12, protected in position 19 with tert-butyldimethylsilyl group and reduced with borohydride. The prevailing 3alpha-alcohol 15 was separated, protected in position 3 with a methoxymethyl group, deprotected in position 19 and transformed into the 19-[O-(carboxymethyl)oxime] 19. After deacetylation, esterification with diazomethane and oxidation in position 20, the pregnanolone skeleton was regenerated. Final deprotection steps gave the second title hapten 2. Both haptens, i.e., (19E)-3beta- and -3alpha-hydroxy-20-oxo-5beta-pregnan-19-al 19-[O-(carboxymethyl)oxime], were designed for the development of immunoassays of the corresponding parent neuroactive steroids.
Collapse
Affiliation(s)
- Ivan Cerný
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Miller PS, Da Silva HMA, Smart TG. Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors. J Biol Chem 2005; 280:37877-84. [PMID: 16144831 DOI: 10.1074/jbc.m508303200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The divalent cation Zn(2+) is a potent potentiator at the strychnine-sensitive glycine receptor (GlyR). This occurs at nanomolar concentrations, which are the predicted endogenous levels of extracellular neuronal Zn(2+). Using structural modeling and functional mutagenesis, we have identified the molecular basis for the elusive Zn(2+) potentiation site on GlyRs and account for the differential sensitivity of GlyR alpha(1) and GlyR alpha(2) to Zn(2+) potentiation. In addition, juxtaposed to this Zn(2+) site, which is located externally on the N-terminal domain of the alpha subunit, another residue was identified in the nearby Cys loop, a region that is critical for receptor gating in all Cys loop ligand-gated ion channels. This residue acted as a key control element in the allosteric transduction pathway for Zn(2+) potentiation, enabling either potentiation or overt inhibition of receptor activation depending upon the moiety resident at this location. Overall, we propose that Zn(2+) binds to a site on the extracellular outer face of the GlyR alpha subunit and exerts its positive allosteric effect via an interaction with the Cys loop to increase the efficacy of glycine receptor gating.
Collapse
Affiliation(s)
- Paul S Miller
- Department of Pharmacology, University College London, UK
| | | | | |
Collapse
|
27
|
Abstract
GABA(A) (gamma-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs. Certain naturally occurring pregnane steroids can potently and specifically enhance GABA(A) receptor function in a nongenomic (direct) manner, and consequently have anxiolytic, analgesic, anticonvulsant, sedative, hypnotic and anaesthetic properties. These steroids not only act as remote endocrine messengers, but also can be synthesized in the brain, where they modify neuronal activity locally by modulating GABA(A) receptor function. Such 'neurosteroids' can influence mood and behaviour in various physiological and pathophysiological situations, and might contribute to the behavioural effects of psychoactive drugs.
Collapse
Affiliation(s)
- Delia Belelli
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee University, Dundee DD19SY, UK
| | | |
Collapse
|