1
|
Cheng J, Liu H, Yu W, Dong X, Sai Y, Ye F, Dan G, Chen M, Zhao Y, Zhang X, Zou Z. Nitrogen mustard induces dynamic nuclear protein spectrum change and DNA-protein crosslinking, with p97 mediating repair. Heliyon 2024; 10:e37401. [PMID: 39290288 PMCID: PMC11407038 DOI: 10.1016/j.heliyon.2024.e37401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrogen mustard (NM) is a chemotherapeutic agent capable of alkylating nucleophilic proteins and DNA, causing severe cell damage. However, no reports have been on the dynamic changes in proteomics induced by NM. In this study, we established a model of acute exposure to NM for 1 h and a continuous cultured model for 24 h after NM removal (repair stage) using 16HBE cells. The nuclear protein spectrum and nuclear proteins crosslinked with DNA were analyzed, and the function of p97 during NM damage was examined. An hour of NM exposure resulted in severe changes in the nuclear protein spectrum and protein into the cell nucleus, which is mainly involved in nuclear acid-related issues. After 24 h, the return to normal process of the types and amounts of differentially expressed proteins was inhibited by si-p97. The main processes involved in si-p97 intervention were nucleocytoplasmic transport, processing in the endoplasmic reticulum, metabolic abnormalities, and DNA-response; however. An hour of exposure to NM increased DNA-protein crosslinking (DPC), total-H2AX, and p-H2AX. In contrast, si-p97 only further increased or maintained their levels at 24 h yet not at 1 h. The effect of the proteasome inhibitor, MG132, was similar to that of si-p97. The siRNA of DVC1, a partner of p97, also increased the DPC content. Both si-p97 and si-DVC1 increased the cytoplasmic levels of the proteasome (PSMD2). These results suggest acute NM exposure induces severe nuclear protein spectral changes, rapid protein influx into the nucleus, DPC formation, and DNA double-strand breaks. Furthermore, our data indicated that p97 is involved in normal protein spectrum maintenance and DPC removal after NM withdrawal, requiring the participation of DVC1 and the proteasome.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
- Department of Clinic, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Haoyin Liu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xunhu Dong
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Feng Ye
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Noireterre A, Stutz F. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. DNA Repair (Amst) 2024; 139:103691. [PMID: 38744091 DOI: 10.1016/j.dnarep.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland.
| |
Collapse
|
3
|
Cowell IG, Austin CA. Myeloperoxidase inhibition protects bone marrow mononuclear cells from DNA damage induced by the TOP2 poison anti-cancer drug etoposide. FEBS Open Bio 2024; 14:1001-1010. [PMID: 38531625 PMCID: PMC11148113 DOI: 10.1002/2211-5463.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Myeloperoxidase (MPO) is found almost exclusively in granulocytes and immature myeloid cells. It plays a key role in the innate immune system, catalysing the formation of reactive oxygen species that are important in anti-microbial action, but MPO also oxidatively transforms the topoisomerase II (TOP2) poison etoposide to chemical forms that have elevated DNA damaging properties. TOP2 poisons such as etoposide are widely used anti-cancer drugs, but they are linked to cases of secondary acute myeloid leukaemias through a mechanism that involves DNA damage and presumably erroneous repair leading to leukaemogenic chromosome translocations. This leads to the possibility that myeloperoxidase inhibitors could reduce the rate of therapy-related leukaemia by protecting haematopoietic cells from TOP2 poison-mediated genotoxic damage while preserving the anti-cancer efficacy of the treatment. We show here that myeloperoxidase inhibition reduces etoposide-induced TOP2B-DNA covalent complexes and resulting DNA double-strand break formation in primary ex vivo expanded CD34+ progenitor cells and unfractionated bone marrow mononuclear cells. Since MPO inhibitors are currently being developed as anti-inflammatory agents this raises the possibility that repurposing of these potential new drugs could provide a means of suppressing secondary acute myeloid leukaemias associated with therapies containing TOP2 poisons.
Collapse
|
4
|
LaPorte M, Alverez C, Chatterley A, Kovaliov M, Carder EJ, Houghton MJ, Lim C, Miller ER, Samankumara LP, Liang M, Kerrigan K, Yue Z, Li S, Tomaino F, Wang F, Green N, Stott GM, Srivastava A, Chou TF, Wipf P, Huryn DM. Optimization of 1,2,4-Triazole-Based p97 Inhibitors for the Treatment of Cancer. ACS Med Chem Lett 2023; 14:977-985. [PMID: 37465292 PMCID: PMC10351062 DOI: 10.1021/acsmedchemlett.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
The AAA+ ATPase p97 (valosin-containing protein, VCP) is a master regulator of protein homeostasis and therefore represents a novel target for cancer therapy. Starting from a known allosteric inhibitor, NMS-873, we systematically optimized this scaffold, in particular, by applying a benzene-to-acetylene isosteric replacement strategy, specific incorporation of F, and eutomer/distomer identification, which led to compounds that exhibited nanomolar biochemical and cell-based potency. In cellular pharmacodynamic assays, robust effects on biomarkers of p97 inhibition and apoptosis, including increased levels of ubiquitinated proteins, CHOP and cleaved caspase 3, were observed. Compound (R)-29 (UPCDC-30766) represents the most potent allosteric inhibitor of p97 reported to date.
Collapse
Affiliation(s)
- Matthew
G. LaPorte
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Celeste Alverez
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Chatterley
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marina Kovaliov
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Evan J. Carder
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Houghton
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chaemin Lim
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Eric R. Miller
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lalith P. Samankumara
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mary Liang
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kaylan Kerrigan
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhizhou Yue
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shan Li
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Francesca Tomaino
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Feng Wang
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Neal Green
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Gordon M. Stott
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Apurva Srivastava
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Tsui-Fen Chou
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Peter Wipf
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Donna M. Huryn
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Zhang X, Jiang L, Li Y, Feng Q, Sun X, Wang Y, Zhao M. Discovery of novel benzylquinazoline molecules as p97/VCP inhibitors. Front Pharmacol 2023; 14:1209060. [PMID: 37388451 PMCID: PMC10300352 DOI: 10.3389/fphar.2023.1209060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Protein p97 is an extensively investigated AAA ATPase with various cellular activities, including cell cycle control, ubiquitin-proteasome system, autophagy, and NF-κB activation. Method: In this study, we designed, synthesized and evaluated eight novel DBeQanalogs as potential p97 inhibitors in vivo and in vitro. Results: In the p97 ATPase inhibition assay, compounds 6 and 7 showed higher potency than the known p97 inhibitors, DBeQ and CB-5083. Compounds 4-6 dramatically induced G0/G1 phase arrest in the HCT116 cells, and compound 7 arrested the cells in both G0/G1 and S phases. Western blots showed elevated levels of SQSTM/p62, ATF-4, and NF-κB in HCT116 cells with the treatment of compounds 4-7, confirming their role in inhibiting the p97 signaling pathway in cells. In addition, the IC50 of compounds 4-6 against HCT116, RPMI-8226, and s180 proliferation were 0.24-6.9 µM with comparable potency as DBeQ. However, compounds 4-6 displayed low toxicity against the normal human colon cell line. Thus, compounds 6 and 7 were proved to be potential p97 inhibitors with less cytotoxicity. In vivo studies using the s180 xenograft model have demonstrated that compound 6 inhibited tumor growth, led to a significant reduction of p97 concentration in the serum and tumor, and indicated non-toxicity on the body weight and organ-to-brain weight ratios except for the spleen at the dose of 90 μmol/kg/day for 10 days. Furthermore, the present study indicated that compound 6 may not induce s180 mice myelosuppression often observed in the p97 inhibitors. Conclusion: Compound 6 displayed high binding affinity to p97, great p97 ATPase inhibition, selective cytotoxicity, remarkable anti-tumor effect, and upregulated safety, which improved the clinical potential of p97 inhibitors.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Lingna Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yixin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qiqi Feng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiulin Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yaonan Wang
- Core Facilities Centre, Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
6
|
Cowell IG, Austin CA. DNA fragility at the KMT2A/ MLL locus: insights from old and new technologies. Open Biol 2023; 13:220232. [PMID: 36629017 PMCID: PMC9832561 DOI: 10.1098/rsob.220232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Mixed-Lineage Leukaemia (MLL/KMT2A) gene is frequently rearranged in childhood and adult acute leukaemia (AL) and in secondary leukaemias occurring after therapy with DNA topoisomerase targeting anti-cancer agents such as etoposide (t-AL). MLL/KMT2A chromosome translocation break sites in AL patients fall within an 8 kb breakpoint cluster region (BCR). Furthermore, MLL/KMT2A break sites in t-AL frequently occur in a much smaller region, or hotspot, towards the 3' end of the BCR, close to the intron 11/exon 12 boundary. These findings have prompted considerable effort to uncover mechanisms behind the apparent fragility of the BCR and particularly the t-AL hotspot. Recent genome-wide analyses have demonstrated etoposide-induced DNA cleavage within the BCR, and it is tempting to conclude that this cleavage explains the distribution of translocation break sites in t-AL. However, the t-AL hotspot and the centre of the observed preferential DNA cleavage are offset by over 250 nucleotides, suggesting additional factors contribute to the distribution of t-AL break sites. We review these recent genomic datasets along with older experimental results, analysis of TOP2 DNA cleavage site preferences and DNA secondary structure features that may lead to break site selection in t-AL MLL/KMT2A translocations.
Collapse
Affiliation(s)
- Ian G. Cowell
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A. Austin
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
7
|
Sun Y, Soans E, Mishina M, Petricci E, Pommier Y, Nitiss KC, Nitiss JL. Requirements for MRN endonuclease processing of topoisomerase II-mediated DNA damage in mammalian cells. Front Mol Biosci 2022; 9:1007064. [PMID: 36213114 PMCID: PMC9537633 DOI: 10.3389/fmolb.2022.1007064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
During a normal topoisomerase II (TOP2) reaction, the enzyme forms a covalent enzyme DNA intermediate consisting of a 5′ phosphotyrosyl linkage between the enzyme and DNA. While the enzyme typically rejoins the transient breakage after strand passage, a variety of conditions including drugs targeting TOP2 can inhibit DNA resealing, leading to enzyme-mediated DNA damage. A critical aspect of the repair of TOP2-mediated damage is the removal of the TOP2 protein covalently bound to DNA. While proteolysis plays a role in repairing this damage, nucleolytic enzymes must remove the phosphotyrosyl-linked peptide bound to DNA. The MRN complex has been shown to participate in the removal of TOP2 protein from DNA following cellular treatment with TOP2 poisons. In this report we used an optimized ICE (In vivo Complex of Enzyme) assay to measure covalent TOP2/DNA complexes. In agreement with previous independent reports, we find that the absence or inhibition of the MRE11 endonuclease results in elevated levels of both TOP2α and TOP2β covalent complexes. We also examined levels of TOP2 covalent complexes in cells treated with the proteasome inhibitor MG132. Although MRE11 inhibition plus MG132 was not synergistic in etoposide-treated cells, ectopic overexpression of MRE11 resulted in removal of TOP2 even in the presence of MG132. We also found that VCP/p97 inhibition led to elevated TOP2 covalent complexes and prevented the removal of TOP2 covalent complexes by MRE11 overexpression. Our results demonstrate the existence of multiple pathways for proteolytic processing of TOP2 prior to nucleolytic processing, and that MRE11 can process TOP2 covalent complexes even when the proteasome is inhibited. The interactions between VCP/p97 and proteolytic processing of TOP2 covalent complexes merit additional investigation.
Collapse
Affiliation(s)
- Yilun Sun
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss,
| | - Eroica Soans
- St. Jude Children’s Research Hospital Memphis, Memphis, TN, United States
| | - Margarita Mishina
- St. Jude Children’s Research Hospital Memphis, Memphis, TN, United States
| | | | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss,
| |
Collapse
|
8
|
Swan RL, Cowell IG, Austin CA. Mechanisms to Repair Stalled Topoisomerase II-DNA Covalent Complexes. Mol Pharmacol 2022; 101:24-32. [PMID: 34689119 DOI: 10.1124/molpharm.121.000374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biologic processes, such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex through the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes, which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes, facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here, we review recent progress in the understanding of the processing of TOP2 DNA covalent complexes, the basic components and mechanisms, as well as the additional layer of complexity posed by the post-translational modifications that modulate these pathways. SIGNIFICANCE STATEMENT: Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications, such as ubiquitination and SUMOylation, are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post-translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.
Collapse
Affiliation(s)
- Rebecca L Swan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
TOP2B's contributions to transcription. Biochem Soc Trans 2021; 49:2483-2493. [PMID: 34747992 DOI: 10.1042/bst20200454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Transcription is regulated and mediated by multiprotein complexes in a chromatin context. Transcription causes changes in DNA topology which is modulated by DNA topoisomerases, enzymes that catalyse changes in DNA topology via transient breaking and re-joining of one or both strands of the phosphodiester backbone. Mammals have six DNA topoisomerases, this review focuses on one, DNA topoisomerase II beta (TOP2B). In the absence of TOP2B transcription of many developmentally regulated genes is altered. Long genes seem particularly susceptible to the lack of TOP2B. Biochemical studies of the role of TOP2B in transcription regulated by ligands such as nuclear hormones, growth factors and insulin has revealed PARP1 associated with TOP2B and also PRKDC, XRCC5 and XRCC6. Analysis of publicly available databases of protein interactions confirms these interactions and illustrates interactions with other key transcriptional regulators including TRIM28. TOP2B has been shown to interact with proteins involved in chromosome organisation including CTCF and RAD21. Comparison of publicly available Chip-seq datasets reveals the location at which these proteins interact with genes. The availability of resources such as large datasets of protein-protein interactions, e.g. BioGrid and IntAct and protein-DNA interactions such as Chip-seq in GEO enables scientists to extend models and propose new hypotheses.
Collapse
|