1
|
Gafforov Y, Bekić S, Yarasheva M, Mišković J, Živanović N, Chen JJ, Petri E, Abdullaev B, Rapior S, Lim YW, Abdullaev I, Abbasi AM, Ghosh S, Wan-Mohtar WAAQI, Rašeta M. Bioactivity profiling of Sanghuangporus lonicerinus: antioxidant, hypoglycaemic, and anticancer potential via in-vitro and in-silico approaches. J Enzyme Inhib Med Chem 2025; 40:2461185. [PMID: 39992291 PMCID: PMC11852365 DOI: 10.1080/14756366.2025.2461185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
This study investigates the mycochemical profile and biological activities of hydroethanolic (EtOH), chloroform (CHCl3), and hot water (H2O) extracts of Sanghuangporus lonicerinus from Uzbekistan. Antioxidant capacity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), NO, and FRAP assays, and in vitro hypoglycaemic effects were evaluated through α-amylase and α-glucosidase inhibition. Antiproliferative potential was explored by analysing the binding affinities of EtOH and H2O extracts to estrogen receptor α (ERα), ERβ, androgen receptor (AR), and glucocorticoid receptor (GR), with molecular docking providing structural insights. LC-MS/MS analysis revealed solvent-dependent phenolic profiles, with the EtOH extract containing the highest total phenolic content (143.15 ± 6.70 mg GAE/g d.w.) and the best antioxidant capacity. The EtOH extract showed significant hypoglycaemic effects, with 85.29 ± 5.58% inhibition of α-glucosidase and 41.21 ± 0.79% inhibition of α-amylase. Moderate ERβ binding suggests potential for estrogen-mediated cancer therapy, while strong AKR1C3 inhibition by the EtOH extract supports its therapeutic potential.
Collapse
Affiliation(s)
- Yusufjon Gafforov
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Sofija Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Manzura Yarasheva
- Microbiology Laboratory, Navruz International Corp. LLC, Kibray, Uzbekistan
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| | - Nemanja Živanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jia Jia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
| | - Sylvie Rapior
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, Montpellier, France
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, Montpellier, France
| | - Young Won Lim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Republic of Korea
| | | | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Soumya Ghosh
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Xing S, Liu Y, Xie H, Guo C, Wang X, Lv B, Li X, Shao J, Guo Q, Feng F, Sun H. Discovery of highly potent AKR1Cs pan-inhibitors as chemotherapeutic potentiators to restore breast cancer drug resistance. Eur J Med Chem 2025; 289:117413. [PMID: 40015157 DOI: 10.1016/j.ejmech.2025.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
The acquired resistance of doxorubicin (DOX) significantly limits their application in breast cancer treatment. In earlier investigations, a pan-inhibitor, S07-2010, exhibiting inhibitory activity against Aldo-Keto Reductase 1C1-1C4 (AKR1C1-1C4) was discovered through virtual screening. In this study, four rounds of structural modifications were conducted, and the optimized compound 29 exhibited potent inhibitory activity against AKR1C1-1C4 (AKR1C1 IC50 = 0.09 μM, AKR1C2 IC50 = 0.28 μM, AKR1C3 IC50 = 0.05 μM, AKR1C4 IC50 = 0.51 μM). Molecular dynamics (MD) simulations revealed that 29 consistently occupied both SP2 and SP3 pockets, which may explain its pan-inhibitory activity. Utilizing highly DOX resistant MCF-7/ADR cells, 29 demonstrated superior potential as a therapeutic agent for re-sensitizing drug-resistant cell lines to chemotherapy both in vitro and in vivo, suggesting that pan-inhibition of AKR1C1-1C4 may serve as a more promising therapeutic strategy for drug-resistant breast cancer. In summary, Compound 29 may be a promising therapeutic adjuvant in the development of novel strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanfang Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaolong Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xinyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jikuan Shao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
3
|
Grams RJ, Wolfe WJ, Seal RJ, Veccia J, Hsu KL. Discovery and Optimization of a Covalent AKR1C3 Inhibitor. J Med Chem 2025. [PMID: 40277220 DOI: 10.1021/acs.jmedchem.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Aldo-keto reductase family 1 member C3 (AKR1C3) is a member of the AKR superfamily of enzymes that metabolize androgen, estrogen, and prostaglandin substrates that drive proliferation in hormone-dependent cancers. Interest in developing selective inhibitors has produced tool compounds for the inactivation or degradation of AKR1C3 with varying degrees of selectivity among the 14 known AKR proteins. Selectivity of AKR1C3 inhibitors across the AKR family is critical since a clinical candidate failed due to hepatotoxicity from off-target inhibition of AKR1D1. Here, we report development of a sulfonyl-triazole (SuTEx) covalent AKR1C3 inhibitor (RJG-2051) that selectively engages a noncatalytic tyrosine residue (Y24) on AKR1C3. Importantly, RJG-2051 exhibited negligible cross-reactivity with AKRs or other proteins across 1800+ tyrosine and lysine sites quantified by chemical proteomics. Our disclosure of a covalent inhibitor for potent AKR1C3 inactivation with proteome-wide selectivity in cells will expedite cell biological studies for testing the therapeutic potential of this metabolic target.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Wesley J Wolfe
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert J Seal
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - James Veccia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Zhang J, Chen T, Wu W, Hu C, Wang B, Jia X, Ye M. Carbonyl reductase 4 suppresses colorectal cancer progression through the DNMT3B/CBR4/FASN/mTOR axis. Cancer Cell Int 2025; 25:146. [PMID: 40234909 PMCID: PMC11998200 DOI: 10.1186/s12935-025-03776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Lipid metabolism is implicated in the initiation and progression of human colorectal cancer (CRC). Carbonyl reductase 4 (CBR4), a member of the carbonyl reductase family, plays a role in the biosynthesis of fatty acids. However, its involvement in CRC remains poorly understood. In this study, we aim to explore the function of CBR4 in CRC. Our findings indicated that the expression of CBR4 was significantly reduced in CRC tissues. Functional analyses revealed that CBR4 functions to inhibit cell proliferation, colony formation, migration, invasion, and tumor growth in vivo. Mechanistically, CBR4 interacts with fatty acid synthase (FASN), activating the ubiquitin-proteasome pathway, which leads to a reduction in FASN expression, thereby inhibiting the mTOR pathway and curtailing CRC development. Orlistat, a known FASN inhibitor, demonstrated anti-cancer properties both in vitro and in vivo. Additionally, DNMT3B, a DNA methyltransferase, contributed to the down-regulation of CBR4 by inducing methylation in the promoter region. In summary, our findings suggest that the DNMT3B/CBR4/FASN/mTOR signaling pathway is crucial in the advancement of CRC, and elucidate the potential mechanism by which enzymatic carbonyl reduction and lipid metabolism may be connected to CRC progression, offering a novel therapeutic strategy for its clinical management.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Medical Image, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, NO.157 Daming Road, Nanjing, 210022, China
| | - Tiaotiao Chen
- Department of Geriatrics, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Wencheng Wu
- Department of Pathology, Changzhou First People's Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Chunhua Hu
- Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University; Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province; Institute of Neuroendocrine Tumor of Collaborative Innovation Center for Cancer Personalized Medicine of Jiangsu Province; Institute of Neuroendocrine Tumor of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Bangting Wang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Jia
- Department of Medical Image, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, NO.157 Daming Road, Nanjing, 210022, China.
| | - Mujie Ye
- Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University; Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province; Institute of Neuroendocrine Tumor of Collaborative Innovation Center for Cancer Personalized Medicine of Jiangsu Province; Institute of Neuroendocrine Tumor of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
5
|
Mitsumori T, Nitta H, Takizawa H, Iizuka-Honma H, Furuya C, Fujishiro M, Tomita S, Hashizume A, Sawada T, Miyake K, Okubo M, Sekiguchi Y, Ando M, Noguchi M. A New Histology-Based Prognostic Index for Acute Myeloid Leukemia: Preliminary Results for the "AML Urayasu Classification". J Clin Med 2025; 14:1989. [PMID: 40142797 PMCID: PMC11943192 DOI: 10.3390/jcm14061989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background: This study was aimed at elucidating the mechanisms underlying the development of treatment resistance in patients with acute myeloid leukemia (AML) other than M3 myeloid leukemia in order to devise ways to overcome treatment resistance and improve the treatment outcomes in these patients. Methods: For this study, we randomly selected 35 patients with AML who had received combined cytarabine plus idarubicin treatment for new-onset AML at our hospital. We performed immunohistochemical analysis of biopsy specimens obtained from the patients to investigate the expressions of 23 treatment-resistance-related proteins, and retrospectively analyzed the correlations between the expression profiles of the resistance proteins and the patient survival. Results: The following four proteins were identified as being particularly significant in relation to treatment resistance and patient prognosis: (1) p53; (2) multidrug resistance-associated protein 1 (MRP1; idarubicin extracellular efflux pump); (3) aldo-keto reductase family 1 member B10 (AKR1B10; idarubicin-inactivating enzyme); and (4) AKR1B1 (competitive inhibitor of AKR1B10). Based on our findings, we propose the following Urayasu classification for AML, which we believe would be very useful for accurately stratifying patients with AML according to the predicted prognosis: Group 1 (n = 22, 63%): p53(-)/MRP1(-) associated with AKR1B10(+)/AKR1B1(+) or AKR1B10(-)/AKR1B1(-); 5-year overall survival (OS), 82%-100%; Group 2 (n = 9, 26%): p53(-)/MRP1(-) associated with AKR1B10(+)/AKR1B1(-); 5-year OS, 68%; Group 3 (n = 4, 11%): p53(+) or MRP1(+); median survival, 12-14 months; 2-year OS, 0%. Conclusions: The Urayasu classification for AML is useful for predicting the prognosis of patients with AML. Group 1 in this classification included twice as many patients as that included in the Favorable prognosis group in the AML prognostic classification proposed by the European Leukemia Net. As the Urayasu classification for AML is based on the mechanisms of resistance to chemotherapy, it is not only useful for prognostic stratification of the patients, but also provides insights for developing more effective treatments for AML.
Collapse
Affiliation(s)
- Toru Mitsumori
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Japan; (T.M.); (H.N.); (H.T.); (H.I.-H.); (C.F.)
| | - Hideaki Nitta
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Japan; (T.M.); (H.N.); (H.T.); (H.I.-H.); (C.F.)
| | - Haruko Takizawa
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Japan; (T.M.); (H.N.); (H.T.); (H.I.-H.); (C.F.)
| | - Hiroko Iizuka-Honma
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Japan; (T.M.); (H.N.); (H.T.); (H.I.-H.); (C.F.)
| | - Chiho Furuya
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Japan; (T.M.); (H.N.); (H.T.); (H.I.-H.); (C.F.)
- Division of Hematology, Juntendo University Juntendo Hospital, Tokyo 113-0033, Japan;
| | - Maki Fujishiro
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan;
| | - Shigeki Tomita
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan; (S.T.)
| | - Akane Hashizume
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan; (S.T.)
| | - Tomohiro Sawada
- Department of Clinical Laboratory, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan;
| | - Kazunori Miyake
- Department of Clinical Laboratory, Faculty of Medical Sciences, Juntendo University, Tokyo 113-8421, Japan;
| | - Mitsuo Okubo
- Laboratory of Blood Transfusion, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan;
| | | | - Miki Ando
- Division of Hematology, Juntendo University Juntendo Hospital, Tokyo 113-0033, Japan;
| | - Masaaki Noguchi
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Japan; (T.M.); (H.N.); (H.T.); (H.I.-H.); (C.F.)
| |
Collapse
|
6
|
Mahayana NPK, Dwi Sutanegara NBASNJ, Mahardana MDP, Wihandani DM. In-silico study of rosmarinic acid roles in inhibiting breast cancer progression. Biomedicine (Taipei) 2025; 15:23-30. [PMID: 40176865 PMCID: PMC11959963 DOI: 10.37796/2211-8039.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 04/05/2025] Open
Abstract
Background Breast cancer is the highest cancer incidence in the world. Chemotherapy is currently one of the main breast cancer treatments besides surgery. It is capable of evolving to become resistant to chemotherapy agents. Chemotherapy also has significant side effects. Rosmarinic acid could become an anti-cancer agent candidate for the treatment of breast cancer, but its molecular mechanism is still unclear. Aim This study aimed to clarify the molecular mechanism of rosmarinic acid anti-breast cancer properties via an in-silico study. Methods Web-based screening tools such as SwissTargetPrediction, Similarity Ensemble Approach (SEA), and TargetNet were used as initial screening. From web-based screening, potential proteins that interact with rosmarinic acid could be determined. Intersected proteins from 3 web-based screenings were assessed via literature review. We found 11 intersected proteins, and 6 of 11 proteins are involved in breast cancer development and progression. Those 6 proteins are MMP-1, MMP-2, MMP-9, MMP-12, aldose reductase, and M-phase Inducer Phosphatase 2 (CDC25B). Then molecular docking using Autodock 4.6.2 was used in ligand and protein interaction simulation. Those 6 proteins were selected as macromolecules in the docking study. Results Based on the docking result, we found that rosmarinic acid can bind MMP-1, MMP2, MMP-9, and MMP-12 active sites. The binding profile of rosmarinic acid with aldose reductase has similarities with other confirmed inhibitors. Docking with CDC25B showed that rosmarinic acid also binds in the same place as cyclin-dependent kinases (CDKs). Conclusion The ability of rosmarinic acid to inhibit MMP-1, MMP-2, MMP-9, aldose reductase, and CDC25B activity may underlie how rosmarinic acid is able to inhibit the development of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Desak Made Wihandani
- Department of Biochemistry, Faculty of Medicine, Udayana University, Jl. PB. Sudirman, Denpasar, 80232, Bali,
Indonesia
| |
Collapse
|
7
|
Onea G, Ghahramani A, Wang X, Hassan HM, Bérubé NG, Schild-Poulter C. WDR26 depletion alters chromatin accessibility and gene expression profiles in mammalian cells. Genomics 2025; 117:111001. [PMID: 39837355 DOI: 10.1016/j.ygeno.2025.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
WD-repeat containing protein 26 (WDR26) is an essential component of the CTLH E3 ligase complex. Mutations in WDR26 lead to Skraban-Deardorff, an intellectual disability syndrome with clinical features resembling other disorders arising from defects in transcriptional regulation and chromatin structure. However, the role of WDR26 and its associated CTLH complex in regulating chromatin or transcription has not been elucidated. Here, we assessed how loss of WDR26 affects chromatin accessibility and gene expression. Transcriptome analysis of WDR26 knockout HeLa cells revealed over 2000 differentially expressed genes, while ATAC-Seq analysis showed over 32,000 differentially accessible chromatin regions, the majority mapping to intergenic and intronic regions and 13 % mapping to promoters. Above all, we found that WDR26 loss affected expression of genes regulated by AP-1 and NF-1 transcription factors and resulted in dramatic changes in their chromatin accessibility. Overall, our analyses implicate WDR26 and the CTLH complex in chromatin regulation.
Collapse
Affiliation(s)
- Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, Canada; Department of Biochemistry, University of Western Ontario, London, Canada
| | - Alireza Ghahramani
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada; Children's Health Research Institute, Division of Genetics & Development, London, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, Canada
| | - Haider M Hassan
- Robarts Research Institute, University of Western Ontario, London, Canada; Department of Oncology, University of Western Ontario, London, Canada
| | - Nathalie G Bérubé
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada; Children's Health Research Institute, Division of Genetics & Development, London, Canada; Department of Oncology, University of Western Ontario, London, Canada; Department of Paediatrics, University of Western Ontario, London, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, Canada; Department of Biochemistry, University of Western Ontario, London, Canada; Department of Oncology, University of Western Ontario, London, Canada.
| |
Collapse
|
8
|
Fernández-Castillejo S, Badia J, de la Cruz-Merino L, Martín Garcia-Sáncho A, Carnicero-González F, Palazón-Carrión N, Ríos-Herranz E, de la Cruz-Vicente F, Rueda-Domínguez A, Martínez-Banaclocha N, Gómez-Codina J, Labrador J, Martínez-Madueño F, Amigó N, Salar-Silvestre A, Rodríguez-Abreu D, Gálvez-Carvajal L, Sánchez-Beato M, Provencio-Pulla M, Guirado-Risueño M, Nogales E, Sánchez-Margalet V, Jiménez-Cortegana C, Rodríguez-García G, Cumeras R, Gumà J. Ketone Bodies Are Potential Prognostic Biomarkers in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Results from the R2-GDP-GOTEL Trial. Cancers (Basel) 2025; 17:532. [PMID: 39941898 PMCID: PMC11817199 DOI: 10.3390/cancers17030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) who are ineligible for high-dose chemotherapy have limited treatment options and poor life expectancy. The purpose of this study is to identify a serum metabolomic profile that may be predictive of outcome in patients with R/R-DLBCL. Methods: This study included 69 R/R DLBCL patients from the R2-GDP-GOTEL trial (EudraCT 2014-001620-299). Serum samples were collected at baseline, and the mean length of follow-up was 41 months. Serum metabolites were analyzed by nuclear magnetic resonance (NMR). Metabolites were correlated with treatment response, progression-free survival (PFS), and overall survival (OS). Results: Serum levels of 3-hydroxybutyrate (3OHB) and acetone were significantly (p < 0.001) associated with PFS (3OHB: hazard ratio [HR] 7.7, 95% confidence interval [CI] 2.5-24.1; acetone: HR 9.32, 95% CI 2.75-31.6) and OS (3OHB: HR 9.32, 95% CI 2.75-31.6; acetone: HR 1.92, 95% CI 1.36-2.69). Serum values of 141 µM for 3OHB and 40 µM for acetone were the optimal cutoffs associated with the survival outcomes. Elevated 3OHB levels (>141 μM) were specific to the ABC subtype of DLBCL, while acetone levels were elevated in both types of DLCBL but more pronounced in ABC cases. In a multivariate survival analysis, including the International Prognostic Index (IPI) score and refractoriness status (R/R), 3OHB and acetone remained significant. To aid oncologists employing the R2-GDP regime, we constructed PFS and OS nomograms for R/R-DLBCL risk stratification, incorporating 3OHB levels or acetone levels, IPI score, and refractoriness status. The nomogram with 3OHB and refractoriness status showed a time-dependent AUC of 0.86 for 6-month PFS and 0.84 for 12-month OS. These nomograms provide a comprehensive tool for individualized risk assessment and treatment optimization. Conclusions: The ketone bodies 3OHB and acetone are potential prognostic biomarkers of poor outcome in R/R DLBCL patients treated with the R2-GDP regimen, independently of IPI score and chemorefractoriness status.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
| | - Joan Badia
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
| | - Luís de la Cruz-Merino
- Cancer Immunotherapy Group, Oncohematology and Genetics Department, Biomedicine Institute of Seville (IBIS)/CSIC, 41013 Seville, Spain; (L.d.l.C.-M.); (N.P.-C.); (E.N.)
- Department of Clinical Oncology, University Hospital Virgen Macarena and School of Medicine, University of Sevilla, 41013 Sevilla, Spain
| | - Alejandro Martín Garcia-Sáncho
- Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, 37007 Salamanca, Spain;
- CIBER de Cáncer (CIBERONC), Institute of Health Carlos III, 28029 Madrid, Spain
| | | | - Natalia Palazón-Carrión
- Cancer Immunotherapy Group, Oncohematology and Genetics Department, Biomedicine Institute of Seville (IBIS)/CSIC, 41013 Seville, Spain; (L.d.l.C.-M.); (N.P.-C.); (E.N.)
- Department of Clinical Oncology, University Hospital Virgen Macarena and School of Medicine, University of Sevilla, 41013 Sevilla, Spain
| | - Eduardo Ríos-Herranz
- Department of Hematology, Hospital Universitario Virgen de Valme, 41014 Sevilla, Spain;
| | - Fátima de la Cruz-Vicente
- Department of Hematology, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain; (F.d.l.C.-V.); (G.R.-G.)
| | - Antonio Rueda-Domínguez
- Department of Clinical Oncology. Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.R.-D.); (L.G.-C.)
| | - Natividad Martínez-Banaclocha
- Department of Oncology, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
| | - José Gómez-Codina
- Department of Clinical Oncology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Jorge Labrador
- Department of Hematology, Hospital Universitario de Burgos, 09006 Burgos, Spain;
| | - Francisca Martínez-Madueño
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Tarragona, Spain;
| | - Núria Amigó
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Tarragona, Spain;
- Biosfer Teslab, 43206 Reus, Tarragona, Spain
| | | | - Delvys Rodríguez-Abreu
- Department of Clinical Oncology, Hospital Universitario Insular de Gran Canaria, 35016 Las Palmas de Gran Canaria, Las Palmas, Spain;
| | - Laura Gálvez-Carvajal
- Department of Clinical Oncology. Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.R.-D.); (L.G.-C.)
| | - Margarita Sánchez-Beato
- Lymphoma Research Group, Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, 28222 Majadahonda, Madrid, Spain;
| | - Mariano Provencio-Pulla
- Department of Clinical Oncology, Hospital Universitario Puerta De Hierro-Majadahonda, IDIPHISA, 28222 Majadahonda, Madrid, Spain;
| | - Maria Guirado-Risueño
- Department of Clinical Oncology, Hospital Universitario de Elche, 03203 Elche, Alicante, Spain;
| | - Esteban Nogales
- Cancer Immunotherapy Group, Oncohematology and Genetics Department, Biomedicine Institute of Seville (IBIS)/CSIC, 41013 Seville, Spain; (L.d.l.C.-M.); (N.P.-C.); (E.N.)
- Department of Clinical Oncology, University Hospital Virgen Macarena and School of Medicine, University of Sevilla, 41013 Sevilla, Spain
| | - Víctor Sánchez-Margalet
- Medical Biochemistry and Molecular Biology and Immunology, Hospital Universitario Virgen de la Macarena, 41009 Sevilla, Spain; (V.S.-M.); (C.J.-C.)
| | - Carlos Jiménez-Cortegana
- Medical Biochemistry and Molecular Biology and Immunology, Hospital Universitario Virgen de la Macarena, 41009 Sevilla, Spain; (V.S.-M.); (C.J.-C.)
| | - Guillermo Rodríguez-García
- Department of Hematology, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain; (F.d.l.C.-V.); (G.R.-G.)
| | - Raquel Cumeras
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Department of Electrical and Automatic Electronic Engineering, Universitat Rovira i Virgili (URV), 43002 Tarragona, Spain
| | - Josep Gumà
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Tarragona, Spain;
| |
Collapse
|
9
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Maccari R, Ottanà R. In Search for Inhibitors of Human Aldo-Keto Reductase 1B10 (AKR1B10) as Novel Agents to Fight Cancer and Chemoresistance: Current State-of-the-Art and Prospects. J Med Chem 2025; 68:860-885. [PMID: 39757466 DOI: 10.1021/acs.jmedchem.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is a human enzyme that catalyzes the NADPH-dependent reduction of several different carbonyl compounds to the corresponding alcohols. Under physiological conditions, AKR1B10 is expressed mainly in the gastrointestinal tract, where it can detoxify reactive carbonyl compounds derived from dietary sources and xenobiotics. AKR1B10 is highly expressed in several cancers and precancerous conditions, proving to be crucially implicated in carcinogenesis and to function as a prognostic indicator of tumor development. Moreover, AKR1B10 up-regulation is strictly related to acquired resistance to known anticancer drugs. High levels of this enzyme are also correlated to the pathogenesis of noncancerous diseases, such as skin pathologies and COVID-19 complications. Therefore, in the last two decades, AKR1B10 has attracted interest as a novel target for agents able to fight both cancer and chemoresistance, and here, it is explored from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31-98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
11
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Chen H, Lyu F, Gao X. Advances in ferroptosis for castration-resistant prostate cancer treatment: novel drug targets and combination therapy strategies. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00933-w. [PMID: 39733054 DOI: 10.1038/s41391-024-00933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC). SUBJECTS To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics. We then pay attention to ferroptosis effects on CRPC, and the relationship between ferroptosis and CRPC treatment. Finally, we'd like to figure out if ferroptosis could predict the prognosis of CRPC thus screening early for populations that may benefit from appropriate therapies. RESULTS The review demonstrated that ferroptosis regulators like PI3K/AKT/mTOR, DECR1 et al., have a significant role in the development of CRPC and that several inducers of ferroptosis, such as erastin, BSO, RSL3, and FIN56, have already demonstrated their effects in that area. What's more, ferroptosis is crucial for radiation-induced anticancer effects by inducing lipid peroxidation and regulating p53, AMPK, and others. Additionally, it has been discovered that certain GPX4 and SLC7A11 inhibitors can increase radiosensitivity, which brings new combination strategies. Finally, among the genes associated with ferroptosis, which may be excellent predictors of prostate cancer prognosis, several risk models have been developed and shown promising predictive capabilities. CONCLUSIONS Ferroptosis can serve as a potential therapeutic target for CRPC, and could be a new strategy for combination therapy. Moreover, ferroptosis-related genes may be great indicators of PCa prognosis. Further research on ferroptosis in CRPC therapy can benefit from the frameworks provided by this review.
Collapse
Affiliation(s)
- Huizhu Chen
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Xianshu Gao
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
13
|
Wu S, Luo L, Luo H, Qiao L, Chen H, Li M, Pei X, Xie T, Wang A, Sheldon RA. Combining Protein Phase Separation and Bio-orthogonal Linking to Coimmobilize Enzymes for Cascade Biocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404018. [PMID: 39133083 DOI: 10.1002/smll.202404018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Indexed: 08/13/2024]
Abstract
The designed and ordered co-immobilization of multiple enzymes for vectorial biocatalysis is challenging. Here, a combination of protein phase separation and bioorthogonal linking is used to generate a zeolitic imidazole framework (ZIF-8) containing co-immobilized enzymes. Zn2+ ions induce the clustering of minimal protein modules, such as 6-His tag, proline-rich motif (PRM) and SRC homology 3 (SH3) domains, and allow for phase separation of the coupled aldoketoreductase (AKR) and alcohol dehydrogenase (ADH) at low concentrations. This is achieved by fusing SpyCatcher and PRM-SH3-6His peptide fragments to the C and N termini of AKR, respectively, and the SpyTag to ADH. Addition of 2-methylimidazole results in droplet formation and enables in situ spatial embedding the recombinant AKR and ADH to generate the cascade biocalysis system encapsulated in ZIF-8 (AAE@ZIF). In synthesizing (S)-1-(2-chlorophenyl) ethanol, ater 6 cycles, the yield can still reach 91%, with 99.99% enantiomeric excess (ee) value for each cycle. However, the yield could only reach 72.9% when traditionally encapsulated AKR and ADH in ZIF-8 are used. Thus, this work demonstrates that a combination of protein phase separation and bio-orthogonal linking enables the in situ creation of a stable and spatially organized bi-enzyme system with enhanced channeling effects in ZIF-8.
Collapse
Affiliation(s)
- Shujiao Wu
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Lingling Luo
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Houtian Luo
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Li Qiao
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Haomin Chen
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Mijun Li
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Xiaolin Pei
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Anming Wang
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits. 2050, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
14
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
15
|
Jonnalagadda SK, Duan L, Dow LF, Boligala GP, Kosmacek E, McCoy K, Oberley-Deegan R, Chhonker YS, Murry DJ, Reynolds CP, Maurer BJ, Penning TM, Trippier PC. Coumarin-Based Aldo-Keto Reductase Family 1C (AKR1C) 2 and 3 Inhibitors. ChemMedChem 2024; 19:e202400081. [PMID: 38976686 PMCID: PMC11537819 DOI: 10.1002/cmdc.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition. Coumarin amide 3 a possessed IC50 values of 50 nM and 90 nM for AKR1C3 and AKR1C2, respectively, and exhibits 'drug-like' metabolic stability and half-life in human and mouse liver microsomes and plasma. Compound 3 a was employed as a chemical tool to determine pan-AKR1C2/3 inhibition effects both as a radiation sensitizer and as a potentiator of chemotherapy cytotoxicity. In contrast to previously reported pan-AKR1C inhibitors, 3 a demonstrated no radiation sensitization effect in a radiation-resistant prostate cancer cell line model. Pan-AKR1C inhibition also did not potentiate the in vitro cytotoxicity of ABT-737, daunorubicin or dexamethasone, in two patient-derived T-cell ALL and pre-B-cell ALL cell lines. In contrast, a highly selective AKR1C3 inhibitor, compound K90, enhanced the cytotoxicity of both ABT-737 and daunorubicin in the T-cell ALL cell line model. Thus, the inhibitory profile required to enhance chemotherapeutic cytotoxicity in leukemia may be AKR1C isoform and drug specific.
Collapse
Affiliation(s)
- Sravan K. Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Louise F. Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Geetha P Boligala
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Elizabeth Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Kristyn McCoy
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Rebecca Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Darryl J. Murry
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - C. Patrick Reynolds
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Barry J. Maurer
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
16
|
Tenjović B, Bekić S, Ćelić A, Petri E, Scholda J, Kopp F, Sakač M, Nikolić A. Synthesis and biological evaluation of novel D-ring fused steroidal N(2)-substituted-1,2,3-triazoles. RSC Med Chem 2024; 16:d4md00297k. [PMID: 39430955 PMCID: PMC11488686 DOI: 10.1039/d4md00297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
In this study, a series of 13 new D-ring fused steroidal N(2)-substituted-1,2,3-triazoles were synthesized, characterized and evaluated for their biological activities. The relative binding affinities of the synthesized compounds for the ligand-binding domains of estrogen receptors α and β, androgen receptor and glucocorticoid receptor demonstrated that androstane derivatives 3a and 3h and estratriene derivative 4e showed highly specific and strong binding affinity for estrogen receptor β, while 3b, 3e, 4a and 4b displayed high binding affinity for the glucocorticoid receptor. The synthesized compounds were tested for their ability to inhibit aldo-keto reductases 1C3 and 1C4 in vitro by monitoring NADPH consumption using fluorescence spectroscopy. The most potent aldo-keto reductase 1C3 inhibitors were compounds 3h (71.17%) and 3f (69.9%). Moreover, a molecular docking study was carried out for compounds 3f and 3h against aldo-keto reductase 1C3 and results showed that compounds 3h and 3f could bind in the same site and orientation as EM1404. However, polar atoms in the triazole group enable additional hydrogen bonding deeper in SP1 with Tyr319, Tyr216 and the NADP+ cofactor, which are not visible in the AKR1C3-EM1404 crystal structure. The synthesized compounds were screened for their anticancer activity against four cancer cell lines. Compound 3f demonstrated moderate toxic effects across various cancer types, while displaying lower toxicity towards the healthy cell line. In summary, our findings indicate that N(2)-substituted-1,2,3-triazoles are high-affinity ligands for estrogen receptor β and glucocorticoid receptor, inhibitors of aldo-keto reductase 1C3 enzyme, and exhibit antiproliferative effects against cancer cells, suggesting that they could serve as scaffolds for anticancer drug development.
Collapse
Affiliation(s)
- Branislava Tenjović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Sofija Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Andjelka Ćelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 2 21000 Novi Sad Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 2 21000 Novi Sad Serbia
| | - Julia Scholda
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria
| | - Florian Kopp
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria
| | - Marija Sakač
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Andrea Nikolić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| |
Collapse
|
17
|
Arulanandu AM, Kalimuthu V, Manimegalai SC, Venkatesan R, Krishnamoorthy SP, Abdulkader AM, Balamuthu K. Association of Atrazine-Induced Overexpression of Aldo-Keto-Reductase 1C2 (AKR1C2) with Hypoandrogenism and Infertility: An Experimental Study in Male Wistar Rat. Reprod Sci 2024; 31:3228-3239. [PMID: 38943029 DOI: 10.1007/s43032-024-01627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Atrazine (ATZ, C8H14ClN5) is a widely used synthetic herbicide that contaminates drinking water. It is a known endocrine disruptor that disrupts various molecular pathways involved in hormone signaling, and DNA damage, and can cause reproductive disorders, including decreased fertility, and abnormal development of reproductive organs, as revealed in animal model studies. However, the effect of ATZ on steroidogenesis in the male reproductive system, especially reduction of ketosteroids to hydroxysteroids, remains unclear. This study investigated the toxicity of ATZ on the male reproductive system in the Wistar rat model, with an emphasis on its adverse effect on aldo-ketoreductase family 1 member C2 (AKR1C2). Male Wistar rats were administered ATZ for 56 days (duration of one spermatogenic cycle) through oral route, at 20, 40 and 60 mg/kg body weight (bw) doses. The results indicate that ATZ exposure affects the body weight, impairs sperm production, and decrease FSH, LH, and testosterone levels. Additionally, the down-regulation of key steroidogenic enzymes by ATZ disrupted the synthesis of testosterone, leading to decreased levels of this essential male hormone. On the other hand, the expression of AKR1C2 (mRNA and protein) in the testis was upregulated. The findings suggest that AKR1C2 plays a role in androgen metabolism. Furthermore, its overexpression may lead to alteration in the expression of genes in the connected pathway, causing an increase in the breakdown or inactivation of androgens, which would result in lower androgen levels and, thereby, lead to hypoandrogenism, as the combined effects of down-regulation of steroidogenic genes and up-regulation of AKR1C2. These findings reveal direct implication of disrupted AKR1C2 in male reproductive health and highlight the need for further research on the impact of environmental toxins on human fertility, ultimately providing for better patient care.
Collapse
Affiliation(s)
- Angel Mary Arulanandu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Vignesh Kalimuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | - Ramya Venkatesan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | - Akbarsha Mohammad Abdulkader
- Research Coordinator & Department of Biotechnology, Bioinformatics and Microbiology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| | - Kadalmani Balamuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
18
|
Nie M, Li T, Liu P, Wang X. Therapeutic potential of targeting AKR1C2 in the treatment of prostate cancer. Mol Biol Rep 2024; 51:994. [PMID: 39292292 DOI: 10.1007/s11033-024-09917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Prostate cancer development and progression are driven by androgens, and changes in androgen metabolic pathways can lead to prostate cancer progression or remission. AKR1C2 is a member of the aldo-keto reductase superfamily and plays an important role in the metabolism of steroids and prostaglandins. Alterations in the expression and activity of AKR1C2 affect the homeostasis of active androgens, which in turn affects the progression of prostate cancer. AKR1C2 reduces the highly active dihydrotestosterone to the less active 3α-diol in the prostate, resulting in lower androgen levels. Whereas the expression of AKR1C2 is significantly reduced in prostate cancer tissues relative to normal prostate tissues, this results in a weakening of the dihydrotestosterone metabolic inactivation pathway, leading to the retention of dihydrotestosterone in the prostate cancer cells, which promotes the progress of prostate cancer. Given the critical role of AKR1C2 in prostate cancer cells, targeting AKR1C2 for the treatment of prostate cancer may be an effective strategy. It has been demonstrated that curcumin and neem leaf extract effectively inhibit prostate cancer in vitro and in vivo by modulating AKR1C2.
Collapse
Affiliation(s)
- Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China
- Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China
| | - Tian Li
- School of Basic Medical Science, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China
| | - Peng Liu
- School of Basic Medical Science, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
- Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| |
Collapse
|
19
|
Suvilesh KN, Manjunath Y, Nussbaum YI, Gadelkarim M, Raju M, Srivastava A, Li G, Warren WC, Shyu CR, Gao F, Ciorba MA, Mitchem JB, Rachagani S, Kaifi JT. Targeting AKR1B10 by Drug Repurposing with Epalrestat Overcomes Chemoresistance in Non-Small Cell Lung Cancer Patient-Derived Tumor Organoids. Clin Cancer Res 2024; 30:3855-3867. [PMID: 39017606 PMCID: PMC11369614 DOI: 10.1158/1078-0432.ccr-23-3980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Systemic treatments given to patients with non-small cell lung cancer (NSCLC) are often ineffective due to drug resistance. In the present study, we investigated patient-derived tumor organoids (PDTO) and matched tumor tissues from surgically treated patients with NSCLC to identify drug repurposing targets to overcome resistance toward standard-of-care platinum-based doublet chemotherapy. EXPERIMENTAL DESIGN PDTOs were established from 10 prospectively enrolled patients with non-metastatic NSCLC from resected tumors. PDTOs were compared with matched tumor tissues by histopathology/immunohistochemistry, whole exome sequencing, and transcriptome sequencing. PDTO growths and drug responses were determined by measuring 3D tumoroid volumes, cell viability, and proliferation/apoptosis. Differential gene expression analysis identified drug-repurposing targets. Validations were performed with internal/external data sets of patients with NSCLC. NSCLC cell lines were used for aldo-keto reductase 1B10 (AKR1B10) knockdown studies and xenograft models to determine the intratumoral bioavailability of epalrestat. RESULTS PDTOs retained histomorphology and pathological biomarker expression, mutational/transcriptomic signatures, and cellular heterogeneity of the matched tumor tissues. Five (50%) PDTOs were chemoresistant toward carboplatin/paclitaxel. Chemoresistant PDTOs and matched tumor tissues demonstrated overexpression of AKR1B10. Epalrestat, an orally available AKR1B10 inhibitor in clinical use for diabetic polyneuropathy, was repurposed to overcome chemoresistance of PDTOs. In vivo efficacy of epalrestat to overcome drug resistance corresponded to intratumoral epalrestat levels. CONCLUSIONS PDTOs are efficient preclinical models recapitulating the tumor characteristics and are suitable for drug testing. AKR1B10 can be targeted by repurposing epalrestat to overcome chemoresistance in NSCLC. Epalrestat has the potential to advance to clinical trials in patients with drug-resistant NSCLC due to favorable toxicity, pharmacological profile, and bioavailability.
Collapse
Affiliation(s)
- Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, Missouri.
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri.
| | - Yariswamy Manjunath
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, Missouri.
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri.
| | - Yulia I. Nussbaum
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri.
| | - Mohamed Gadelkarim
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, Missouri.
| | - Murugesan Raju
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri.
| | - Akhil Srivastava
- Department of Pathological and Anatomical Sciences, University of Missouri, Columbia, Missouri.
| | - Guangfu Li
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, Missouri.
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri.
- Siteman Cancer Center, Washington University, St. Louis, Missouri.
| | - Wesley C. Warren
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, Missouri.
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri.
| | - Chi-Ren Shyu
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri.
| | - Feng Gao
- Siteman Cancer Center, Washington University, St. Louis, Missouri.
- Division of Public Health Sciences, Washington University, St. Louis, Missouri.
| | - Matthew A. Ciorba
- Siteman Cancer Center, Washington University, St. Louis, Missouri.
- Division of Gastroenterology, Institute of Clinical and Translational Sciences, Washington University, St. Louis, Missouri.
| | - Jonathan B. Mitchem
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio.
- VA Northeast Ohio Health Care, Cleveland, Ohio.
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, Missouri.
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, Missouri.
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri.
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri.
- Siteman Cancer Center, Washington University, St. Louis, Missouri.
| |
Collapse
|
20
|
Basu T, Upadhyay AK. In silico study of novel alpha tocopheroids as effective inhibitors of aldo-keto reductase 1c3 (AKR1C3) enzyme. J Biomol Struct Dyn 2024; 42:7715-7729. [PMID: 37534497 DOI: 10.1080/07391102.2023.2241543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a monomeric enzyme expressed in steroidogenic tissues such as the testis, prostate, uterus, and breast. Overexpression of this AKR1C3 is associated with vast cancers such as breast, colon, colorectal, endometrial, prostate, and acute myeloid leukaemia. Regarding the treatment of castration-resistant prostate cancer, breast cancer, and acute myeloid leukaemia, AKR1C3 inhibitors may offer clear advantages over currently available therapies. Thus, discovering novel and specific AKR1C3 inhibitors is a promising way to obstruct drug resistance in cancer. Derivatives of alpha-tocopherol and alpha-tocopheroids were selected as possible therapeutics to act as AKR1C3 inhibitors. The precise targets of several ligands were determined using computational screening methods. The molecular structure of AKR1C3 and its ligands were used as the foundation for in silico predictions, modelling, and dynamic simulations. Compounds were selected based on their biological properties and filtered according to their ADMET and drug-likeness properties. Additionally, simulations of all-atom molecular dynamics on AKR1C3 with the cleared compounds revealed stability over the simulated trajectories of 100 ns. When seen collectively, alpha-tocospiro A may be considered prospective AKR1C3 inhibitors for creating anticancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanmayee Basu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
21
|
Janković ÐD, Šestić TL, Bekić SS, Savić MP, Ćelić AS, Scholda J, Kopp F, Marinović MA, Petri ET, Ajduković JJ. Development of new steroid-based hydrazide and (thio)semicarbazone compounds with anticancer properties. J Steroid Biochem Mol Biol 2024; 242:106545. [PMID: 38762058 DOI: 10.1016/j.jsbmb.2024.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor β, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured in vitro. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.
Collapse
Affiliation(s)
- Ðorđe D Janković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Tijana Lj Šestić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Sofija S Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia.
| | - Andjelka S Ćelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad 21000, Serbia
| | - Julia Scholda
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Florian Kopp
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| | - Maja A Marinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad 21000, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad 21000, Serbia
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| |
Collapse
|
22
|
Wang L, Lv C, Liu X. AKR1C4 regulates the sensitivity of colorectal cancer cells to chemotherapy through ferroptosis modulation. Cancer Chemother Pharmacol 2024; 94:373-385. [PMID: 38890190 DOI: 10.1007/s00280-024-04685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains a major global health concern, necessitating innovative therapeutic strategies to enhance treatment efficacy. In this study, we investigated the role of AKR1C4 in CRC and its impact on chemotherapy response. METHODS AKR1C4 stable knockout CRC cell lines were generated using CRISPR/Cas9 technology. The impact of AKR1C4 depletion on chemotherapy sensitivity was assessed using Sulforhodamine B assay. Long-term, low-dose drug induction with increasing concentrations of 5FU, irinotecan, and oxaliplatin were employed to establish acquired chemoresistant CRC cell lines. Ferroptosis induction and inhibition were examined through total iron content and lipid peroxidation measurements. RESULTS We found that AKR1C4 knockout enhances CRC cell sensitivity to chemotherapy, specifically by inducing ferroptosis. The enzymatic activity of AKR1C4 is crucial for regulating chemotherapy sensitivity in CRC cells, as evidenced by the inability of a Y55A mutant to reverse the sensitizing effect. Additionally, AKR1C4 inhibitors enhance chemotherapy sensitivity by inducing ferroptosis. Notably, AKR1C4 depletion resensitizes the acquired chemoresistant CRC cells to chemotherapy, suggesting its potential as a therapeutic target for overcoming acquired chemoresistance. Clinical analysis reveals that high AKR1C4 expression is associated with poor prognosis in CRC patients undergoing chemotherapy, highlighting its significance as a prognostic marker and a potential target for therapeutic intervention. CONCLUSION This study illuminates the multifaceted role of AKR1C4 in CRC, demonstrating its significance in regulating chemotherapy sensitivity, overcoming acquired resistance, and impacting clinical outcomes. The insights provided may pave the way for novel therapeutic strategies in CRC management.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Cuiling Lv
- Department of Gastroenterology, Qixia City People's Hospital, Qixia, Shandong, China
| | - Xiaoxia Liu
- Department of Gastroenterology, Qixia City People's Hospital, Qixia, Shandong, China.
| |
Collapse
|
23
|
Jézéquel P, Lasla H, Gouraud W, Basseville A, Michel B, Frenel JS, Juin PP, Ben Azzouz F, Campone M. Mesenchymal-like immune-altered is the fourth robust triple-negative breast cancer molecular subtype. Breast Cancer 2024; 31:825-840. [PMID: 38777987 DOI: 10.1007/s12282-024-01597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Robust molecular subtyping of triple-negative breast cancer (TNBC) is a prerequisite for the success of precision medicine. Today, there is a clear consensus on three TNBC molecular subtypes: luminal androgen receptor (LAR), basal-like immune-activated (BLIA), and basal-like immune-suppressed (BLIS). However, the debate about the robustness of other subtypes is still open. METHODS An unprecedented number (n = 1942) of TNBC patient data was collected. Microarray- and RNAseq-based cohorts were independently investigated. Unsupervised analyses were conducted using k-means consensus clustering. Clusters of patients were then functionally annotated using different approaches. Prediction of response to chemotherapy and targeted therapies, immune checkpoint blockade, and radiotherapy were also screened for each TNBC subtype. RESULTS Four TNBC subtypes were identified in the cohort: LAR (19.36%); mesenchymal stem-like (MSL/MES) (17.35%); BLIA (31.06%); and BLIS (32.23%). Regarding the MSL/MES subtype, we suggest renaming it to mesenchymal-like immune-altered (MLIA) to emphasize its specific histological background and nature of immune response. Treatment response prediction results show, among other things, that despite immune activation, immune checkpoint blockade is probably less or completely ineffective in MLIA, possibly caused by mesenchymal background and/or an enrichment in dysfunctional cytotoxic T lymphocytes. TNBC subtyping results were included in the bc-GenExMiner v5.0 webtool ( http://bcgenex.ico.unicancer.fr ). CONCLUSION The mesenchymal TNBC subtype is characterized by an exhausted and altered immune response, and resistance to immune checkpoint inhibitors. Consensus for molecular classification of TNBC subtyping and prediction of cancer treatment responses helps usher in the era of precision medicine for TNBC patients.
Collapse
Affiliation(s)
- Pascal Jézéquel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France.
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France.
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France.
| | - Hamza Lasla
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Wilfried Gouraud
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Agnès Basseville
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Bertrand Michel
- Nantes Université, École Centrale Nantes, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, 44000, Nantes, France
| | - Jean-Sébastien Frenel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | - Philippe P Juin
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
- Université d'Angers, 49000, Angers, France
| |
Collapse
|
24
|
Liu W, Li G, Huang D, Qin T. AKR1C3 promotes progression and mediates therapeutic resistance by inducing epithelial-mesenchymal transition and angiogenesis in small cell lung cancer. Transl Oncol 2024; 47:102027. [PMID: 38954974 PMCID: PMC11263718 DOI: 10.1016/j.tranon.2024.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE Small cell lung cancer (SCLC) is a high-grade neuroendocrine tumor characterized by initial sensitivity to chemotherapy, followed by the development of drug resistance. The underlying mechanisms of resistance in SCLC have not been fully elucidated. Aldo-keto reductase family 1 member C3 (AKR1C3), is known to be associated with chemoradiotherapy resistance in diverse tumors. We aim to evaluate the prognostic significance and immune characteristics of AKR1C3 and investigate its potential role in promoting drug resistance in SCLC. METHODS 81 postoperative SCLC tissues were used to analyze AKR1C3 prognostic value and immune features. The tissue microarrays were employed to validate the clinical significance of AKR1C3 in SCLC. The effects of AKR1C3 on SCLC cell proliferation, migration, apoptosis and tumor angiogenesis were detected by CCK-8, wound healing assay, transwell assay, flow cytometry and tube formation assay. RESULTS AKR1C3 demonstrated the highest expression level compared to other AKR1C family genes, and multivariate cox regression analysis identified it as an independent prognostic factor for SCLC. High AKR1C3 expression patients who underwent chemoradiotherapy experienced significantly shorter overall survival (OS). Furthermore, AKR1C3 was involved in the regulation of the tumor immune microenvironment in SCLC. Silencing of AKR1C3 led to the inhibition of cell proliferation and migration, while simultaneously promoting apoptosis and reducing epithelial-mesenchymal transition (EMT) in SCLC. CONCLUSION AKR1C3 promotes cell growth and metastasis, leading to drug resistance through inducing EMT and angiogenesis in SCLC.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guoli Li
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Tingting Qin
- Department of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
25
|
Ziogas M, Siefer O, Wuerdemann N, Balaji H, Gross E, Drebber U, Klussmann JP, Huebbers CU. Analysis of Expression and Regulation of AKR1C2 in HPV-Positive and -Negative Oropharyngeal Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:2976. [PMID: 39272833 PMCID: PMC11394552 DOI: 10.3390/cancers16172976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC), particularly Oropharyngeal Squamous Cell Carcinoma (OPSCC), is a major global health challenge due to its increasing incidence and high mortality rate. This study investigates the role of aldo-keto reductase 1C2 (AKR1C2) in OPSCC, focusing on its expression, correlation with Human Papillomavirus (HPV) status, oxidative stress status, and clinical outcomes, with an emphasis on sex-specific differences. We analyzed AKR1C2 expression using immunohistochemistry in formalin-fixed, paraffin-embedded tissue samples from 51 OPSCC patients. Additionally, we performed RT-qPCR in cultured HPV16-E6*I and HPV16-E6 overexpressing HEK293 cell lines (p53WT). Statistical analyses were performed to assess the correlation between AKR1C2 expression and patient data. Our results indicate a significant association between increased AKR1C2 expression and higher AJCC classification (p = 0.009) as well as positive HPV status (p = 0.008). Prognostic implications of AKR1C2 varied by sex, whereby female patients with high AKR1C2 expression had better overall survival, whereas male patients exhibited poorer outcomes. Additionally, AKR1C2 expression was linked to HPV status, suggesting a potential HPV-specific regulatory mechanism. These findings underscore the complex interplay among AKR1C2, HPV, and patient sex, highlighting the need for personalized treatment strategies for OPSCC. Targeted inhibition of AKR1C2, considering sex-specific differences, may enhance therapeutic outcomes. Future research should investigate these mechanisms to enhance treatment efficacy.
Collapse
Affiliation(s)
- Maria Ziogas
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany
- Molecular Head and Neck Oncology, Translational Research in Infectious Diseases and Oncology (TRIO) Research Building, University Hospital of Cologne, 50937 Cologne, Germany
| | - Oliver Siefer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany
- Molecular Head and Neck Oncology, Translational Research in Infectious Diseases and Oncology (TRIO) Research Building, University Hospital of Cologne, 50937 Cologne, Germany
| | - Nora Wuerdemann
- Department of Internal Medicine, Faculty of Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany
| | - Harini Balaji
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany
- Molecular Head and Neck Oncology, Translational Research in Infectious Diseases and Oncology (TRIO) Research Building, University Hospital of Cologne, 50937 Cologne, Germany
| | - Elena Gross
- Department of Neurology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Uta Drebber
- Institute for Pathology, University Hospital of Cologne, 50937 Cologne, Germany
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany
- Molecular Head and Neck Oncology, Translational Research in Infectious Diseases and Oncology (TRIO) Research Building, University Hospital of Cologne, 50937 Cologne, Germany
| | - Christian U Huebbers
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, 50937 Cologne, Germany
- Molecular Head and Neck Oncology, Translational Research in Infectious Diseases and Oncology (TRIO) Research Building, University Hospital of Cologne, 50937 Cologne, Germany
| |
Collapse
|
26
|
Pippione A, Vigato C, Tucciarello C, Hussain S, Salladini E, Truong HH, Henriksen NM, Vanzetti G, Giordano G, Zonari D, Mirza OA, Frydenvang K, Pignochino Y, Oliaro-Bosso S, Boschi D, Lolli ML. AI Based Discovery of a New AKR1C3 Inhibitor for Anticancer Applications. ACS Med Chem Lett 2024; 15:1269-1278. [PMID: 39140045 PMCID: PMC11318022 DOI: 10.1021/acsmedchemlett.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 08/15/2024] Open
Abstract
AKR1C3 is an upregulated enzyme in prostate and other cancers; in addition to regulating hormone synthesis, this enzyme is thought to play a role in the aggressiveness of tumors and in the defense against drugs. We here used an unbiased method to discover new potent AKR1C3 inhibitors: through an AI-based virtual drug screen, compound 4 was identified as a potent and selective enzymatic inhibitor able to translate this activity into a pronounced antiproliferative effect in the 22RV1 prostate cancer cell model. As other known AKR1C3 inhibitors, compound 4 determined a significantly increased activity of abiraterone, a drug approved for advanced prostate cancer. Compound 4 also showed a synergic effect with doxorubicin in osteosarcoma cell lines; specifically, the effect is correlated with AKR1C3 expression. In this research work, therefore, the use of AI allowed the identification of a new structure as an AKR1C3 inhibitor and its potential to enhance the effect of chemotherapeutics.
Collapse
Affiliation(s)
- Agnese
C. Pippione
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Chiara Vigato
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Cristina Tucciarello
- Candiolo
Cancer Institute, FPO-IRCCS, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Samrina Hussain
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Jagtvej 162 DK-2100 Copenhagen, Denmark
| | - Edoardo Salladini
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Ha H. Truong
- Atomwise,
Inc, 250 Sutter St, Suite 650, San Francisco, California 94103, United States
| | - Niel M. Henriksen
- Atomwise,
Inc, 250 Sutter St, Suite 650, San Francisco, California 94103, United States
| | - Gaia Vanzetti
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Giorgia Giordano
- Candiolo
Cancer Institute, FPO-IRCCS, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
- Department
of Oncology, University of Turin, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
| | - Daniele Zonari
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Osman Asghar Mirza
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Jagtvej 162 DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Jagtvej 162 DK-2100 Copenhagen, Denmark
| | - Ymera Pignochino
- Candiolo
Cancer Institute, FPO-IRCCS, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Simonetta Oliaro-Bosso
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Boschi
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Marco L. Lolli
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
27
|
Andress Huacachino A, Joo J, Narayanan N, Tehim A, Himes BE, Penning TM. Aldo-keto reductase (AKR) superfamily website and database: An update. Chem Biol Interact 2024; 398:111111. [PMID: 38878851 PMCID: PMC11232437 DOI: 10.1016/j.cbi.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared features of the family include 1) structural similarities such as an (α/β)8-barrel structure, disordered loop structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family membership is that the protein must have a measured function, and thus, genomic sequences suggesting the transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the member to be communicated easily. Specifically, protein names include the root "AKR", followed by the family represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we present an updated version of the website and database that were released in 2023. The database contains genetic, functional, and structural data drawn from various sources, while the website provides alignment information and family tree structure derived from bioinformatics analyses.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Nisha Narayanan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Anisha Tehim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA.
| |
Collapse
|
28
|
Štěrbová K, Raisová Stuchlíková L, Rychlá N, Kohoutová K, Babičková M, Skálová L, Matoušková P. Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole. Int J Parasitol Drugs Drug Resist 2024; 25:100555. [PMID: 38996597 PMCID: PMC11296255 DOI: 10.1016/j.ijpddr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.
Collapse
Affiliation(s)
- Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Kateřina Kohoutová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Markéta Babičková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic.
| |
Collapse
|
29
|
NAGINI SIDDAVARAM, KALLAMADI PRATHAPREDDY, TANAGALA KRANTHIKIRANKISHORE, REDDY GEEREDDYBHANUPRAKASH. Aldo-keto reductases: Role in cancer development and theranostics. Oncol Res 2024; 32:1287-1308. [PMID: 39055885 PMCID: PMC11267078 DOI: 10.32604/or.2024.049918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aldo-keto reductases (AKRs) are a superfamily of enzymes that play crucial roles in various cellular processes, including the metabolism of xenobiotics, steroids, and carbohydrates. A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers. AKRs are aberrantly expressed in a wide range of malignant tumors. Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance. AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression. Inhibition of aldose reductase (AR), either alone or in combination with chemotherapeutic drugs, has evolved as a pragmatic therapeutic option for cancer. Several classes of synthetic aldo-keto reductase (AKR) inhibitors have been developed as potential anticancer agents, some of which have shown promise in clinical trials. Many AKR inhibitors from natural sources also exhibit anticancer effects. Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies. These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy. In this review, we discuss the physiological functions of human AKRs, the aberrant expression of AKRs in malignancies, the involvement of AKRs in the acquisition of cancer hallmarks, and the role of AKRs in oncogenic signaling, and drug resistance. Finally, the potential of aldose reductase inhibitors (ARIs) as anticancer drugs is summarized.
Collapse
|
30
|
Huh DA, Choi YH, Kim L, Park K, Lee J, Hwang SH, Moon KW, Kang MS, Lee YJ. Air pollution and survival in patients with malignant mesothelioma and asbestos-related lung cancer: a follow-up study of 1591 patients in South Korea. Environ Health 2024; 23:56. [PMID: 38858710 PMCID: PMC11163745 DOI: 10.1186/s12940-024-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Despite significant advancements in treatments such as surgery, radiotherapy, and chemotherapy, the survival rate for patients with asbestos-related cancers remains low. Numerous studies have provided evidence suggesting that air pollution induces oxidative stress and inflammation, affecting acute respiratory diseases, lung cancer, and overall mortality. However, because of the high case fatality rate, there is limited knowledge regarding the effects of air pollution exposures on survival following a diagnosis of asbestos-related cancers. This study aimed to determine the effect of air pollution on the survival of patients with malignant mesothelioma and asbestos-related lung cancer. METHODS We followed up with 593 patients with malignant mesothelioma and 998 patients with lung cancer identified as asbestos victims between 2009 and 2022. Data on five air pollutants-sulfur dioxide, carbon monoxide, nitrogen dioxide, fine particulate matter with a diameter < 10 μm, and fine particulate matter with a diameter < 2.5 μm-were obtained from nationwide atmospheric monitoring stations. Cox proportional hazard models were used to estimate the association of cumulative air pollutant exposure with patient mortality, while adjusting for potential confounders. Quantile-based g-computation was used to assess the combined effect of the air pollutant mixture on mortality. RESULTS The 1-, 3-, and 5-year survival rates for both cancer types decreased with increasing exposure to all air pollutants. The estimated hazard ratios rose significantly with a 1-standard deviation increase in each pollutant exposure level. A quartile increase in the pollutant mixture was associated with a 1.99-fold increase in the risk of malignant mesothelioma-related mortality (95% confidence interval: 1.62, 2.44). For lung cancer, a quartile increase in the pollutant mixture triggered a 1.87-fold increase in the mortality risk (95% confidence interval: 1.53, 2.30). CONCLUSION These findings support the hypothesis that air pollution exposure after an asbestos-related cancer diagnosis can negatively affect patient survival.
Collapse
Affiliation(s)
- Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea.
| | - Yun-Hee Choi
- Department of Ophthalmology, Korea University College of Medicine, Anam-ro 145, Seongbuk- gu, Seoul, 02841, South Korea
| | - Lita Kim
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kangyeon Park
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jiyoun Lee
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Se Hyun Hwang
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kyong Whan Moon
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Min-Sung Kang
- Environmental Health Center for Asbestos, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si, 31151, South Korea.
| | - Yong-Jin Lee
- Environmental Health Center for Asbestos, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si, 31151, South Korea
- Department of Occupational & Environmental Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si, 31151, South Korea
| |
Collapse
|
31
|
Shanbhag AP, Bhowmik P. Cancer to Cataracts: The Mechanistic Impact of Aldo-Keto Reductases in Chronic Diseases. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:179-204. [PMID: 38947111 PMCID: PMC11202113 DOI: 10.59249/vtbv6559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Aldo-keto reductases (AKRs) are a superfamily of promiscuous enzymes that have been chiseled by evolution to act as catalysts for numerous regulatory pathways in humans. However, they have not lost their promiscuity in the process, essentially making them a double-edged sword. The superfamily is involved in multiple metabolic pathways and are linked to chronic diseases such as cataracts, diabetes, and various cancers. Unlike other detoxifying enzymes such as cytochrome P450s (CYP450s), short-chain dehydrogenases (SDRs), and medium-chain dehydrogenases (MDRs), that participate in essential pathways, AKRs are more widely distributed and have members with interchangeable functions. Moreover, their promiscuity is ubiquitous across all species and participates in the resistance of pathogenic microbes. Moreover, the introduction of synthetic substrates, such as synthetic molecules and processed foods, results in unwanted "toxification" due to enzyme promiscuity, leading to chronic diseases.
Collapse
Affiliation(s)
- Anirudh P. Shanbhag
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Novartis Healthcare Pvt. Ltd., Hyderabad, Telangana,
India
| | - Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Centre for Cellular and Molecular Platforms (C-CAMP),
National Centre for Biological Sciences (NCBS), Bengaluru, Karnataka,
India
| |
Collapse
|
32
|
Haider S, Chakraborty S, Chowdhury G, Chakrabarty A. Opposing Interplay between Nuclear Factor Erythroid 2-Related Factor 2 and Forkhead BoxO 1/3 is Responsible for Sepantronium Bromide's Poor Efficacy and Resistance in Cancer cells: Opportunity for Combination Therapy in Triple Negative Breast Cancer. ACS Pharmacol Transl Sci 2024; 7:1237-1251. [PMID: 38751638 PMCID: PMC11091984 DOI: 10.1021/acsptsci.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Survivin, a cancer-cell-specific multifunctional protein, is regulated by many oncogenic signaling pathways and an effective therapeutic target. Although, several types of survivin-targeting agents have been developed over the past few decades, none of them received clinical approval. This could be because survivin expression is tightly controlled by the feedback interaction between different signaling molecules. Of the several signaling pathways that are known to regulate survivin expression, the phosphatidylinositol 3-kinase/AKT serine-threonine kinase/forkhead boxO (PI3K/AKT/FoxO) pathway is well-known for feedback loops constructed by cross-talk among different molecules. Using sepantronium bromide (YM155), the first of its class of survivin-suppressant, we uncovered the existence of an interesting cross-talk between Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) and FoxO transcription factors that also contributes to YM155 resistance in triple negative breast cancer (TNBC) cells. Pharmacological manipulation to interrupt this interaction not only helped restore/enhance the drug-sensitivity but also prompted effective immune clearance of cancer cells. Because the YM155-induced reactive oxygen species (ROS) initiates this feedback, we believe that it will be occurring for many ROS-producing chemotherapeutic agents. Our work provides a rational explanation for the poor efficacy of YM155 compared to standard chemotherapy in clinical trials. Finally, the triple drug combination approach used herein might help reintroducing YM155 into the clinical pipeline, and given the high survivin expression in TNBC cells in general, it could be effective in treating this subtype of breast cancer.
Collapse
Affiliation(s)
- Shaista Haider
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| | - Shayantani Chakraborty
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| | - Goutam Chowdhury
- Independent
Researcher, Greater Noida Gautam Buddha Nagar Uttar Pradesh 201308, India
| | - Anindita Chakrabarty
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| |
Collapse
|
33
|
Carmona AV, Jonnalagadda S, Case AM, Maddeboina K, Jonnalagadda SK, Dow LF, Duan L, Penning TM, Trippier PC. Discovery of an Aldo-Keto reductase 1C3 (AKR1C3) degrader. Commun Chem 2024; 7:95. [PMID: 38684887 PMCID: PMC11059152 DOI: 10.1038/s42004-024-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a protein upregulated in prostate cancer, hematological malignancies, and other cancers where it contributes to proliferation and chemotherapeutic resistance. Androgen receptor splice variant 7 (ARv7) is the most common mutation of the AR receptor that confers resistance to clinical androgen receptor signalling inhibitors in castration-resistant prostate cancer. AKR1C3 interacts with ARv7 promoting stabilization. Herein we report the discovery of the first-in-class AKR1C3 Proteolysis-Targeting Chimera (PROTAC) degrader. This first-generation degrader potently reduced AKR1C3 expression in 22Rv1 prostate cancer cells with a half-maximal degradation concentration (DC50) of 52 nM. Gratifyingly, concomitant degradation of ARv7 was observed with a DC50 = 70 nM, along with degradation of the AKR1C3 isoforms AKR1C1 and AKR1C2 to a lesser extent. This compound represents a highly useful chemical tool and a promising strategy for prostate cancer intervention.
Collapse
Affiliation(s)
- Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
| |
Collapse
|
34
|
Li D, Chen J, Zhou F, Zhang W, Chen H. Aldo-keto reductase-7A2 protects against atorvastatin-induced hepatotoxicity via Nrf2 activation. Chem Biol Interact 2024; 393:110956. [PMID: 38484826 DOI: 10.1016/j.cbi.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Atorvastatin (ATO), as a cholesterol-lowering drug, was the world's best-selling drug in the early 2000s. However, ATO overdose-induced liver or muscle injury is a threat to many patients, which restricts its application. Previous studies suggest that ATO overdose is accompanied with ROS accumulation and increased lipid peroxidation, which are the leading causes of ATO-induced liver damage. This study is, therefore, carried out to investigate the roles of anti-oxidant pathways and enzymes in protection against ATO-induced hepatotoxicity. Here we show that in ATO-challenged HepG2 cells, the expression levels of transcription factor NFE2L2/Nrf2 (nuclear factor erythroid 2 p45-related factor 2) are significantly upregulated. When Nrf2 is pharmacologically inhibited or genetically inactivated, ATO-induced cytotoxicity is significantly aggravated. Aldo-keto reductase-7A (AKR7A) enzymes, transcriptionally regulated by Nrf2, are important for bioactivation and biodetoxification. Here, we reveal that in response to ATO exposure, mRNA levels of human AKR7A2 are significantly upregulated in HepG2 cells. Furthermore, knockdown of AKR7A2 exacerbates ATO-induced hepatotoxicity, suggesting that AKR7A2 is essential for cellular adaptive response to ATO-induced cell damage. In addition, overexpression of AKR7A2 in HepG2 cells can significantly mitigate ATO-induced cytotoxicity and this process is Nrf2-dependent. Taken together, these findings indicate that Nrf2-mediated AKR7A2 is responsive to high concentrations of ATO and contributes to protection against ATO-induced hepatotoxicity, making it a good candidate for mitigating ATO-induced side effects.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jiajin Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fei Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenhe Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongyu Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
35
|
Stevanović MZ, Bekić SS, Petri ET, Ćelić AS, Jakimov DS, Sakač MN, Kuzminac IZ. Synthesis, in vitro and in silico anticancer evaluation of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives. Future Med Chem 2024; 16:1127-1145. [PMID: 38629440 PMCID: PMC11221553 DOI: 10.4155/fmc-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, β and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.
Collapse
Affiliation(s)
- Milica Z Stevanović
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sofija S Bekić
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology & Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Andjelka S Ćelić
- Department of Biology & Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Marija N Sakač
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Z Kuzminac
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
36
|
Liu M, Qin X, Li J, Jiang Y, Jiang J, Guo J, Xu H, Wang Y, Bi H, Wang Z. Decoding selectivity: computational insights into AKR1B1 and AKR1B10 inhibition. Phys Chem Chem Phys 2024; 26:9295-9308. [PMID: 38469695 DOI: 10.1039/d3cp05985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Understanding selectivity mechanisms of inhibitors towards highly homologous proteins is of paramount importance in the design of selective candidates. Human aldo-keto reductases (AKRs) pertain to a superfamily of monomeric oxidoreductases, which serve as NADPH-dependent cytosolic enzymes to catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Among AKRs, AKR1B1 is emerging as a promising target for cancer treatment and diabetes, despite its high structural similarity with AKR1B10, which leads to severe adverse events. Therefore, it is crucial to understand the selectivity mechanisms of AKR1B1 and AKR1B10 to discover safe anticancer candidates with optimal therapeutic efficacy. In this study, multiple computational strategies, including sequence alignment, structural comparison, Protein Contacts Atlas analysis, molecular docking, molecular dynamics simulation, MM-GBSA calculation, alanine scanning mutagenesis and pharmacophore modeling analysis were employed to comprehensively understand the selectivity mechanisms of AKR1B1/10 inhibition based on selective inhibitor lidorestat and HAHE. This study would provide substantial evidence in the design of potent and highly selective AKR1B1/10 inhibitors in future.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Xiaochun Qin
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Jing Li
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Yuting Jiang
- School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Junjie Jiang
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Jiwei Guo
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Hao Xu
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Yousen Wang
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Hengtai Bi
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| | - Zhiliang Wang
- Department of Drug Clinical Research Center, The First Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China.
| |
Collapse
|
37
|
Xu K, Wang X, Hu S, Tang J, Liu S, Chen H, Zhang X, Dai P. LINC00540 promotes sorafenib resistance and functions as a ceRNA for miR-4677-3p to regulate AKR1C2 in hepatocellular carcinoma. Heliyon 2024; 10:e27322. [PMID: 38463802 PMCID: PMC10920722 DOI: 10.1016/j.heliyon.2024.e27322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Sorafenib resistance is one of the main causes of poor prognosis in patients with advanced hepatocellular carcinoma (HCC). Long noncoding RNAs (lncRNAs) function as suppressors or oncogenic factors during tumor progression and drug resistance. Here, to identify therapeutic targets for HCC, the biological mechanisms of abnormally expressed lncRNAs were examined in sorafenib-resistant HCC cells. Specifically, we established sorafenib-resistant HCC cell lines (Huh7-S and SMMC7721-S), which displayed an epithelial-mesenchymal transition (EMT) phenotype. Transcriptome sequencing (RNA-Seq) was performed to established differential lncRNA expression profiles for sorafenib-resistant cells. Through this analysis, we identified LINC00540 as significantly up-regulated in sorafenib-resistant cells and a candidate lncRNA for further mechanistic investigation. Functionally, LINC00540 knockdown promoted sorafenib sensitivity and suppressed migration, invasion, EMT and the activation of PI3K/AKT signaling pathway in sorafenib-resistant HCC cells, whereas overexpression of LINC00540 resulted in the opposite effects in parental cells. LINC00540 functions as a competing endogenous RNA (ceRNA) by competitively binding to miR-4677-3p , thereby promoting AKR1C2 expression. This is the first study that demonstrates a role for LINC00540 in enhancing sorafenib resistance, migration and invasion of HCC cells through the LINC00540/miR-4677-3p/AKR1C2 axis, suggesting that LINC00540 may represent a potential therapeutic target and prognosis biomarker for HCC.
Collapse
Affiliation(s)
- Kaixuan Xu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinxin Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuwei Hu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiaxuan Tang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shihui Liu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hui Chen
- The University Hospital of Northwest University, Xi'an, 710069, China
| | - Xiaobin Zhang
- The University Hospital of Northwest University, Xi'an, 710069, China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Shaanxi Lifegen Co., Ltd, Xi'an, 712000, China
| |
Collapse
|
38
|
Li M, Zhang L, Yu J, Wang X, Cheng L, Ma Z, Chen X, Wang L, Goh BC. AKR1C3 in carcinomas: from multifaceted roles to therapeutic strategies. Front Pharmacol 2024; 15:1378292. [PMID: 38523637 PMCID: PMC10957692 DOI: 10.3389/fphar.2024.1378292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5α-dihydrotestosterone), 17β-estradiol (a potent estrogen), and 11β-PGF2α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Novel AKR1C3 inhibitors, including natural products and analogues of existing drugs designed based on their structures and frameworks, continue to be discovered and developed in laboratories worldwide. The AKR1C3 enzyme has emerged as a key player in carcinoma progression and therapeutic resistance, posing challenges in cancer treatment. This review aims to provide a comprehensive analysis of AKR1C3's role in carcinoma development, its implications in therapeutic resistance, and recent advancements in the development of AKR1C3 inhibitors for tumor therapies.
Collapse
Affiliation(s)
- Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
- The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Park J, Ngo TH, Paudel SB, Kil YS, Ryoo GH, Jin CH, Choi HI, Jung CH, Na M, Nam JW, Han AR. Angular dihydropyranocoumarins from the flowers of Peucedanum japonicum and their aldo-keto reductase inhibitory activities. PHYTOCHEMISTRY 2024; 219:113974. [PMID: 38211847 DOI: 10.1016/j.phytochem.2024.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 μM, respectively.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, 54810, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
40
|
Zhao M, Chen J, Chen H, Zhang J, Li D. Aldo-keto reductases 7A subfamily: A mini review. Chem Biol Interact 2024; 391:110896. [PMID: 38301882 DOI: 10.1016/j.cbi.2024.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Aldo-keto reductase-7A (AKR7A) subfamily belongs to the AKR superfamily and is associated with detoxification of aldehydes and ketones by reducing them to the corresponding alcohols. So far five members of ARK7A subfamily are identified: two human members-AKR7A2 and AKR7A3, two rat members-AKR7A1 and AKR7A4, and one mouse member-AKR7A5, which are implicated in several diseases including neurodegenerative diseases and cancer. AKR7A members share similar crystal structures and protein functional domains, but have different substrate specificity, inducibility and biological functions. This review will summarize the research progress of AKR7A members in substrate specificity, tissue distribution, inducibility, crystal structure and biological function. The significance of AKR7A members in the occurrence and development of diseases will also be discussed.
Collapse
Affiliation(s)
- Mengli Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiajin Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongyu Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingdong Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, China Medical University, Shenyang, 110001, China
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
41
|
Qian X, Klatt S, Bennewitz K, Wohlfart DP, Lou B, Meng Y, Buettner M, Poschet G, Morgenstern J, Fleming T, Sticht C, Hausser I, Fleming I, Szendroedi J, Nawroth PP, Kroll J. Impaired Detoxification of Trans, Trans-2,4-Decadienal, an Oxidation Product from Omega-6 Fatty Acids, Alters Insulin Signaling, Gluconeogenesis and Promotes Microvascular Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302325. [PMID: 38059818 PMCID: PMC10811472 DOI: 10.1002/advs.202302325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Omega-6 fatty acids are the primary polyunsaturated fatty acids in most Western diets, while their role in diabetes remains controversial. Exposure of omega-6 fatty acids to an oxidative environment results in the generation of a highly reactive carbonyl species known as trans, trans-2,4-decadienal (tt-DDE). The timely and efficient detoxification of this metabolite, which has actions comparable to other reactive carbonyl species, such as 4-hydroxynonenal, acrolein, acetaldehyde, and methylglyoxal, is essential for disease prevention. However, the detoxification mechanism for tt-DDE remains elusive. In this study, the enzyme Aldh9a1b is identified as having a key role in the detoxification of tt-DDE. Loss of Aldh9a1b increased tt-DDE levels and resulted in an abnormal retinal vasculature and glucose intolerance in aldh9a1b-/- zebrafish. Transcriptomic and metabolomic analyses revealed that tt-DDE and aldh9a1b deficiency in larval and adult zebrafish induced insulin resistance and impaired glucose homeostasis. Moreover, alterations in hyaloid vasculature is induced by aldh9a1b knockout or by tt-DDE treatment can be rescued by the insulin receptor sensitizers metformin and rosiglitazone. Collectively, these results demonstrated that tt-DDE is the substrate of Aldh9a1b which causes microvascular damage and impaired glucose metabolism through insulin resistance.
Collapse
Affiliation(s)
- Xin Qian
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Stephan Klatt
- Institute for Vascular SignalingCentre for Molecular MedicineGoethe‐Universityam Main60590FrankfurtGermany
- The German Centre for Cardiovascular Research (DZHK)Partner site RheinMain60590FrankfurtGermany
| | - Katrin Bennewitz
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| | - David Philipp Wohlfart
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Bowen Lou
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
- Present address:
Cardiovascular Department, the First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta RoadXi'an710061China
| | - Ye Meng
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Michael Buettner
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg University69120HeidelbergGermany
| | - Gernot Poschet
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg University69120HeidelbergGermany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Carsten Sticht
- NGS Core FacilityMedical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Ingrid Hausser
- Institute of Pathology IPHEM LabHeidelberg University Hospital69120HeidelbergGermany
| | - Ingrid Fleming
- Institute for Vascular SignalingCentre for Molecular MedicineGoethe‐Universityam Main60590FrankfurtGermany
- The German Centre for Cardiovascular Research (DZHK)Partner site RheinMain60590FrankfurtGermany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Jens Kroll
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| |
Collapse
|
42
|
JENG KUOSHYANG, CHENG POYU, LIN YUEHHSIEN, LIU POCHUN, TSENG PINGHUI, WANG YUCHAO, CHANG CHIUNGFANG, LEU CHUENMIIN. Aldo-keto reductase family member C3 (AKR1C3) promotes hepatocellular carcinoma cell growth by producing prostaglandin F2α. Oncol Res 2023; 32:163-174. [PMID: 38188684 PMCID: PMC10767238 DOI: 10.32604/or.2023.030975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Current therapies are effective for HCC patients with early disease, but many patients suffer recurrence after surgery and have a poor response to chemotherapy. Therefore, new therapeutic targets are needed. We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different. The analysis showed that AKR1C3 was upregulated in tumors, and high AKR1C3 expression was associated with a poorer prognosis in HCC patients. In vitro, assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines. Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo. To explore the mechanism, we performed pathway enrichment analysis, and the results linked the expression of AKR1C3 with prostaglandin F2 alpha (PGF2α) downstream target genes. Suppression of AKR1C3 activity reduced the production of PGF2α, and supplementation with PGF2α restored the growth of indomethacin-treated Huh7 cells. Knockdown of the PGF receptor (PTGFR) and treatment with a PTGFR inhibitor significantly reduced HCC growth. We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib. In summary, our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α, and suppression of PTGFR limited HCC growth. Therefore, targeting the AKR1C3-PGF2α-PTGFR axis may be a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- KUO-SHYANG JENG
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei City, 22060, Taiwan
| | - PO-YU CHENG
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, 11221, Taiwan
| | - YUEH-HSIEN LIN
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, 11221, Taiwan
| | - PO-CHUN LIU
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, 11221, Taiwan
| | - PING-HUI TSENG
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei City, 11221, Taiwan
| | - YU-CHAO WANG
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei City, 11221, Taiwan
| | - CHIUNG-FANG CHANG
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, 22060, Taiwan
| | - CHUEN-MIIN LEU
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, 11221, Taiwan
| |
Collapse
|
43
|
Liu H, Yao Z, Sun M, Zhang C, Huang YY, Luo HB, Wu D, Zheng X. Inhibition of AKR1Cs by liquiritigenin and the structural basis. Chem Biol Interact 2023; 385:110654. [PMID: 37666442 DOI: 10.1016/j.cbi.2023.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
In vivo and in vitro studies have confirmed that liquiritigenin (LQ), the primary active component of licorice, acts as an antitumor agent. However, how LQ diminishes or inhibits tumor growth is not fully understood. Here, we report the enzymatic inhibition of LQ and six other flavanone analogues towards AKR1Cs (AKR1C1, AKR1C2 and AKR1C3), which are involved in prostate cancer, breast cancer, and resistance of anticancer drugs. Crystallographic studies revealed AKR1C3 inhibition of LQ is related to its complementarity with the active site and the hydrogen bonds net in the catalytic site formed through C7-OH, aided by its nonplanar and compact structure due to the saturation of the C2C3 double bond. Comparison of the LQ conformations in the structures of AKR1C1 and AKR1C3 revealed the induced-fit conformation changes, which explains the lack of isoform selectivity of LQ. Our findings will be helpful for better understanding the antitumor effects of LQ on hormonally dependent cancers and the rational design of selective AKR1Cs inhibitors.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ziqing Yao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mingna Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chao Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Xuehua Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
44
|
Šestić TL, Ajduković JJ, Bekić SS, Ćelić AS, Stojanović ST, Najman SJ, Marinović MA, Petri ET, Škorić DĐ, Savić MP. Novel D-modified heterocyclic androstane derivatives as potential anticancer agents: Synthesis, characterization, in vitro and in silico studies. J Steroid Biochem Mol Biol 2023; 233:106362. [PMID: 37451557 DOI: 10.1016/j.jsbmb.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cancer remains a major health concern worldwide. The most frequently diagnosed types of cancer are caused by abnormal production or action of steroid hormones. In the present study, the synthesis and structural characterization of new heterocyclic androstane derivatives with D-homo lactone, 17α-(pyridine-2''-ylmethyl) or 17(E)-(pyridine-2''-ylmethylidene) moiety are presented. All compounds were evaluated for their anti-proliferative activity against HeLa cervical cancer cell line and non-cancerous kidney MDCK cells, where A-homo lactam compound 9A showed the greatest selectivity. Based on in vitro binding assays, N-formyl lactam compound 18 appeared to be the strong and isoform-selective ligand for ERα, while compound 9A displayed binding affinity for the GR-LBD, but also inhibited aldo-keto reductase 1C4 enzyme. Out of four selected compounds, methylpyrazolo derivative 13 showed potential for aromatase binding, while in silico studies provided insight into experimentally confirmed protein-ligand interactions.
Collapse
Affiliation(s)
- Tijana Lj Šestić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Sofija S Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Andjelka S Ćelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Sanja T Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Stevo J Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Maja A Marinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dušan Đ Škorić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
45
|
Nitta H, Takizawa H, Mitsumori T, Iizuka-Honma H, Araki Y, Fujishiro M, Tomita S, Kishikawa S, Hashizume A, Sawada T, Okubo M, Sekiguchi Y, Ando M, Noguchi M. Possible New Histological Prognostic Index for Large B-Cell Lymphoma. J Clin Med 2023; 12:6324. [PMID: 37834968 PMCID: PMC10573887 DOI: 10.3390/jcm12196324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
We conducted a retrospective analysis of GRP94 immunohistochemical (IHC) staining, an ER stress protein, on large B-cell lymphoma (LBCL) cells, intracellular p53, and 15 factors involved in the metabolism of the CHOP regimen: AKR1C3 (HO metabolism), CYP3A4 (CHOP metabolism), and HO efflux pumps (MDR1 and MRP1). The study subjects were 42 patients with LBCL at our hospital. The IHC staining used antibodies against the 17 factors. The odds ratios by logistic regression analysis used a dichotomous variable of CR and non-CR/relapse were statistically significant for MDR1, MRP1, and AKR1C3. The overall survival (OS) after R-CHOP was compared by the log-rank test. The four groups showed that Very good (5-year OS, 100%) consisted of four patients who showed negative IHC staining for both GRP94 and CYP3A4. Very poor (1-year OS, 0%) consisted of three patients who showed positive results in IHC for both GRP94 and CYP3A4. The remaining 35 patients comprised two subgroups: Good (5-year OS 60-80%): 15 patients who showed negative staining for both MDR1 and AKR1C3 and Poor (5-year OS, 10-20%): 20 patients who showed positive staining for either MDR, AKR1C3, MRP1, or p53. The Histological Prognostic Index (HPI) (the four groups: Very poor, Poor, Good, and Very good) is a breakthrough method for stratifying patients based on the factors involved in the development of treatment resistance.
Collapse
Affiliation(s)
- Hideaki Nitta
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Haruko Takizawa
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Toru Mitsumori
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Hiroko Iizuka-Honma
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Yoshihiko Araki
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan;
| | - Maki Fujishiro
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Shigeki Tomita
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (S.K.); (A.H.)
| | - Satsuki Kishikawa
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (S.K.); (A.H.)
| | - Akane Hashizume
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (S.K.); (A.H.)
| | - Tomohiro Sawada
- Department of Clinical Laboratory, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Mitsuo Okubo
- Laboratory of Blood Transfusion, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | | | - Miki Ando
- Division of Hematology, Juntendo University Juntendo Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Masaaki Noguchi
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| |
Collapse
|
46
|
Wróbel TM, Sharma K, Mannella I, Oliaro-Bosso S, Nieckarz P, Du Toit T, Voegel CD, Rojas Velazquez MN, Yakubu J, Matveeva A, Therkelsen S, Jørgensen FS, Pandey AV, Pippione AC, Lolli ML, Boschi D, Björkling F. Exploring the Potential of Sulfur Moieties in Compounds Inhibiting Steroidogenesis. Biomolecules 2023; 13:1349. [PMID: 37759751 PMCID: PMC10526780 DOI: 10.3390/biom13091349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
This study reports on the synthesis and evaluation of novel compounds replacing the nitrogen-containing heterocyclic ring on the chemical backbone structure of cytochrome P450 17α-hydroxylase/12,20-lyase (CYP17A1) inhibitors with a phenyl bearing a sulfur-based substituent. Initial screening revealed compounds with marked inhibition of CYP17A1 activity. The selectivity of compounds was thereafter determined against cytochrome P450 21-hydroxylase, cytochrome P450 3A4, and cytochrome P450 oxidoreductase. Additionally, the compounds showed weak inhibitory activity against aldo-keto reductase 1C3 (AKR1C3). The compounds' impact on steroid hormone levels was also assessed, with some notable modulatory effects observed. This work paves the way for developing more potent dual inhibitors specifically targeting CYP17A1 and AKR1C3.
Collapse
Affiliation(s)
- Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Katyayani Sharma
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Iole Mannella
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | | | - Patrycja Nieckarz
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Therina Du Toit
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Clarissa Daniela Voegel
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jibira Yakubu
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anna Matveeva
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Søren Therkelsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Amit V. Pandey
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Agnese C. Pippione
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Marco L. Lolli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Foti RS. Cytochrome P450 and Other Drug-Metabolizing Enzymes As Therapeutic Targets. Drug Metab Dispos 2023; 51:936-949. [PMID: 37041085 DOI: 10.1124/dmd.122.001011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Cytochrome P450 and other families of drug-metabolizing enzymes are commonly thought of and studied for their ability to metabolize xenobiotics and other foreign entities as they are eliminated from the body. Equally as important, however, is the homeostatic role that many of these enzymes play in maintaining the proper levels of endogenous signaling molecules such as lipids, steroids, and eicosanoids as well as their ability to modulate protein-protein interactions involved in downstream signaling cascades. Throughout the years, many of these endogenous ligands or protein partners of drug-metabolizing enzymes have been associated with a wide range of disease states from cancer to various cardiovascular, neurologic, or inflammatory diseases, prompting an interest in whether modulation of drug-metabolizing enzyme activity could have a subsequent pharmacological impact or lessening of disease severity. Beyond direct regulation of endogenous pathways, drug-metabolizing enzymes have also been proactively targeted for their ability to activate prodrugs with subsequent pharmacological activity or enhance the efficacy of a coadministered drug by inhibiting the metabolism of that drug through a rationally designed drug-drug interaction (i.e., ritonavir and human immunodeficiency virus antiretroviral therapy). The focus of this minireview will be to highlight research aimed at characterizing cytochrome P450 and other drug-metabolizing enzymes as therapeutic targets. Examples of successfully marketed drugs as well as early research efforts will be discussed. Finally, emerging areas of research utilizing typical drug-metabolizing enzymes to impact clinical outcomes will be discussed. SIGNIFICANCE STATEMENT: Although generally thought of for their drug-metabolizing capabilities, enzymes such as the cytochromes P450, glutathione S-transferases, soluble epoxide hydrolases, and others play a significant role in regulating key endogenous pathways, making them potential drug targets. This minireview will cover various efforts over the years to modulate drug-metabolizing enzyme activity toward pharmacological outcomes.
Collapse
Affiliation(s)
- Robert S Foti
- ADME & Discovery Toxicology, Merck & Co., Inc., Boston, Massachusetts
| |
Collapse
|
48
|
Maddeboina K, Jonnalagadda SK, Morsy A, Duan L, Chhonker YS, Murry DJ, Penning TM, Trippier PC. Aldo-Keto Reductase 1C3 Inhibitor Prodrug Improves Pharmacokinetic Profile and Demonstrates In Vivo Efficacy in a Prostate Cancer Xenograft Model. J Med Chem 2023; 66:9894-9915. [PMID: 37428858 PMCID: PMC11963376 DOI: 10.1021/acs.jmedchem.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in castration-resistant prostate cancer where it acts to drive proliferation and aggressiveness by producing androgens. The reductive action of the enzyme leads to chemoresistance development against various clinical antineoplastics across a range of cancers. Herein, we report the continued optimization of selective AKR1C3 inhibitors and the identification of 5r, a potent AKR1C3 inhibitor (IC50 = 51 nM) with >1216-fold selectivity for AKR1C3 over closely related isoforms. Due to the cognizance of the poor pharmacokinetics associated with free carboxylic acids, a methyl ester prodrug strategy was pursued. The prodrug 4r was converted to free acid 5r in vitro in mouse plasma and in vivo. The in vivo pharmacokinetic evaluation revealed an increase in systemic exposure and increased the maximum 5r concentration compared to direct administration of the free acid. The prodrug 4r demonstrated a dose-dependent effect to reduce the tumor volume of 22Rv1 prostate cancer xenografts without observed toxicity.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
49
|
Liu Y, Li D, Ren M, Qu F, He Y. Effect of high-level PM 2.5 on survival in lung cancer: a multicenter cohort study from Hebei Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82094-82106. [PMID: 37318733 DOI: 10.1007/s11356-023-28147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Globally, air pollution is the fourth leading risk factor for death, while lung cancer (LC) is the leading cause of cancer-related death. The aim of this study was to explore the prognostic factors of LC and the influence of high fine particulate matter (PM2.5) on LC survival. Data on LC patients were collected from 133 hospitals across 11 cities in Hebei Province from 2010 to 2015, and survival status was followed up until 2019. The personal PM2.5 exposure concentration (μg/m3) was matched according to the patient's registered address, calculated from a 5-year average for every patient, and stratified into quartiles. The Kaplan-Meier method was used to estimate overall survival (OS), and Cox's proportional hazard regression model was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). The 1-, 3-, and 5-year OS rates of the 6429 patients were 62.9%, 33.2%, and 15.2%, respectively. Advanced age (75 years or older: HR = 2.34, 95% CI: 1.25-4.38), subsite at overlapping (HR = 4.35, 95% CI: 1.70-11.1), poor/undifferentiated differentiation (HR = 1.71, 95% CI: 1.13-2.58), and advanced stages (stage III: HR = 2.53, 95% CI: 1.60-4.00; stage IV: HR = 4.00, 95% CI: 2.63-6.09) were risk factors for survival, while receiving surgical treatment was a protective factor (HR = 0.60, 95% CI: 0.44-0.83). Patients exposed to light pollution had the lowest risk of death with a 26-month median survival time. The risk of death in LC patients was greatest at PM2.5 concentrations of 98.7-108.9 μg/m3, especially for patients at advanced stage (HR = 1.43, 95% CI: 1.29-1.60). Our study indicates that the survival of LC is severely affected by relatively high levels of PM2.5 pollution, especially in those with advanced-stage cancer.
Collapse
Affiliation(s)
- Yanyu Liu
- Department of Cancer Prevention and Control, The Fourth Hospital of Hebei Medical University/Hebei Cancer Institute, Shijiazhuang, 050011, Hebei, China
| | - Daojuan Li
- Department of Cancer Prevention and Control, The Fourth Hospital of Hebei Medical University/Hebei Cancer Institute, Shijiazhuang, 050011, Hebei, China
| | - Meng Ren
- Department of Cancer Prevention and Control, The Fourth Hospital of Hebei Medical University/Hebei Cancer Institute, Shijiazhuang, 050011, Hebei, China
| | - Feng Qu
- Department of Cancer Prevention and Control, The Fourth Hospital of Hebei Medical University/Hebei Cancer Institute, Shijiazhuang, 050011, Hebei, China
| | - Yutong He
- Department of Cancer Prevention and Control, The Fourth Hospital of Hebei Medical University/Hebei Cancer Institute, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
50
|
Wu W, Jiang T, Lin H, Chen C, Wang L, Wen J, Wu J, Deng Y. The Specific Binding and Promotion Effect of Azoles on Human Aldo-Keto Reductase 7A2. Metabolites 2023; 13:metabo13050601. [PMID: 37233642 DOI: 10.3390/metabo13050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Human AKR 7A2 broadly participates in the metabolism of a number of exogenous and endogenous compounds. Azoles are a class of clinically widely used antifungal drugs, which are usually metabolized by CYP 3A4, CYP2C19, and CYP1A1, etc. in vivo. The azole-protein interactions that human AKR7A2 participates in remain unreported. In this study, we investigated the effect of the representative azoles (miconazole, econazole, ketoconazole, fluconazole, itraconazole, voriconazole, and posaconazole) on the catalysis of human AKR7A2. The steady-state kinetics study showed that the catalytic efficiency of AKR7A2 enhanced in a dose-dependent manner in the presence of posaconazole, miconazole, fluconazole, and itraconazole, while it had no change in the presence of econazole, ketoconazole, and voriconazole. Biacore assays demonstrated that all seven azoles were able to specifically bind to AKR7A2, among which itraconazole, posaconazole, and voriconazole showed the strongest binding. Blind docking predicted that all azoles were apt to preferentially bind at the entrance of the substrate cavity of AKR7A2. Flexible docking showed that posaconazole, located at the region, can efficiently lower the binding energy of the substrate 2-CBA in the cavity compared to the case of no posaconazole. This study demonstrates that human AKR7A2 can interact with some azole drugs, and it also reveals that the enzyme activity can be regulated by some small molecules. These findings will enable a better understanding of azole-protein interactions.
Collapse
Affiliation(s)
- Wanying Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Haihui Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|