1
|
Qiu X, Chao K, Song S, Wang YQ, Chen YA, Rouse SL, Yen HY, Robinson CV. Coupling and Activation of the β1 Adrenergic Receptor - The Role of the Third Intracellular Loop. J Am Chem Soc 2024; 146. [PMID: 39359104 PMCID: PMC11487556 DOI: 10.1021/jacs.4c11250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
G protein-coupled receptors (GPCRs) belong to the most diverse group of membrane receptors with a conserved structure of seven transmembrane (TM) α-helices connected by intracellular and extracellular loops. Intracellular loop 3 (ICL3) connects TM5 and TM6, the two helices shown to play significant roles in receptor activation. Herein, we investigate the activation and signaling of the β1 adrenergic receptor (β1AR) using mass spectrometry (MS) with a particular focus on the ICL3 loop. First, using native MS, we measure the extent of receptor coupling to an engineered Gαs subunit (mini Gs) and show preferential coupling to β1AR with an intact ICL3 (β1AR_ICL3) compared to the truncated β1AR. Next, using hydrogen-deuterium exchange (HDX)-MS, we show how helix 5 of mini Gs reports on the extent of receptor activation in the presence of a range of agonists. Then, exploring a range of solution conditions and using comparative HDX, we note additional HDX protection when ICL3 is present, implying that mini Gs helix 5 presents a different binding conformation to the surface of β1AR_ICL3, a conclusion supported by MD simulation. Considering when this conformatonal change occurs we used time-resolved HDX and employed two functional assays to measure GDP release and cAMP production, with and without ICL3. We found that ICL3 exerts its effect on Gs through enhanced cAMP production but does not affect GDP release. Together, our study uncovers potential roles of ICL3 in fine-tuning GPCR activation through subtle changes in the binding pose of helix 5, only after nucleotide release from Gs.
Collapse
Affiliation(s)
- Xingyu Qiu
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Kavli
Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, U.K.
| | - Kin Chao
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K.
| | - Siyuan Song
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Kavli
Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, U.K.
| | - Yi-Quan Wang
- Institute
of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
| | - Yi-An Chen
- Institute
of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
| | - Sarah L. Rouse
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K.
| | - Hsin-Yung Yen
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Institute
of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
| | - Carol V. Robinson
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Kavli
Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, U.K.
| |
Collapse
|
2
|
Liu H, Yan P, Zhang Z, Han H, Zhou Q, Zheng J, Zhang J, Xu F, Shui W. Structural Mass Spectrometry Captures Residue-Resolved Comprehensive Conformational Rearrangements of a G Protein-Coupled Receptor. J Am Chem Soc 2024; 146:20045-20058. [PMID: 39001877 DOI: 10.1021/jacs.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptor (GPCR) structural studies with in-solution spectroscopic approaches have offered distinctive insights into GPCR activation and signaling that highly complement those yielded from structural snapshots by crystallography or cryo-EM. While most current spectroscopic approaches allow for probing structural changes at selected residues or loop regions, they are not suitable for capturing a holistic view of GPCR conformational rearrangements across multiple domains. Herein, we develop an approach based on limited proteolysis mass spectrometry (LiP-MS) to simultaneously monitor conformational alterations of a large number of residues spanning both flexible loops and structured transmembrane domains for a given GPCR. To benchmark LiP-MS for GPCR conformational profiling, we studied the adenosine 2A receptor (A2AR) in response to different ligand binding (agonist/antagonist/allosteric modulators) and G protein coupling. Systematic and residue-resolved profiling of A2AR conformational rearrangements by LiP-MS precisely captures structural mechanisms in multiple domains underlying ligand engagement, receptor activation, and allostery, and may also reflect local conformational flexibility. Furthermore, these residue-resolution structural fingerprints of the A2AR protein allow us to readily classify ligands of different pharmacology and distinguish the G protein-coupled state. Thus, our study provides a new structural MS approach that would be generalizable to characterizing conformational transition and plasticity for challenging integral membrane proteins.
Collapse
Affiliation(s)
- Hongyue Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyu Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Han
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
4
|
Seewald M, Nielinger L, Alker K, Behnke JS, Wycisk V, Urner LH. Detergent Chemistry Modulates the Transgression of Planetary Boundaries including Antimicrobial Resistance and Drug Discovery. Angew Chem Int Ed Engl 2024; 63:e202403833. [PMID: 38619211 DOI: 10.1002/anie.202403833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Detergent chemistry enables applications in the world today while harming safe operating spaces that humanity needs for survival. Aim of this review is to support a holistic thought process in the design of detergent chemistry. We harness the planetary boundary concept as a framework for literature survey to identify progresses and knowledge gaps in context with detergent chemistry and five planetary boundaries that are currently transgressed, i.e., climate, freshwater, land system, novel entities, biosphere integrity. Our survey unveils the status of three critical challenges to be addressed in the years to come, including (i) the implementation of a holistically, climate-friendly detergent industry; (ii) the alignment of materialistic and social aspects in creating technical solutions by means of sustainable chemistry; (iii) the development of detergents that serve the purpose of applications but do not harm the biosphere in their role as novel entities. Specifically, medically relevant case reports revealed that even the most sophisticated detergent design cannot sufficiently accelerate drug discovery to outperform the antibiotic resistance development that detergents simultaneously promote as novel entities. Safe operating spaces that humanity needs for its survival may be secured by directing future efforts beyond sustainable chemistry, resource efficiency, and net zero emission targets.
Collapse
Affiliation(s)
- Marc Seewald
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Lena Nielinger
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Katharina Alker
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Jan-Simon Behnke
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
6
|
Wu R, Svingou D, Metternich JB, Benzenberg LR, Zenobi R. Transition Metal Ion FRET-Based Probe to Study Cu(II)-Mediated Amyloid- β Ligand Binding. J Am Chem Soc 2024; 146:2102-2112. [PMID: 38225538 DOI: 10.1021/jacs.3c11533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Recent therapeutic strategies suggest that small peptides can act as aggregation inhibitors of monomeric amyloid-β (Αβ) by inducing structural rearrangements upon complexation. However, characterizing the binding events in such dynamic and transient noncovalent complexes, especially in the presence of natively occurring metal ions, remains a challenge. Here, we deploy a combined transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) approach to characterize the structure of mass- and charge-selected Aβ complexes with Cu(II) ions (a quencher) and a potential aggregation inhibitor, a small neuropeptide named leucine enkephalin (LE). We show conformational changes of monomeric Αβ species upon Cu(II)-binding, indicating an uncoiled N-terminus and a close interaction between the C-terminus and the central hydrophobic region. Furthermore, we introduce LE labeled at the N-terminus with a metal-chelating agent, nitrilotriacetic acid (NTA). This allows us to employ tmFRET to probe the binding even in low-abundance and transient Aβ-inhibitor-metal ion complexes. Complementary intramolecular distance and global shape information from tmFRET and native IM-MS, respectively, confirmed Cu(II) displacement toward the N-terminus of Αβ, which discloses the binding region and the inhibitor's orientation.
Collapse
Affiliation(s)
- Ri Wu
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Despoina Svingou
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jonas B Metternich
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas R Benzenberg
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Ganguly A, Quon T, Jenkins L, Joseph B, Al-Awar R, Chevigne A, Tobin AB, Uehling DE, Hoffmann C, Drube J, Milligan G. G protein-receptor kinases 5/6 are the key regulators of G protein-coupled receptor 35-arrestin interactions. J Biol Chem 2023; 299:105218. [PMID: 37660910 PMCID: PMC10520886 DOI: 10.1016/j.jbc.2023.105218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Human G protein-coupled receptor 35 is regulated by agonist-mediated phosphorylation of a set of five phospho-acceptor amino acids within its C-terminal tail. Alteration of both Ser300 and Ser303 to alanine in the GPR35a isoform greatly reduces the ability of receptor agonists to promote interactions with arrestin adapter proteins. Here, we have integrated the use of cell lines genome edited to lack expression of combinations of G protein receptor kinases (GRKs), selective small molecule inhibitors of subsets of these kinases, and antisera able to specifically identify either human GPR35a or mouse GPR35 only when Ser300 and Ser303 (orce; the equivalent residues in mouse GPR35) have become phosphorylated to demonstrate that GRK5 and GRK6 cause agonist-dependent phosphorylation of these residues. Extensions of these studies demonstrated the importance of the GRK5/6-mediated phosphorylation of these amino acids for agonist-induced internalization of the receptor. Homology and predictive modeling of the interaction of human GPR35 with GRKs showed that the N terminus of GRK5 is likely to dock in the same methionine pocket on the intracellular face of GPR35 as the C terminus of the α5 helix of Gα13 and, that while this is also the case for GRK6, GRK2 and GRK3 are unable to do so effectively. These studies provide unique and wide-ranging insights into modes of regulation of GPR35, a receptor that is currently attracting considerable interest as a novel therapeutic target in diseases including ulcerative colitis.
Collapse
Affiliation(s)
- Amlan Ganguly
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - Tezz Quon
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - Laura Jenkins
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Andy Chevigne
- Division of Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - David E Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Julia Drube
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Tajiri M, Imai S, Konuma T, Shimamoto K, Shimada I, Akashi S. Evaluation of Drug Responses to Human β 2AR Using Native Mass Spectrometry. ACS OMEGA 2023; 8:24544-24551. [PMID: 37457453 PMCID: PMC10339329 DOI: 10.1021/acsomega.3c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
We aimed to develop a platform to rapidly investigate the responses of agonists and antagonists to G-protein-coupled receptors (GPCRs) using native mass spectrometry (MS). We successfully observed the ligand-bound human β2 adrenergic receptor (hβ2AR); however, it was challenging to quantitatively discuss drug efficacy from MS data alone. Since ligand-bound GPCRs are stabilized by the Gα subunit of G proteins on the membrane, mini-Gs and nanobody80 (Nb80) that can mimic the Gα interface of the GPCR were utilized. Ternary complexes of hβ2AR, ligand, and mini-Gs or Nb80 were prepared and subjected to native MS. We found a strong correlation between the hβ2AR-mini-Gs or -Nb80 complex ratio observed in the mass spectra and agonist/antagonist efficacy obtained using a cell-based assay. This method does not require radioisotope labeling and would be applicable to the analysis of other GPCRs, facilitating the characterization of candidate compounds as GPCR agonists and antagonists.
Collapse
Affiliation(s)
- Michiko Tajiri
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shunsuke Imai
- Biosystems
Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsuyoshi Konuma
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Shimamoto
- Suntory
Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Ichio Shimada
- Biosystems
Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima City, Hiroshima 739-8528, Japan
| | - Satoko Akashi
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Yang HC, Li W, Sun J, Gross ML. Advances in Mass Spectrometry on Membrane Proteins. MEMBRANES 2023; 13:457. [PMID: 37233518 PMCID: PMC10220746 DOI: 10.3390/membranes13050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Understanding the higher-order structure of membrane proteins (MPs), which are vital for numerous biological processes, is crucial for comprehending their function. Although several biophysical approaches have been used to study the structure of MPs, limitations exist owing to the proteins' dynamic nature and heterogeneity. Mass spectrometry (MS) is emerging as a powerful tool for investigating membrane protein structure and dynamics. Studying MPs using MS, however, must meet several challenges including the lack of stability and solubility of MPs, the complexity of the protein-membrane system, and the difficulty of digestion and detection. To meet these challenges, recent advances in MS have engendered opportunities in resolving the dynamics and structures of MP. This article reviews achievements over the past few years that enable the study of MPs by MS. We first introduce recent advances in hydrogen deuterium exchange and native mass spectrometry for MPs and then focus on those footprinting methods that report on protein structure.
Collapse
Affiliation(s)
- Hsin-Chieh Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|