1
|
Khoshnevis S, Smolensky MH, Haghayegh S. Circadian attributes of neurological and psychiatric disorders as basis for their medication chronotherapy. Adv Drug Deliv Rev 2025; 223:115576. [PMID: 40187645 PMCID: PMC12146094 DOI: 10.1016/j.addr.2025.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
This review focuses on (i) 24 h patterns in the symptom intensity of common neurologic and psychiatric disorders and (ii) medications prescribed for their management that have a recommended administration time or schedule, presumably to potentiate desired and minimize undesired effects and by definition qualify them as chronotherapies. Predictable-in-time patterning of symptoms is exhibited by many neurologic -- headaches, multiple sclerosis, neurogenic orthostatic hypotension, neuropathic pain, Parkinson's disease, epileptic seizure, attention deficit hyperactivity, Alzheimer's disease - and psychiatric - eating, depressive, obsessive-compulsive, post-traumatic stress, anxiety, and panic - disorders, due either to circadian rhythms of disease pathophysiology or inadequacies of medication-delivery systems. Circadian disruption and circadian misalignment of the sleep-wake and other 24 h rhythms plus late chronotype are characteristic of many of these disorders, suggesting involvement in the mechanisms or consequence of their pathology or as an adverse effect of therapy, especially when administered at an inappropriate biological time. The Prescribers' Digital Reference, a compendium of all prescription medications approved for marketing in the US, reveals 65 of them are utilized to manage neurologic and psychiatric disorders by a specified time-of-day or an asymmetrical interval or strength of dose schedule, presumably to optimize beneficial and minimize adverse effects, thereby qualifying them as chronotherapies. Overall, the contents of this review are intended to inform the development of future chronotherapies that incorporate state-of-the-art drug-delivery systems to improve management of neurologic and psychiatric disorders and associated circadian malalignment and disruption.
Collapse
Affiliation(s)
- Sepideh Khoshnevis
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Internal Medicine, Division of Cardiology, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shahab Haghayegh
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA
| |
Collapse
|
2
|
Liu Y, Huang Y, Luo H, Lin X. The roles of Cryptochrome-1: the circadian clock as a control point in cancer therapy. J Transl Med 2025; 23:669. [PMID: 40528171 DOI: 10.1186/s12967-025-06702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 06/01/2025] [Indexed: 06/20/2025] Open
Abstract
In this review, we carefully describe the composition and operation of cryptochrome-1 (CRY1). We introduce four related signaling pathways, namely cAMP/PKA/CREB signaling way, HIFα signaling way, NF-κB signaling way, STAT3 signaling way, FOXO signaling pathway and Hedgehog (HH) signaling pathway. We also emphasize the current understanding of the complex roles CRY1 plays in the progression of various solid tumors. We propose that its function represents a novel therapeutic target that could pave the way for new cancer treatments. Additionally, we summarize three emerging therapeutic strategies based on the roles of CRY1: targeting CRY1 with small molecules, using CRY1 as diagnostic and therapeutic tools, and promoting drug efficacy through CRY1 modulations. It is imperative to underscore the significance of conducting more extensive research to translate the insights obtained from cellular and animal models into practical human applications, ultimately enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Yijia Liu
- First Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanzhe Huang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xueqin Lin
- General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Kaşkal M, Sevim M, Ülker G, Keleş C, Bebitoğlu BT. The clinical impact of chronopharmacology on current medicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6179-6191. [PMID: 39792169 DOI: 10.1007/s00210-025-03788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
One of the goals of clinical pharmacology is to optimize patient treatment by adopting new treatment strategies which will increase the efficacy of the treatment and decrease the adverse effects of the drugs. In the literature, it has shown that the effectiveness and toxicity of medications can vary significantly based on when they are administered, making timing a crucial factor in treatment plans. Chronopharmacology a relatively new branch of clinical pharmacology focuses on adjusting drug administration times to enhance patient outcomes. Chronopharmacology is largely influenced by an individual's circadian rhythm which refers to periodic changes in biological processes depending on the time of the day. The chronopharmacology influences clinical practice, and the accumulating knowledge in this field will likely lead healthcare providers to adopt new strategies for drug treatment regimens. This review aims to summarize the impact of chronopharmacology particularly on current clinical practices and highlight the latest findings related to chronophysiological mechanisms.
Collapse
Affiliation(s)
- Mert Kaşkal
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey.
| | - Mustafa Sevim
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Gökay Ülker
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Caner Keleş
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
4
|
Lim D, Choi SJ, Song YM, Park HR, Joo EY, Kim JK. Enhanced Circadian Phase Tracking: A 5-h DLMO Sampling Protocol Using Wearable Data. J Biol Rhythms 2025; 40:249-261. [PMID: 40017128 DOI: 10.1177/07487304251317577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Circadian medicine aims to leverage the body's internal clock to develop safer and more effective therapeutics. Traditionally, biological time has been estimated using dim light melatonin onset (DLMO), a method that requires collecting saliva samples over a long period under controlled conditions, to ensure the observation of DLMO, making it time-consuming and labor-intensive. While some studies have mitigated this by reducing the length of the sampling window, they significantly failed to identify the DLMO for shift workers. In this study, we present a framework that reduces the DLMO experiment time for shift workers to just 5 h. This approach combines sleep-wake pattern data from wearable devices with a mathematical model to predict DLMO prospectively. Based on this prediction, we define a targeted 5-h sampling window, from 3 h before to 2 h after the estimated DLMO. Testing this framework with 19 shift workers, we successfully identified the DLMO for all participants, whereas traditional methods failed for more than 40% of participants. This approach significantly reduces the experiment time required for measuring the DLMO of shift workers from 24 h to 5 h, simplifying the circadian phase measurements for shift workers.
Collapse
Affiliation(s)
- Dongju Lim
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Su Jung Choi
- Graduate School of Clinical Nursing Science, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yun Min Song
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hea Ree Park
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Savard MF, Ibrahim M, Saunders D, Pond GR, Ng TL, Awan AA, Sehdev S, Alqahtani N, Vandermeer L, MacDonald F, Beltran-Bless AA, Fallowfield L, Clemons M. A pragmatic, multicenter, randomized trial comparing morning versus evening dosing of adjuvant endocrine therapy (REaCT-CHRONO Study). NPJ Breast Cancer 2025; 11:49. [PMID: 40442096 PMCID: PMC12122688 DOI: 10.1038/s41523-025-00762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/03/2025] [Indexed: 06/02/2025] Open
Abstract
The time of day of administration (chronotherapy) of certain medications can affect both their toxicity and efficacy. In this pragmatic, multicenter trial, women starting adjuvant endocrine therapy (ET) for hormone receptor-positive early-stage breast cancer were randomized (1:1) to either morning or evening administration. The primary endpoint was endocrine toxicity/tolerability measured by the change in total Functional Assessment of Cancer Therapy-Endocrine Subscale (FACT-ES) score from baseline to 12-weeks. Secondary endpoints included: endocrine toxicity/tolerability and quality of life (FACT-ES and FACT-B) from baseline to 4, 8, 12, and 52 weeks, non-persistence or non-adherence, and patient preference for timing of ET. Between June 30, 2021, and March 18, 2022, 245 eligible participants were randomized to either morning (122/245, 49.8%) or evening ET (123/245, 50.2%). In the overall population, there was no statistical difference in the change in total FACT-ES score from baseline to 12 weeks (p = 0.086). There were no statistically significant differences for any of the secondary endpoints between the two groups. The study provides evidence for the enthusiasm of patients and investigators to take part in chronotherapy studies. Additional prospective studies should be performed to assess how the timing of ET affects survival outcomes to ensure optimal patient care. Trial Registration: ClinicalTrials.gov, NCT04864405.
Collapse
Affiliation(s)
- M F Savard
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital and the University of Ottawa, Ottawa, ON, Canada.
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - M Ibrahim
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - D Saunders
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - G R Pond
- Department of Oncology, McMaster University, Hamilton, NY, Canada
| | - T L Ng
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital and the University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - A A Awan
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital and the University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - S Sehdev
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital and the University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - N Alqahtani
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital and the University of Ottawa, Ottawa, ON, Canada
| | - L Vandermeer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - F MacDonald
- Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - A A Beltran-Bless
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital and the University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - L Fallowfield
- SHORE-C, Brighton & Sussex Medical School, University of Sussex, Farmer, UK
| | - M Clemons
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital and the University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Ananthasubramaniam B, Venkataramanan R. Rhythm profiling using COFE reveals multi-omic circadian rhythms in human cancers in vivo. PLoS Biol 2025; 23:e3003196. [PMID: 40424435 DOI: 10.1371/journal.pbio.3003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
The study of ubiquitous circadian rhythms in human physiology requires regular measurements across time. Repeated sampling of the different internal tissues that house circadian clocks is both practically and ethically infeasible. Here, we present a novel unsupervised machine learning approach (COFE) that can use single high-throughput omics samples (without time labels) from individuals to reconstruct circadian rhythms across cohorts. COFE can simultaneously assign time labels to samples and identify rhythmic data features used for temporal reconstruction, while also detecting invalid orderings. With COFE, we discovered widespread de novo circadian gene expression rhythms in 11 different human adenocarcinomas using data from The Cancer Genome Atlas (TCGA) database. The arrangement of peak times of core clock gene expression was conserved across cancers and resembled a healthy functional clock except for the mistiming of a few key genes. Moreover, rhythms in the transcriptome were strongly associated with the cancer-relevant proteome. The rhythmic genes and proteins common to all cancers were involved in metabolism and the cell cycle. Although these rhythms were synchronized with the cell cycle in many cancers, they were uncoupled with clocks in healthy matched tissue. The targets of most of FDA-approved and potential anti-cancer drugs were rhythmic in tumor tissue with different amplitudes and peak times. These findings emphasize the utility of considering "time" in cancer therapy, and suggest a focus on clocks in healthy tissue rather than free-running clocks in cancer tissue. Our approach thus creates new opportunities to repurpose data without time labels to study circadian rhythms.
Collapse
|
7
|
Zeng B, Sun C, Li N, Chen Q, Rao M, Li K, Liu X, Xie S, Cheng J, Wang S, Wang X. NEK2 Control of Esophageal Squamous Cell Carcinoma Growth Based on Circadian Oscillation. Cancer Sci 2025; 116:1282-1294. [PMID: 39963019 PMCID: PMC12044676 DOI: 10.1111/cas.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 05/02/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a globally prevalent malignancy known for its aggressive nature and unfavorable outcomes. Identifying new biomarkers is crucial for the early detection and improved prognostication of ESCC. The circadian clock and NIMA-related kinase 2 (NEK2) are pivotal in cancer development. While the impact of circadian rhythm disruptions on ESCC progression is evident, the specific contribution of NEK2 to these changes is not well understood. Our study discovered NEK2 as a consistently differentially expressed gene across multiple datasets, with elevated expression in ESCC tissues. Notably, NEK2 overexpression was linked to increased ESCC cell proliferation, whereas its inhibition led to reduced cell growth and proliferation. Pathway analyses, including KEGG and Gene Set Enrichment Analysis (GSEA), indicated NEK2's association with established pathways like the cell cycle, and intriguingly, identified the circadian rhythm as a novel pathway influenced by NEK2. RNA sequencing data demonstrated NEK2's circadian rhythmic expression, and subsequent in vitro experiments confirmed its oscillation in synchronized ESCC cells. Moreover, we found a positive correlation between the efficacy of the NEK2 inhibitor INH6 and NEK2 expression levels in ESCC. In conclusion, our findings position NEK2 as a time-dependent oncogene and a potential biomarker in ESCC, highlighting its role in both tumorigenesis and the circadian rhythm.
Collapse
Affiliation(s)
- Boning Zeng
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
- Department of General Practice, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Chao Sun
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Nan Li
- School of Pharmaceutical SciencesShenzhen University Medical SchoolShenzhenChina
- Department of PharmacyCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Qiuling Chen
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Manni Rao
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Kai Li
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Xiaodi Liu
- Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Jiwu Cheng
- Department of Trauma Orthopedic, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Shaoxiang Wang
- School of Pharmaceutical SciencesShenzhen University Medical SchoolShenzhenChina
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| |
Collapse
|
8
|
RUZANOVA VERA, PROSKURINA ANASTASIA, RITTER GENRIKH, DOLGOVA EVGENIYA, OSHIKHMINA SOFYA, KIRIKOVICH SVETLANA, LEVITES EVGENIY, EFREMOV YAROSLAV, TARANOV OLEG, OSTANIN ALEXANDR, CHERNYKH ELENA, KOLCHANOV NIKOLAY, BOGACHEV SERGEY. The synergistic antitumor effect of Karanahan technology and in situ vaccination using anti-OX40 antibodies. Oncol Res 2025; 33:1229-1248. [PMID: 40296901 PMCID: PMC12034020 DOI: 10.32604/or.2025.059411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/24/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives Currently, there exist two approaches to the treatment of malignant neoplasms: the Karanahan technology and in situ vaccination, which are based on chronometric delivery of therapeutic agents to the tumor depending on the characteristics of tumor cells, as well as the immune status. The main purpose of this study was to experimentally prove the feasibility of combining the Karanahan technology and in situ vaccination with αOX40 antibodies into a single therapeutic platform to achieve a potent additive antitumor therapeutic effect. Methods BALB/c mice grafted with B-cellular lymphoma A20 were treated using the Karanahan technology consisting of intraperitoneal cyclophosphamide administrations and intratumoral DNA injections according to an individually determined therapeutic regimen, together with in situ vaccination with αOX40. A pathomorphological analysis of the organs of experimental animals that died during the initial attempt to combine the two technologies was carried out. An analysis of blood cell populations was performed to determine the safe time for antibody administration: the number of immune cells capable of activating systemic inflammation (CD11b+Ly-6C+, CD11b+Ly-6G+, CD3-NKp46+CD11b+), the presence of Fc receptor and OX40 on the surface of these cells, and the number of neutrophils activated to NETosis were analyzed. Based on the analysis results, the antitumor efficacy of various modes of combining the Karanahan technology and in situ vaccination was studied. Results When αOX40 was administered 5 h after each treatment using the Karanahan technology, mass death of mice caused by systemic inflammation and multiple organ failure was observed. The state of blood cells after the treatment using the Karanahan technology at the time points corresponding to antibody injections was analyzed to elucidate the reasons for this effect. It was found that at some time points, there occurs activation of the immune system and a powerful release (up to 16%) of monocytes and granulocytes carrying Fc receptor and OX40 on their surface into blood; when interacting with αOX40, they can activate the lytic potential of these cells. Activation of neutrophils to NETosis was also observed. Based on these findings, a study was carried out in different time regimes to combine the Karanahan technology and αOX40 injections. When αOX40 was injected into the points of minimal release of myeloid cells into the blood, increased survival rate and the greatest antitumor efficacy were observed: 37% of animals survived without relapses on day 100 after experiment initiation. Conclusions: The results obtained indicate that it is possible to combine the Karanahan technology and in situ vaccination with αOX40, with obligatory constant monitoring of the number of myeloid cells in peripheral blood to determine the safe time for antibody injection.
Collapse
Affiliation(s)
- VERA RUZANOVA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - ANASTASIA PROSKURINA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - GENRIKH RITTER
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - EVGENIYA DOLGOVA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - SOFYA OSHIKHMINA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| | - SVETLANA KIRIKOVICH
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - EVGENIY LEVITES
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - YAROSLAV EFREMOV
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
- Center for Shared Use of Microscopic Analysis of Biological Objects SB RAS, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - OLEG TARANOV
- Department of Microscopic Research, State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559, Russia
| | - ALEXANDR OSTANIN
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - ELENA CHERNYKH
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - NIKOLAY KOLCHANOV
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - SERGEY BOGACHEV
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
9
|
Zeng B, Sun C, Tang Q, Li N, Chen S, Yang Y, Wang X, Wang S. Bmal1-Mediated Circadian MELK Expression Potentiates MELK Inhibitor Chronotherapy for Esophageal Cancer. Mol Cancer Res 2025; 23:288-299. [PMID: 39699314 DOI: 10.1158/1541-7786.mcr-24-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a global health challenge. Circadian clock and maternal embryonic leucine zipper kinase (MELK) play a key role in tumorigenesis. However, a link between circadian clock dysregulation and MELK function in the occurrence and development of ESCC remains elusive. Here, In the in vivo and in vitro systems, we found for the first time that MELK exhibits pronounced circadian rhythms expression in mice esophageal tissue, xenograft model, and human ESCC cells. The diurnal differences expression between peak (ZT0) and trough (ZT12) points in normal esophageal tissue is nearly 10-fold. Circadian expression of MELK in ESCC cells was regulated by Bmal1 through binding to the MELK promoter. Supporting this, the levels of MELK were increased significantly in patients with ESCC and were accompanied by altered expression of core clock genes, especially, since Bmal1 is prominently upregulated. Most importantly, Bmal1-deleted eliminated the rhythmic expression of MELK, whereas the knockdown of other core genes had no effect on MELK expression. Furthermore, in nude mice with transplanted tumors, the anticancer effect of OTS167 at ZT0 administration is twice that of ZT12. Implications: Our findings suggest that MELK represents a therapeutic target, and can as a regulator of circadian control ESCC growth, with these findings advance our understanding of the clinical potential of chronotherapy and the importance of time-based MELK inhibition in cancer treatment.
Collapse
Affiliation(s)
- Boning Zeng
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Department of General Practice, Shenzhen Luohu People's Hospital, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chao Sun
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Qian Tang
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Nan Li
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Siying Chen
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yili Yang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
10
|
Gutu N, Ishikuma H, Ector C, Keilholz U, Herzel H, Granada AE. A combined mathematical and experimental approach reveals the drivers of time-of-day drug sensitivity in human cells. Commun Biol 2025; 8:491. [PMID: 40133704 PMCID: PMC11937577 DOI: 10.1038/s42003-025-07931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
The circadian clock plays a pivotal role in regulating various aspects of cancer, influencing tumor growth and treatment responses. There are significant changes in drug efficacy and adverse effects when drugs are administered at different times of the day, underscoring the importance of considering the time of day in treatments. Despite these well-established findings, chronotherapy approaches in drug treatment have yet to fully integrate into clinical practice, largely due to the stringent clinical requirements for proving efficacy and safety, alongside the need for deeper mechanistic insights. In this study, we employ a combined mathematical and experimental approach to systematically investigate the factors influencing time-of-day drug sensitivity in human cells. Here we show how circadian and drug properties independently shape time-of-day profiles, providing valuable insights into the temporal dynamics of treatment responses. Understanding how drug efficacy fluctuates throughout the day holds immense potential for the development of personalized treatment strategies aligned with an individual's internal biological clock, revolutionizing cancer treatment by maximizing therapeutic benefits. Moreover, our framework offers a promising avenue for refining future drug screening efforts, paving the way for more effective and targeted therapies across diverse tissue types.
Collapse
Affiliation(s)
- Nica Gutu
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Humboldt Universität zu Berlin, Berlin, Germany
| | - Hitoshi Ishikuma
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Ector
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Humboldt Universität zu Berlin, Berlin, Germany
| | - Ulrich Keilholz
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hanspeter Herzel
- Humboldt Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Berlin, Germany
| | - Adrián E Granada
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin, Germany.
| |
Collapse
|
11
|
Zhang S, Chen X, Li J, Xu A, Bode AM, Luo X. The role of cryptochrome (CRY) in cancer: molecular mechanisms and Clock-based therapeutic strategies. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40109093 DOI: 10.3724/abbs.2025025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The circadian rhythm is a phenomenon in which physiological, behavioral, and biochemical processes within an organism naturally fluctuate over a period of approximately 24 hours. This phenomenon is ubiquitous in living organisms. Disruption of circadian rhythms in mammals leads to different diseases, such as cancer, and neurodegenerative and metabolic disorders. In specific tissues, numerous genes have been found to have circadian oscillations, suggesting a broad role for rhythm genes in the regulation of gene expression. This review systematically summarizes the role of cryptochromes (CRYs) in the initiation and progression of different types of cancer and discusses the relationships between Clock genes and the tumor microenvironment (TME), as well as clock-based therapeutic strategies.
Collapse
Affiliation(s)
- Shuzhao Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiayi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Anan Xu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha 410078, China
| |
Collapse
|
12
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
13
|
Rudisell E, Weant K, Porcu A. Chronotherapeutic considerations of benzodiazepine administration for agitation management in the emergency department. BMJ MENTAL HEALTH 2025; 28:e301189. [PMID: 40032552 PMCID: PMC11877154 DOI: 10.1136/bmjment-2024-301189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Agitation in the emergency department (ED) affects up to 2.6% of encounters, posing significant risks to patients and caregivers. This review investigates the impact of circadian rhythms on benzodiazepine (BZD) pharmacokinetics and pharmacodynamics, focusing on how dosing time influences outcomes in managing acute agitation. METHODS A comprehensive literature search was performed using PubMed and Google Scholar (updated April 2024) to identify studies on BZD use in adult ED patients for acute agitation. Search terms included "antipsychotic agents," "lorazepam," "midazolam," "diazepam," and "emergency service." Studies focusing solely on substance intoxication were excluded. Priority was given to double-blind clinical trials, while open-label studies were included if no double-blind data were available. Referenced citations from identified publications were also reviewed. RESULTS Twenty-nine studies met the inclusion criteria: 16 randomised, double-blinded placebo-controlled trials, 5 prospective open-label studies and 8 retrospective reviews. Of these, 22 studies either did not report the time of day of patient recruitment or recruited patients over a year-long time frame. Four studies that specified the time of day of patient recruitment suggested a possible circadian variation in BZD sedation efficacy. Additionally, three studies that reported recruitment months revealed potential seasonal patterns in sedation requirements and efficacy. CONCLUSIONS Circadian rhythms appear to influence BZD metabolism and therapeutic effects, which could have implications for optimising treatment strategies. Aligning BZD dosing schemes with biological timing may enhance treatment outcomes and minimise adverse effects. Further research is needed to validate these findings and develop personalised chronopharmacotherapy strategies for acute agitation in the ED.
Collapse
Affiliation(s)
- Emily Rudisell
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Clinical Pharmacy and Outcome Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Kyle Weant
- Department of Clinical Pharmacy and Outcome Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
14
|
Letai A, de The H. Conventional chemotherapy: millions of cures, unresolved therapeutic index. Nat Rev Cancer 2025; 25:209-218. [PMID: 39681637 DOI: 10.1038/s41568-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent decades, millions of patients with cancer have been cured by chemotherapy alone. By 'cure', we mean that patients with cancers that would be fatal if left untreated receive a time-limited course of chemotherapy and their cancer disappears, never to return. In an era when hundreds of thousands of cancer genomes have been sequenced, a remarkable fact persists: in most patients who have been cured, we still do not fully understand the mechanisms underlying the therapeutic index by which the tumour cells are killed, but normal cells are somehow spared. In contrast, in more recent years, patients with cancer have benefited from targeted therapies that usually do not cure but whose mechanisms of therapeutic index are, at least superficially, understood. In this Perspective, we will explore the various and sometimes contradictory models that have attempted to explain why chemotherapy can cure some patients with cancer, and what gaps in our understanding of the therapeutic index of chemotherapy remain to be filled. We will summarize principles which have benefited curative conventional chemotherapy regimens in the past, principles which might be deployed in constructing combinations that include modern targeted therapies.
Collapse
Affiliation(s)
- Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Hugues de The
- College de France, CIRB, INSERM, CNRS, Université PSL Paris, Paris, France.
- Hematology Laboratory, St Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
- IRSL, INSERM, CNRS, Université Paris-Cité, Paris, France.
| |
Collapse
|
15
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Cajochen C, Schmidt C. The Circadian Brain and Cognition. Annu Rev Psychol 2025; 76:115-141. [PMID: 39441908 DOI: 10.1146/annurev-psych-022824-043825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Circadian rhythms are inherent to living organisms from single cells to humans and operate on a genetically determined cycle of approximately 24 hours. These endogenous rhythms are aligned with the external light/dark cycle of the Earth's rotation and offer the advantage of anticipating environmental changes. Circadian rhythms act directly on human cognition and indirectly through their fundamental influence on sleep/wake cycles. The strength of the circadian regulation of performance depends on the accumulated sleep debt and the cognitive domain, and it has been suggested to involve the activation of ascending arousal systems and their interaction with attention and other cognitive processes. In addition, attention-related cortical responses show extensive circadian rhythms, the phases of which vary across brain regions. This review discusses the impact of the circadian system on sleep/wake regulation and cognitive performance. It further addresses the health implications of circadian disruption, particularly in relation to mental and neurological disorders.
Collapse
Affiliation(s)
- Christian Cajochen
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel, Switzerland
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, Basel, Switzerland;
| | - Christina Schmidt
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
- Sleep & Chronobiology Laboratory, GIGA-Research, CRC Human Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Kisamore C, Kisamore C, Walker W. Circadian Rhythm Disruption in Cancer Survivors: From Oncogenesis to Quality of Life. Cancer Med 2024; 13:e70353. [PMID: 39463009 PMCID: PMC11513439 DOI: 10.1002/cam4.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Circadian rhythms are approximately 24-hour cycles in physiological and behavioral processes. They are entrained to the external solar day via blue wavelength light. Disruptions in these intrinsic rhythms can lead to circadian dysfunction, which has several negative implications on human health, including cancer development and progression. AIMS Here we review the molecular mechanisms of circadian disruption and their impact on tumor development and progression, discuss the interplay between circadian dysfunction and cancer in basic scientific studies and clinical data, and propose the potential clinical implications of these data that may be used to improve patient outcomes and reduce cost of treatment. MATERIALS & METHODS Using scientific literature databases, relevant studies were analyzed to draw overarching conclusions of the relationship between circadian rhythm dysruption and cancer. CONCLUSIONS Circadian disruption can be mediated by a number of environmental factors such as exposure to light at night, shift work, jetlag, and social jetlag which drive oncogenesis. Tumor growth and progression, as well as treatment, can lead to long-term alterations in circadian rhythms that negatively affect quality of life in cancer survivors.
Collapse
Affiliation(s)
- Claire O. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Caleb A. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- West Virginia University Cancer InstituteMorgantownWest VirginiaUSA
| |
Collapse
|
18
|
Karaboué A, Innominato PF, Wreglesworth NI, Duchemann B, Adam R, Lévi FA. Why does circadian timing of administration matter for immune checkpoint inhibitors' efficacy? Br J Cancer 2024; 131:783-796. [PMID: 38834742 PMCID: PMC11369086 DOI: 10.1038/s41416-024-02704-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Tolerability and antitumour efficacy of chemotherapy and radiation therapy can vary largely according to their time of administration along the 24-h time scale, due to the moderation of their molecular and cellular mechanisms by circadian rhythms. Recent clinical data have highlighted a striking role of dosing time for cancer immunotherapy, thus calling for a critical evaluation. METHODS Here, we review the clinical data and we analyse the mechanisms through which circadian rhythms can influence outcomes on ICI therapies. We examine how circadian rhythm disorders can affect tumour immune microenvironment, as a main mechanism linking the circadian clock to the 24-h cycles in ICIs antitumour efficacy. RESULTS Real-life data from 18 retrospective studies have revealed that early time-of-day (ToD) infusion of immune checkpoint inhibitors (ICIs) could enhance progression-free and/or overall survival up to fourfold compared to late ToD dosing. The studies involved a total of 3250 patients with metastatic melanoma, lung, kidney, bladder, oesophageal, stomach or liver cancer from 9 countries. Such large and consistent differences in ToD effects on outcomes could only result from a previously ignored robust chronobiological mechanism. The circadian timing system coordinates cellular, tissue and whole-body physiology along the 24-h timescale. Circadian rhythms are generated at the cellular level by a molecular clock system that involves 15 specific clock genes. The disruption of circadian rhythms can trigger or accelerate carcinogenesis, and contribute to cancer treatment failure, possibly through tumour immune evasion resulting from immunosuppressive tumour microenvironment. CONCLUSIONS AND PERSPECTIVE Such emerging understanding of circadian rhythms regulation of antitumour immunity now calls for randomised clinical trials of ICIs timing to establish recommendations for personalised chrono-immunotherapies with current and forthcoming drugs.
Collapse
Affiliation(s)
- Abdoulaye Karaboué
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770, Montfermeil, France
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- Cancer Chronotherapy Team, Division of Biomedical Sciences, Medical School, Warwick University, Coventry, CV4 7AL, UK
| | - Nicholas I Wreglesworth
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- School of Medical Sciences, Bangor University, Bangor, LL57 2PW, UK
| | - Boris Duchemann
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000, Bobigny, France
| | - René Adam
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Hepato-Biliary Center, Paul Brousse Hospital, Assistance Publique-Hopitaux de Paris, 94800, Villejuif, France
| | - Francis A Lévi
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France.
- Gastro-intestinal and Medical Oncology Service, Paul Brousse Hospital, 94800, Villejuif, France.
- Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
19
|
Zhu Z, Chen G, Yu S, Huang X, Lu X, Feng G, Yi M, Wang J, Liu Y, Chen L. Circadian clock disruption stimulates bone loss via regulatory T cell-Mediated regulation of IL-10 expression. Int Immunopharmacol 2024; 139:112589. [PMID: 39032468 DOI: 10.1016/j.intimp.2024.112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Circadian rhythms play a crucial role in regulating various physiological processes, including specific immune functions that enhance the body's ability to anticipate and respond to threats effectively. However, research on the impact of circadian rhythms on osteoimmunology remains limited. Our study uncovered that circadian disruption leads to bone mass loss by reducing the population of Treg cells in the bone marrow. Furthermore, we observed a significant decrease in serum IL-10 cytokine levels in jet lagged mice. In our current investigation, we explored the anti-osteoclastogenic effects of IL-10 and found that IL-10 inhibits RANKL-induced osteoclastogenesis in a dose-dependent manner. Our findings suggest that the diminished anti-osteoclastogenic properties of Tregs under circadian disruption are mediated by IL-10 cytokine production. Moreover, our discoveries propose that administration of IL-10 or butyrate could potentially reverse bone mass loss in individuals experiencing jet lag.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yijun Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
20
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Munteanu C, Turti S, Achim L, Muresan R, Souca M, Prifti E, Mârza SM, Papuc I. The Relationship between Circadian Rhythm and Cancer Disease. Int J Mol Sci 2024; 25:5846. [PMID: 38892035 PMCID: PMC11172077 DOI: 10.3390/ijms25115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The circadian clock regulates biological cycles across species and is crucial for physiological activities and biochemical reactions, including cancer onset and development. The interplay between the circadian rhythm and cancer involves regulating cell division, DNA repair, immune function, hormonal balance, and the potential for chronotherapy. This highlights the importance of maintaining a healthy circadian rhythm for cancer prevention and treatment. This article investigates the complex relationship between the circadian rhythm and cancer, exploring how disruptions to the internal clock may contribute to tumorigenesis and influence cancer progression. Numerous databases are utilized to conduct searches for articles, such as NCBI, MEDLINE, and Scopus. The keywords used throughout the academic archives are "circadian rhythm", "cancer", and "circadian clock". Maintaining a healthy circadian cycle involves prioritizing healthy sleep habits and minimizing disruptions, such as consistent sleep schedules, reduced artificial light exposure, and meal timing adjustments. Dysregulation of the circadian clock gene and cell cycle can cause tumor growth, leading to the need to regulate the circadian cycle for better treatment outcomes. The circadian clock components significantly impact cellular responses to DNA damage, influencing cancer development. Understanding the circadian rhythm's role in tumor diseases and their therapeutic targets is essential for treating and preventing cancer. Disruptions to the circadian rhythm can promote abnormal cell development and tumor metastasis, potentially due to immune system imbalances and hormonal fluctuations.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sabina Turti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Larisa Achim
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Raluca Muresan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Marius Souca
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Eftimia Prifti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
22
|
Catozzi S, Assaad S, Delrieu L, Favier B, Dumas E, Hamy AS, Latouche A, Crochet H, Blay JY, Mullaert J, Ballesta A, Heudel P. Early morning immune checkpoint blockade and overall survival of patients with metastatic cancer: An In-depth chronotherapeutic study. Eur J Cancer 2024; 199:113571. [PMID: 38301362 DOI: 10.1016/j.ejca.2024.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Recent retrospective studies suggest potential large patient's benefit through proper timing of immune checkpoint blockers (ICB). The association between ICB treatment timing and patient survival, neoplastic response and toxicities was investigated, together with interactions with performance status (PS) and sex. METHODS A cohort of patients with metastatic or locally advanced solid tumors, who received pembrolizumab, nivolumab, atezolizumab, durvalumab, or avelumab, alone or with concomitant chemotherapy, between November 2015 and March 2021, at the Centre Leon Bérard (France), was retrospectively studied. RESULTS 361 patients were investigated (80% non-small cell lung cancer patients, mean [SD] age: 63 [11] years, 39% of women, 83% PS0-1 at first infusion, 19% received concomitant chemotherapy). ICB were administered from 07:25 to 17:21 and optimal morning/afternoon cut-off was 11:37. Morning infusions were associated with increased OS as compared to afternoon (median 30.3 vs 15.9 months, p = 0.0024; HR 1.56 [1.17-2.1], p = 0.003). A strong PS-timing interaction was found (PS0-1 patients, HR=1.53 [1.10-2.12], p = 0.011; PS2-3 patients, HR=0.50 [0.25-0.97], p = 0.042). Morning PS0-1 patients displayed increased OS (median 36.7 vs 21.3 months, p = 0.023), partial/complete response rate (58% vs 41%, p = 0.027), and grade1-3 toxicities (49% vs 34%, p = 0.028). Mortality risk ratio between infusions at worst time-of-day, estimated at 13:36 [12:48-14:23], and in early morning was equal to 4.8 ([2.3-10.1], p = 0.008). Timing differences in toxicities resulted significant only in female patients (women vs men: p < 0.001 vs 0.4). CONCLUSIONS Early morning ICB infusion was associated with increased OS, response, and toxicities in patients with PS0-1 as compared to later infusions within the day. Prospective randomized trials are needed to confirm this retrospective study.
Collapse
Affiliation(s)
- Simona Catozzi
- Inserm U900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech, CBIO, PSL Research University, 35 rue Dailly, 92250 Saint-Cloud, France
| | - Souad Assaad
- Département de cancérologie médicale, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Lidia Delrieu
- Residual Tumour and Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Institut Curie, Paris University, 75005 Paris, France
| | - Bertrand Favier
- Département de pharmacie oncologique, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Elise Dumas
- Residual Tumour and Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Institut Curie, Paris University, 75005 Paris, France
| | - Anne-Sophie Hamy
- Residual Tumour and Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Institut Curie, Paris University, 75005 Paris, France; Medical oncology, Université Paris, Institut Curie, Paris, France
| | - Aurélien Latouche
- INSERM U900, Statistical Methods for Precision Medicine Institut Curie, PSL Research University, 35 rue Dailly, Saint-Cloud, France; Conservatoire National des Arts et Métiers, Paris, France
| | - Hugo Crochet
- Direction des systèmes d'information, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Jean-Yves Blay
- Département de cancérologie médicale, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; Directeur général du Centre Léon Bérard, Université de Lyon, 28 rue Laennec, 69008 Lyon, France
| | - Jimmy Mullaert
- Faculty of Medicine, University of Versailles Saint-Quentin, Université Paris Saclay, 78000 Versailles, France. INSERM U900, Statistical Methods for Precision Medicine, Institut Curie, 35 rue Dailly, 92210 Saint-Cloud, France
| | - Annabelle Ballesta
- Inserm U900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech, CBIO, PSL Research University, 35 rue Dailly, 92250 Saint-Cloud, France.
| | - Pierre Heudel
- Département de cancérologie médicale, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| |
Collapse
|
23
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
24
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
Lévi FA, Okyar A, Hadadi E, Innominato PF, Ballesta A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 2024; 64:89-114. [PMID: 37722720 DOI: 10.1146/annurev-pharmtox-051920-095416] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.
Collapse
Affiliation(s)
- Francis A Lévi
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Paris-Saclay University, Villejuif, France;
- Gastrointestinal and General Oncology Service, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Beyazit-Istanbul, Turkey
| | - Eva Hadadi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Myeloid Cell Immunology, Center for Inflammation Research VIB, Zwijnaarde, Belgium
| | - Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School and Cancer Research Centre, University of Warwick, Coventry, United Kingdom
| | - Annabelle Ballesta
- Inserm Unit 900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech CBIO-Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| |
Collapse
|
26
|
Li Y, Lu L, Androulakis IP. The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach. J Pharm Sci 2024; 113:33-46. [PMID: 37597751 PMCID: PMC10840710 DOI: 10.1016/j.xphs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.
Collapse
Affiliation(s)
- Yannuo Li
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Lingjun Lu
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08540, USA.
| |
Collapse
|
27
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
28
|
Hughes BR, Shanaz S, Ismail-Sutton S, Wreglesworth NI, Subbe CP, Innominato PF. Circadian lifestyle determinants of immune checkpoint inhibitor efficacy. Front Oncol 2023; 13:1284089. [PMID: 38111535 PMCID: PMC10727689 DOI: 10.3389/fonc.2023.1284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Immune Checkpoint Inhibitors (ICI) have revolutionised cancer care in recent years. Despite a global improvement in the efficacy and tolerability of systemic anticancer treatments, a sizeable proportion of patients still do not benefit maximally from ICI. Extensive research has been undertaken to reveal the immune- and cancer-related mechanisms underlying resistance and response to ICI, yet more limited investigations have explored potentially modifiable lifestyle host factors and their impact on ICI efficacy and tolerability. Moreover, multiple trials have reported a marked and coherent effect of time-of-day ICI administration and patients' outcomes. The biological circadian clock indeed temporally controls multiple aspects of the immune system, both directly and through mediation of timing of lifestyle actions, including food intake, physical exercise, exposure to bright light and sleep. These factors potentially modulate the immune response also through the microbiome, emerging as an important mediator of a patient's immune system. Thus, this review will look at critically amalgamating the existing clinical and experimental evidence to postulate how modifiable lifestyle factors could be used to improve the outcomes of cancer patients on immunotherapy through appropriate and individualised entrainment of the circadian timing system and temporal orchestration of the immune system functions.
Collapse
Affiliation(s)
- Bethan R. Hughes
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Sadiq Shanaz
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Seline Ismail-Sutton
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Nicholas I. Wreglesworth
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Christian P. Subbe
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
- Department of Acute Medicine, Ysbyty Gwynedd, Bangor, United Kingdom
| | - Pasquale F. Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Cancer Chronotherapy Team, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Research Unit ‘Chronotherapy, Cancers and Transplantation’, Faculty of Medicine, Paris-Saclay University, Villejuif, France
| |
Collapse
|
29
|
Zhu H, Chen J, Wen Z, Li J, Yu Q, Liao W, Luo X. The role of circadian clock genes in colorectal carcinoma: Novel insights into regulatory mechanism and implications in clinical therapy. Life Sci 2023; 333:122145. [PMID: 37797685 DOI: 10.1016/j.lfs.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Colorectal cancer (CRC) is a lethal malignancy with limited treatment strategies. Accumulating evidence indicates that CRC tumorigenesis, progression and metastasis are intimately associated with circadian clock, an inherent 24-h cycle oscillation of biochemical, physiological functions in almost every eukaryote. In the present review, we summarize the altered expression level of circadian genes in CRC and the prognosis associated with gene abundance switch. We illustrate the function and potential mechanisms of circadian genes in CRC pathogenesis and progression. Moreover, circadian based-therapeutic strategies including chronotherapy, therapeutics targeting potential circadian components, and melatonin treatment in CRC are also highlighted.
Collapse
Affiliation(s)
- Haodong Zhu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Jiawei Chen
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Jinfei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Qinyang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, PR China.
| |
Collapse
|
30
|
Zhang S, Yu Y, Sheng M, Chen X, Wu Q, Kou J, Chen G. Ruscogenin timing administration mitigates cerebral ischemia-reperfusion injury through regulating circadian genes and activating Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155028. [PMID: 37659295 DOI: 10.1016/j.phymed.2023.155028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Ruscogenin (Rus), a steroidal sapogenin extracted from Ophiopogon japonicus (L. f.) Ker-Gawl., has the effect of alleviating cerebral ischemia-reperfusion injury (IRI), acute lung injury. At present, the chronopharmacological effects of Rus are still unknown. PURPOSE This study explored the alleviating effect and mechanism of Rus timing administration on mice cerebral IRI. METHODS The animals in different groups were administrated Rus (10 mg/kg) by gavage at four time points (23:00-01:00, 05:00-07:00, 11:00-13:00, 17:00-19:00) respectively for 3 days. On the 4th day, middle cerebral artery occlusion (MCAO) surgery was operated during 5:00-7:00. Behavioral tests were executed and the brain was collected for infarct volume, qPCR and immunoblot detection. The levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin-1beta (IL-1β) and inducible nitric oxide synthase (iNOS) were detected by qPCR. Glutathione (GSH), superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in serum and cerebral cortex were detected. The clock genes were tested by western blot. Based on these results, 17:00-19:00 was selected to administrate Rus for further mechanism study and Nrf2 blocker group was administrated all-trans-retinoic acid (ATRA) at 14:00 for 3 days. RESULTS Administration of Rus reduced cerebral infarcted volume, ameliorated the behavior score and upregulated the mRNA and protein expression of Per1, Bmal1, Clock, Rev-erbα, transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1). Administration of Rus during 17:00-19:00 had better preventive effect than other three time points. Combined administration of ATRA blunted the preventive effect of Rus. CONCLUSION The preventive effect of Rus is affected by the time of administration, which was regulated by Nrf2 pathway. Taken together, we provide solid evidence to suggest that different administration time point affect the effectiveness of Rus in alleviating IRI.
Collapse
Affiliation(s)
- Sanli Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Yan Yu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Mingyue Sheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Xun Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Qi Wu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing , Jiangsu 211198, China.
| | - Junping Kou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, 639 Longmian Road, Nanjing, Jiangsu 211198, China.
| | - Gangling Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, 639 Longmian Road, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
31
|
Li B, Chen Q, Feng Y, Wei T, Zhong Y, Zhang Y, Feng Q. Glucose restriction induces AMPK-SIRT1-mediated circadian clock gene Per expression and delays NSCLC progression. Cancer Lett 2023; 576:216424. [PMID: 37778683 DOI: 10.1016/j.canlet.2023.216424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
The rhythmic expression of the circadian clock is intimately linked to the health status of the body. Disturbed circadian clock rhythms might lead to a wide range of metabolic diseases and even cancers. Our previous study showed that glucose restriction was able to inhibit non-small cell lung cancer (NSCLC). In the current study, we found that glucose restriction enhanced apoptosis and cell growth delay in NSCLC cells. In addition, we used GEPIA database analysis to derive different effects of each circadian clock gene on lung cancer tissue. Among these circadian clock genes, Per (Period) is lowly expressed in cancer tissues and highly expressed in normal tissues. Moreover, the higher expression of Per in cancer patients has a better prognostic significance. Furthermore, we revealed that glucose restriction induced the expression of the circadian clock gene Per in NSCLC cells by upregulating SIRT1 (Sirtuin1) via activation of the energy response factor AMPK (AMP-activated protein kinase). Changes in Per expression following upregulation or downregulation of AMPK were consistent with AMPK expression. Additionally, a low-carbohydrate ketogenic diet significantly delayed tumor progression in a xenograft tumor model of severe combined immunodeficiency (SCID) mice. Meanwhile, the ketogenic diet increased the expression of AMPK, SIRT1 and Per in vivo. Besides, the ketogenic diet was found to restore the normal rhythmic level of Per by Zeitgeber Time (ZT) experiments. Taken these together, these results indicated a novel mechanism that glucose restriction induces AMPK-SIRT1 mediated circadian clock gene Per expression and delays NSCLC progression, which provided more evidence for glucose restriction as an adjuvant clinical therapeutic strategy in NSCLC.
Collapse
Affiliation(s)
- Bohan Li
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianfeng Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yucong Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wei
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxia Zhong
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuandie Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Wilantri S, Grasshoff H, Lange T, Gaber T, Besedovsky L, Buttgereit F. Detecting and exploiting the circadian clock in rheumatoid arthritis. Acta Physiol (Oxf) 2023; 239:e14028. [PMID: 37609862 DOI: 10.1111/apha.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Over the past four decades, research on 24-h rhythms has yielded numerous remarkable findings, revealing their genetic, molecular, and physiological significance for immunity and various diseases. Thus, circadian rhythms are of fundamental importance to mammals, as their disruption and misalignment have been associated with many diseases and the abnormal functioning of many physiological processes. In this article, we provide a brief overview of the molecular regulation of 24-h rhythms, their importance for immunity, the deleterious effects of misalignment, the link between such pathological rhythms and rheumatoid arthritis (RA), and the potential exploitation of chronobiological rhythms for the chronotherapy of inflammatory autoimmune diseases, using RA as an example.
Collapse
Affiliation(s)
- Siska Wilantri
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | | | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
33
|
Diamantopoulou Z, Gvozdenovic A, Aceto N. A new time dimension in the fight against metastasis. Trends Cell Biol 2023; 33:736-748. [PMID: 36967300 DOI: 10.1016/j.tcb.2023.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Despite advances in uncovering vulnerabilities, identifying biomarkers, and developing more efficient treatments, cancer remains a threat because of its ability to progress while acquiring resistance to therapy. The circadian rhythm governs most of the cellular functions implicated in cancer progression, and its exploitation therefore opens new promising directions in the fight against metastasis. In this review we summarize the role of the circadian rhythm in tumor development and progression, with emphasis on the circadian rhythm-regulated elements that control the generation of circulating tumor cells (CTCs) and metastasis. We then present data on chronotherapy and discuss how circadian rhythm investigations may open new paths to more effective anticancer treatments.
Collapse
Affiliation(s)
- Zoi Diamantopoulou
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Zong W, Seney ML, Ketchesin KD, Gorczyca MT, Liu AC, Esser KA, Tseng GC, McClung CA, Huo Z. Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model. Stat Med 2023; 42:3236-3258. [PMID: 37265194 PMCID: PMC10425922 DOI: 10.1002/sim.9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).
Collapse
Affiliation(s)
- Wei Zong
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Michael T. Gorczyca
- Department of Computational and Systems Biology, University of Pittsburgh, PA, USA
| | - Andrew C. Liu
- Department of Physiology and Aging, University of Florida, FL, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, FL, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, FL, USA
| |
Collapse
|
35
|
Hesse J, Müller T, Relógio A. An integrative mathematical model for timing treatment toxicity and Zeitgeber impact in colorectal cancer cells. NPJ Syst Biol Appl 2023; 9:27. [PMID: 37353516 DOI: 10.1038/s41540-023-00287-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Increasing evidence points to a role of the circadian clock in the regulation of cancer hallmarks with a strong impact on the understanding and treatment of this disease. Anti-cancer treatment can be personalized considering treatment timing. Here we present a new mathematical model based on data from three colorectal cancer cell lines and core-clock knock-outs, which couples the circadian and drug metabolism network, and that allows to determine toxicity profiles for a given drug and cell type. Moreover, this model integrates external Zeitgebers and thus may be used to fine-tune toxicity by using external factors, such as light, and therefore, to a certain extent, help fitting the endogenous rhythms of the patients to a defined clinic routine facilitating the implementation of time-dependent treatment in clinical practice.
Collapse
Affiliation(s)
- Janina Hesse
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Tim Müller
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Angela Relógio
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
36
|
Bouchahda M, Ulusakarya A, Thirot-Bidault A, Attari A, Bossevot R, Tuligenga R, Hammel P, Adam R, Levi F. Multicentre, interventional, single-arm study protocol of telemonitored circadian rhythms and patient-reported outcomes for improving mFOLFIRINOX safety in patients with pancreatic cancer (MultiDom, NCT04263948). BMJ Open 2023; 13:e069973. [PMID: 37286324 DOI: 10.1136/bmjopen-2022-069973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION Circadian clocks regulate cellular proliferation and drug effects. Tolerability and/or efficacy of anticancer therapies have been improved by their administration according to circadian rhythms, while being predicted by circadian robustness. The combination of leucovorin, fluorouracil, irinotecan and oxaliplatin (mFOLFIRINOX) is a standard treatment for pancreatic ductal adenocarcinoma (PDAC), that generates grades 3-4 adverse events in the majority of patients and an estimated 15%-30% emergency admission rate. The MultiDom study evaluates whether mFOLFIRINOX safety can be improved using a novel circadian-based telemonitoring-telecare platform in patients at home. The detection of early warning signals of clinical toxicities could guide their early management, possibly preventing emergency hospital admissions. METHODS AND ANALYSIS This multicentre, interventional, prospective, longitudinal, single-arm study hypothesises that the mFOLFIRINOX-related emergency admission rate will be 5% (95% CI 1.7% to 13.7%), among 67 patients with advanced PDAC. Study participation is 7 weeks for each patient, including a reference week before chemotherapy onset and 6 weeks afterwards. Accelerometry and body temperature are measured q1-min using a continuously worn telecommunicating chest surface sensor, daily body weight is self-measured with a telecommunicating balance and 23 electronic patient-reported outcomes (e-PROs) are self-rated using a tablet. Hidden Markov model, spectral analyses and other algorithms automatically compute physical activity, sleep, temperature, body weight change, e-PRO severity and 12 circadian sleep/activity parameters, including the dichotomy index I<O (% activity 'in-bed' below median activity 'out-of-bed'), once to four times daily. Health professionals access visual displays of near-real time parameter dynamics and receive automatic alerts, with trackable digital follow-up. ETHICS AND DISSEMINATION The study has been approved by the National Agency for Medication and Health Product Safety (ANSM) and Ethics Committee West V (2 July 2019; third amendment, 14 June 2022). The data will be disseminated at conferences and in peer-reviewed journals and will support large-scale randomised evaluation. TRIAL REGISTRATION NUMBERS NCT04263948 and ID RCB-2019-A00566-51.
Collapse
Affiliation(s)
- Mohamed Bouchahda
- Oncology Unit, Clinique du Mousseau, Ramsay-Sante, Evry, France
- Research Unit 'Chronotherapy, Cancers and Transplantation', Faculty of Medecine, Paris-Saclay University, Villejuif, France
- Oncology Unit, Clinique de St Jean, Melun, France
- Digestive and Medical Oncology Unit, Paul Brousse Hospital, Paris-Saclay University, Villejuif, France
| | - Ayhan Ulusakarya
- Research Unit 'Chronotherapy, Cancers and Transplantation', Faculty of Medecine, Paris-Saclay University, Villejuif, France
- Digestive and Medical Oncology Unit, Paul Brousse Hospital, Paris-Saclay University, Villejuif, France
| | | | - Amal Attari
- Research Unit 'Chronotherapy, Cancers and Transplantation', Faculty of Medecine, Paris-Saclay University, Villejuif, France
- Future of Healthcare Program Research & Innovation Direction| France, Altran/Cap Gemini, Meudon, France
| | - Rachel Bossevot
- Digestive and Medical Oncology Unit, Paul Brousse Hospital, Paris-Saclay University, Villejuif, France
| | | | - Pascal Hammel
- Digestive and Medical Oncology Unit, Paul Brousse Hospital, Paris-Saclay University, Villejuif, France
| | - René Adam
- Research Unit 'Chronotherapy, Cancers and Transplantation', Faculty of Medecine, Paris-Saclay University, Villejuif, France
- Hepato-Biliary Centre, APHP Paul Brousse Hospital, Villejuif, France
| | - Francis Levi
- Research Unit 'Chronotherapy, Cancers and Transplantation', Faculty of Medecine, Paris-Saclay University, Villejuif, France
- Digestive and Medical Oncology Unit, Paul Brousse Hospital, Paris-Saclay University, Villejuif, France
- Warwick University, Warwick, UK
| |
Collapse
|
37
|
Wong KC, Jayapalan JJ, Subramanian P, Ismail MN, Abdul-Rahman PS. Label-free quantitative mass spectrometry analysis of the circadian proteome of Drosophila melanogaster lethal giant larvae mutants reveals potential therapeutic effects of melatonin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22008. [PMID: 36915983 DOI: 10.1002/arch.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023]
Abstract
Mutation in the Drosophila melanogaster lethal giant larvae (lgl), a tumor suppressor gene with a well-established role in cellular polarity, is known to results in massive cellular proliferation and neoplastic outgrowths. Although the tumorigenic properties of lgl mutant have been previously studied, however, little is known about its consequences on the proteome. In this study, mass spectrometry-based label-free quantitative proteomics was employed to investigate the changes in the head and intestinal tissues proteins of Drosophila melanogaster, due to lgl mutation and following treatment with melatonin. Additionally, to uncover the time-influenced variations in the proteome during tumorigenesis and melatonin treatment, the rhythmic expression of proteins was also investigated at 6-h intervals within 24-h clock. Together, the present study has identified 434 proteins of altered expressions (p < 0.05 and fold change ±1.5) in the tissues of flies in response to lgl mutation as well as posttreatment with melatonin. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed proteins revealed that lgl mutation had significantly affected the biological functions, including metabolism, and protein synthesis and degradation, in flies' tissues. Besides, melatonin had beneficially mitigated the deleterious effects of lgl mutation by reversing the alterations in protein expression closer to baseline levels. Further, changes in protein expression in the tissues due to lgl mutation and melatonin treatment were found rhythmically orchestrated. Together, these findings provide novel insight into the pathways involved in lgl-induced tumorigenesis as well as demonstrated the efficacy of melatonin as a potential anticancer agent. Data are available via ProteomeXchange with identifier PXD033191.
Collapse
Affiliation(s)
- Kar-Cheng Wong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Gomatou G, Karachaliou A, Veloudiou OZ, Karvela A, Syrigos N, Kotteas E. The Role of REV-ERB Receptors in Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24108980. [PMID: 37240325 DOI: 10.3390/ijms24108980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
REV-ERB receptors are members of the nuclear receptor superfamily of proteins, which act as both intracellular receptors and transcription factors, therefore modulating the expression of target genes. REV-ERBs act as transcription repressors because of their unique structure. Their predominant role involves the control of peripheral circadian rhythmicity by participating in a transcription-translation feedback loop with other major clock genes. Regarding their role in cancer pathogenesis, recent studies in various cancerous tissues have revealed that their expression was downregulated in the majority of the cases. Dysregulation of their expression was also implicated in cancer-associated cachexia. The pharmacological restoration of their effects is feasible with synthetic agonists, which have been explored in preclinical studies but with scarce data. There is a need for further investigation, primarily with mechanistic studies, on the effect of the REV-ERB-induced circadian rhythm deregulation in carcinogenesis and cancer-related systemic effects, such as cachexia, in order to address the potential of relevant therapeutic implications.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
39
|
Abusamak M, Al-Tamimi M, Al-Waeli H, Tahboub K, Cai W, Morris M, Tamimi F, Nicolau B. Chronotherapy in dentistry: A scoping review. Chronobiol Int 2023; 40:684-697. [PMID: 37052061 DOI: 10.1080/07420528.2023.2200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
The circadian clock modulates almost all vital aspects of our physiology and metabolism, including processes relevant to dentistry, such as healing, inflammation and nociception. Chronotherapy is an emerging field aiming to improve therapeutic efficacy and decrease adverse effects on health outcomes. This scoping review aimed to systematically map the evidence underpinning chronotherapy in dentistry and to identify gaps in knowledge. We conducted a systematic scoping search using four databases (Medline, Scopus, CINAHL and Embase). We identified 3908 target articles screened by two blinded reviewers, and only original animal and human studies investigating the chronotherapeutic use of drugs or interventions in dentistry were included. Of the 24 studies included, 19 were human studies and five were animal studies. Chrono-radiotherapy and chrono-chemotherapy reduced treatment side effects and improved therapeutic response, leading to higher survival rates in cancer patients. Animal studies reported that tooth movement and periodontal tissue response to orthodontic forces follow a diurnal rhythm that might influence bone metabolism. Profound and prolonged local anesthesia could be achieved when injected in the evening. Although the overall quality of the included studies was low, chronotherapy applications in dentistry seem to have favourable outcomes, especially in head and neck cancer treatments.
Collapse
Affiliation(s)
- Mohammad Abusamak
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mohammad Al-Tamimi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Haider Al-Waeli
- Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kawkab Tahboub
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Wenji Cai
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Martin Morris
- Schulich Library of Physical Sciences, Life Sciences and Engineering, McGill University, Montreal, Quebec, Canada
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Belinda Nicolau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Leung C, Gérard C, Gonze D. Modeling the Circadian Control of the Cell Cycle and Its Consequences for Cancer Chronotherapy. BIOLOGY 2023; 12:biology12040612. [PMID: 37106812 PMCID: PMC10135823 DOI: 10.3390/biology12040612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
The mammalian cell cycle is governed by a network of cyclin/Cdk complexes which signal the progression into the successive phases of the cell division cycle. Once coupled to the circadian clock, this network produces oscillations with a 24 h period such that the progression into each phase of the cell cycle is synchronized to the day-night cycle. Here, we use a computational model for the circadian clock control of the cell cycle to investigate the entrainment in a population of cells characterized by some variability in the kinetic parameters. Our numerical simulations showed that successful entrainment and synchronization are only possible with a sufficient circadian amplitude and an autonomous period close to 24 h. Cellular heterogeneity, however, introduces some variability in the entrainment phase of the cells. Many cancer cells have a disrupted clock or compromised clock control. In these conditions, the cell cycle runs independently of the circadian clock, leading to a lack of synchronization of cancer cells. When the coupling is weak, entrainment is largely impacted, but cells maintain a tendency to divide at specific times of day. These differential entrainment features between healthy and cancer cells can be exploited to optimize the timing of anti-cancer drug administration in order to minimize their toxicity and to maximize their efficacy. We then used our model to simulate such chronotherapeutic treatments and to predict the optimal timing for anti-cancer drugs targeting specific phases of the cell cycle. Although qualitative, the model highlights the need to better characterize cellular heterogeneity and synchronization in cell populations as well as their consequences for circadian entrainment in order to design successful chronopharmacological protocols.
Collapse
Affiliation(s)
- Courtney Leung
- Unité de Chronobiologie Théorique, Faculté des Sciences CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium
| | - Claude Gérard
- Unité de Chronobiologie Théorique, Faculté des Sciences CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium
| |
Collapse
|
41
|
Liu Y, Guo S, Sun Y, Zhang C, Gan J, Ning S, Wang J. CRS: a circadian rhythm score model for predicting prognosis and treatment response in cancer patients. J Transl Med 2023; 21:185. [PMID: 36895015 PMCID: PMC9996877 DOI: 10.1186/s12967-023-04013-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/18/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Circadian rhythm regulates complex physiological activities in organisms. A strong link between circadian dysfunction and cancer has been identified. However, the factors of dysregulation and functional significance of circadian rhythm genes in cancer have received little attention. METHODS In 18 cancer types from The Cancer Genome Atlas (TCGA), the differential expression and genetic variation of 48 circadian rhythm genes (CRGs) were examined. The circadian rhythm score (CRS) model was created using the ssGSEA method, and patients were divided into high and low groups based on the CRS. The Kaplan-Meier curve was created to assess the patient survival rate. Cibersort and estimate methods were used to identify the infiltration characteristics of immune cells between different CRS subgroups. Gene Expression Omnibus (GEO) dataset is used as verification queue and model stability evaluation queue. The CRS model's ability to predict chemotherapy and immunotherapy was assessed. Wilcoxon rank-sum test was used to compare the differences of CRS among different patients. We use CRS to identify potential "clock-drugs" by the connective map method. RESULTS Transcriptomic and genomic analyses of 48 CRGs revealed that most core clock genes are up-regulated, while clock control genes are down-regulated. Furthermore, we show that copy number variation may affect CRGs aberrations. Based on CRS, patients can be classified into two groups with significant differences in survival and immune cell infiltration. Further studies showed that patients with low CRS were more sensitive to chemotherapy and immunotherapy. Additionally, we identified 10 compounds (e.g. flubendazole, MLN-4924, ingenol) that are positively associated with CRS, and have the potential to modulate circadian rhythms. CONCLUSIONS CRS can be utilized as a clinical indicator to predict patient prognosis and responsiveness to therapy, and identify potential "clock-drugs".
Collapse
Affiliation(s)
- Yuwei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Junwei Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
42
|
Miro C, Docimo A, Barrea L, Verde L, Cernea S, Sojat AS, Marina LV, Docimo G, Colao A, Dentice M, Muscogiuri G. "Time" for obesity-related cancer: The role of the circadian rhythm in cancer pathogenesis and treatment. Semin Cancer Biol 2023; 91:99-109. [PMID: 36893964 DOI: 10.1016/j.semcancer.2023.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
The circadian rhythm is regulated by an intrinsic time-tracking system, composed both of a central and a peripheral clock, which influences the cycles of activities and sleep of an individual over 24 h. At the molecular level, the circadian rhythm begins when two basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins, BMAL-1 and CLOCK, interact with each other to produce BMAL-1/CLOCK heterodimers in the cytoplasm. The BMAL-1/CLOCK target genes encode for the repressor components of the clock, cryptochrome (Cry1 and Cry2) and the Period proteins (Per1, Per2 and Per3). It has been recently demonstrated that the disruption of circadian rhythm is associated with an increased risk of developing obesity and obesity-related diseases. In addition, it has been demonstrated that the disruption of the circadian rhythm plays a key role in tumorigenesis. Further, an association between the circadian rhythm disruptions and an increased incidence and progression of several types of cancer (e.g., breast, prostate, colorectal and thyroid cancer) has been found. As the perturbation of circadian rhythm has adverse metabolic consequences (e.g., obesity) and at the same time tumor promoter functions, this manuscript has the aim to report how the aberrant circadian rhythms affect the development and prognosis of different types of obesity-related cancers (breast, prostate, colon rectal and thyroid cancer) focusing on both human studies and on molecular aspects.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Annamaria Docimo
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, 80143 Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Federico II, 80131 Naples, Italy
| | - Simona Cernea
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures/Internal Medicine I, Târgu Mureş, Romania; Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
| | - Antoan Stefan Sojat
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Serbia
| | - Ljiljana V Marina
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Serbia
| | - Giovanni Docimo
- Department of Medical and Advanced Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy; UNESCO Chair "Education for Health and Sustainable Development", University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy; UNESCO Chair "Education for Health and Sustainable Development", University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
43
|
Vitic J, Yakiwchuk E, Crawley A. Improper administration: Silent culprit of drug therapy problems. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2023; 69:107-112. [PMID: 36813520 PMCID: PMC9945886 DOI: 10.46747/cfp.6902107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
| | - Erin Yakiwchuk
- Assistant Professor in the College of Pharmacy and Nutrition at the University of Saskatchewan in Saskatoon
| | - Alex Crawley
- Associate Director of the RxFiles Academic Detailing Program at the University of Saskatchewan.
| |
Collapse
|
44
|
Vitic J, Yakiwchuk E, Crawley A. Une administration inappropriée. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2023; 69:e38-e44. [PMID: 36813507 PMCID: PMC9945883 DOI: 10.46747/cfp.6902e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
| | - Erin Yakiwchuk
- Professeur adjoint au Collège de pharmacie et de nutrition de l'Université de la Saskatchewan à Saskatoon
| | - Alex Crawley
- Directeur associé du Programme de formation continue en pharmacothérapie RxFiles à l'Université de la Saskatchewan.
| |
Collapse
|
45
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
46
|
Liu LP, Li MH, Zheng YW. Hair Follicles as a Critical Model for Monitoring the Circadian Clock. Int J Mol Sci 2023; 24:2407. [PMID: 36768730 PMCID: PMC9916850 DOI: 10.3390/ijms24032407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Clock (circadian) genes are heterogeneously expressed in hair follicles (HFs). The genes can be modulated by both the central circadian system and some extrinsic factors, such as light and thyroid hormones. These circadian genes participate in the regulation of several physiological processes of HFs, including hair growth and pigmentation. On the other hand, because peripheral circadian genes are synchronized with the central clock, HFs could provide a noninvasive and practical method for monitoring and evaluating multiple circadian-rhythm-related conditions and disorders among humans, including day and night shifts, sleep-wake disorders, physical activities, energy metabolism, and aging. However, due to the complexity of circadian biology, understanding how intrinsic oscillation operates using peripheral tissues only may be insufficient. Combining HF sampling with multidimensional assays such as detection of body temperature, blood samples, or certain validated questionnaires may be helpful in improving HF applications. Thus, HFs can serve as a critical model for monitoring the circadian clock and can help provide an understanding of the potential mechanisms of circadian-rhythm-related conditions; furthermore, chronotherapy could support personalized treatment scheduling based on the gene expression profile expressed in HFs.
Collapse
Affiliation(s)
- Li-Ping Liu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Meng-Huan Li
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama 234-0006, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
47
|
Kim DW, Byun JM, Lee JO, Kim JK, Koh Y. Chemotherapy delivery time affects treatment outcomes of female patients with diffuse large B cell lymphoma. JCI Insight 2023; 8:164767. [PMID: 36512421 PMCID: PMC9977288 DOI: 10.1172/jci.insight.164767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDChronotherapy is a drug intervention at specific times of the day to optimize efficacy and minimize adverse effects. Its value in hematologic malignancy remains to be explored, in particular in adult patients.METHODSWe performed chronotherapeutic analysis using 2 cohorts of patients with diffuse large B cell lymphoma (DLBCL) undergoing chemotherapy with a dichotomized schedule (morning or afternoon). The effect of a morning or afternoon schedule of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) on survival and drug tolerability was evaluated in a survival cohort (n = 210) and an adverse event cohort (n = 129), respectively. Analysis of about 14,000 healthy individuals followed to identify the circadian variation in hematologic parameters.RESULTSBoth progression-free survival (PFS) and overall survival (OS) of female, but not male, patients were significantly shorter when patients received chemotherapy mostly in the morning (PFS HR 0.357, P = 0.033; and OS HR 0.141, P = 0.032). The dose intensity was reduced in female patients treated in the morning (cyclophosphamide 10%, P = 0.002; doxorubicin 8%, P = 0.002; and rituximab 7%, P = 0.003). This was mainly attributable to infection and neutropenic fever: female patients treated in the morning had a higher incidence of infections (16.7% vs. 2.4%) and febrile neutropenia (20.8% vs. 9.8%) as compared with those treated in the afternoon. The sex-specific chronotherapeutic effects can be explained by the larger daily fluctuation of circulating leukocytes and neutrophils in female than in male patients.CONCLUSIONIn female DLBCL patients, R-CHOP treatment in the afternoon can reduce toxicity while it improves efficacy and survival outcome.FUNDINGNational Research Foundation of Korea (NRF) grant funded by the Korean government (grant number NRF-2021R1A4A2001553), Institute for Basic Science IBS-R029-C3, and Human Frontiers Science Program Organization Grant RGY0063/2017.
Collapse
Affiliation(s)
- Dae Wook Kim
- Department of Mathematical Sciences, KAIST, Daejeon, South Korea.,Biomedical Mathematics Group, Institute for Basic Science, Daejeon, South Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, South Korea.,Biomedical Mathematics Group, Institute for Basic Science, Daejeon, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
48
|
Villette CC, Orrell D, Millen J, Chassagnole C. Should personalised dosing have a role in cancer treatment? Front Oncol 2023; 13:1154493. [PMID: 37213297 PMCID: PMC10196464 DOI: 10.3389/fonc.2023.1154493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Almost all pharmaceutical products are approved on the basis of their effect in patients representing the "average" of the population studied in registrational trials, with most drug labels allowing, at most, for empirical dose reduction in the case of toxicity. In this perspective article we explore some of the evidence that supports the use of personalised dosing in cancer treatment and show how we have been able to build on existing models linking dose, exposure and toxicity to demonstrate how dose optimisation, including increasing the dose, has the potential to significantly improve efficacy outcomes. We also explore, through the lens of our own experience of developing a personalised dosing platform, some of the hurdles that stand in the way of implementing a personalised approach to dosing in real world settings. In particular, our experience is illustrated by the application of a dosing platform for docetaxel treatment in prostate cancer.
Collapse
|
49
|
Catozzi S, Hill R, Li X, Dulong S, Collard E, Ballesta A. Interspecies and in vitro-in vivo scaling for quantitative modeling of whole-body drug pharmacokinetics in patients: Application to the anticancer drug oxaliplatin. CPT Pharmacometrics Syst Pharmacol 2022; 12:221-235. [PMID: 36537068 PMCID: PMC9931436 DOI: 10.1002/psp4.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Quantitative systems pharmacology holds the promises of integrating results from laboratory animals or in vitro human systems into the design of human pharmacokinetic/pharmacodynamic (PK/PD) models allowing for precision and personalized medicine. However, reliable and general in vitro-to-in vivo extrapolation and interspecies scaling methods are still lacking. Here, we developed a translational strategy for the anticancer drug oxaliplatin. Using ex vivo PK data in the whole blood of the mouse, rat, and human, a model representing the amount of platinum (Pt) in the plasma and in the red blood cells was designed and could faithfully fit each dataset independently. A "purely physiologically-based (PB)" scaling approach solely based on preclinical data failed to reproduce human observations, which were then included in the calibration. Investigating approaches in which one parameter was set as species-specific, whereas the others were computed by PB scaling laws, we concluded that allowing the Pt binding rate to plasma proteins to be species-specific permitted to closely fit all data, and guaranteed parameter identifiability. Such a strategy presenting the drawback of including all clinical datasets, we further identified a minimal subset of human data ensuring accurate model calibration. Next, a "whole body" model of oxaliplatin human PK was inferred from the ex vivo study. Its three remaining parameters were estimated, using one third of the available patient data. Remarkably, the model achieved a good fit to the training dataset and successfully reproduced the unseen observations. Such validation endorsed the legitimacy of our scaling methodology calling for its testing with other drugs.
Collapse
Affiliation(s)
- Simona Catozzi
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance
| | - Roger Hill
- EPSRC and MRC Centre for Doctoral Training in Mathematics for Real‐World SystemsUniversity of WarwickCoventryUK
| | - Xiao‐Mei Li
- UPR “Chronotherapy, Cancers and Transplantation,” Faculty of MedicineUniversité Paris‐SaclayVillejuifFrance
| | - Sandrine Dulong
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance,UPR “Chronotherapy, Cancers and Transplantation,” Faculty of MedicineUniversité Paris‐SaclayVillejuifFrance
| | - Elodie Collard
- CEA, CNRS, NIMBEUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Annabelle Ballesta
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance
| |
Collapse
|
50
|
Moreno CRC, Raad R, Gusmão WDP, Luz CS, Silva VM, Prestes RM, Saraiva SP, Lemos LC, Vasconcelos SP, Nehme PXSA, Louzada FM, Marqueze EC. Are We Ready to Implement Circadian Hygiene Interventions and Programs? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16772. [PMID: 36554651 PMCID: PMC9781949 DOI: 10.3390/ijerph192416772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Circadian hygiene, a concept not to be confused with the notion of public or social hygiene, should be discussed among experts and society. Light-dark cycles and other possible synchronizers of the human circadian timing system affect ways of life, including sleeping, eating, working and physical activity. Some of these behaviors have also been investigated individually as synchronizers (e.g., eating times). Therefore, the knowledge held today about circadian rhythms, and their implications for health, allows future perspectives in this field to be mapped. The present article summarizes the latest knowledge on factors influencing circadian rhythms to discuss a perspective for the future of health promotion based on circadian hygiene. However, it is important to highlight that circadian hygiene is the product of an imbrication of individual and societal involvement. First, it is important to adopt practices and devise public health policies in line with circadian hygiene. Second, individual healthy habits require internal rhythms to be examined. Last, the research agenda on circadian hygiene can be developed on a public as well as individual level, raising the question as to how much society is willing to embrace this change.
Collapse
Affiliation(s)
- Claudia R. C. Moreno
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
- Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden
| | - Rose Raad
- Department of Technology of Architecture, School of Architecture and Urbanism, University of São Paulo, São Paulo 05508-080, Brazil
| | - Waléria D. P. Gusmão
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Cristina S. Luz
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Victor M. Silva
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Renilda M. Prestes
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Susy P. Saraiva
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Lucia C. Lemos
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Suleima P. Vasconcelos
- Public Health Graduate Program, Federal University of Acre, Rio Branco 69920-900, Brazil
| | - Patrícia X. S. A. Nehme
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Fernando M. Louzada
- Department of Physiology, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Elaine C. Marqueze
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, Santos 11015-001, Brazil
| |
Collapse
|