1
|
Premchand U, Mesta RK, Basavarajappa MP, Venkataravanappa V, Narasimha Reddy LRC, Shankarappa KS. Epidemiological studies on the incidence of papaya ringspot disease under Indian sub-continent conditions. Sci Rep 2025; 15:6973. [PMID: 40011697 DOI: 10.1038/s41598-025-91612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Papaya (Carica papaya L.) is a commercially important fruit crop cultivated worldwide due to its nutritional and medicinal values. Papaya ringspot disease (PRSD), caused by the papaya ringspot virus (PRSV), poses a significant threat to papaya cultivation, resulting in substantial yield losses. In this study, two independent field experiments were conducted at Bagalkote located in the Northern Dry Zone of Karnataka state of India. The first experiment aimed to identify the optimal planting month for papaya to effectively manage PRSV disease. The second experiment was conducted to determine the susceptible papaya growth stage for PRSV infection. The results revealed that early planting of papaya in June or late planting in March were identified as the most optimal planting times across the majority of growth stages, as they exhibited the lowest disease incidence along with superior growth and yield characteristics compared to other planting months. In contrast, planting during the winter season (September to January) resulted in high disease severity due to an increased aphid population. Conversely, planting during periods of low aphid activity (spring season) delayed disease onset until the monsoon. By the time the aphid population increased, the plants had already progressed beyond the flowering and fruit-bearing stages. In the second experiment, the severity and frequency of foliar symptoms on PRSV-inoculated papaya plants were significantly higher in those inoculated at the early growth stage compared to those inoculated at a later growth stage. This indicates that the early growth stage (up to 180 days after transplanting) is a critical period for PRSV infection, necessitating the implementation of effective disease management measures during this time to minimize disease spread and enhance growth and yield. Furthermore, plants inoculated at the early stage exhibited a higher viral titer, more severe symptoms, and a higher percent transmission rate compared to those inoculated at a later stage. These findings were supported by qRT-PCR analysis, which demonstrated a highly significant and positive correlation between early inoculation and disease severity.
Collapse
Affiliation(s)
- U Premchand
- ICAR- Krishi Vigyan Kendra, Indi (Vijayapura II), University of Agricultural Sciences, Dharwad, 586209, India.
| | - Raghavendra K Mesta
- Department of Plant Pathology, College of Horticulture, Bagalkote, University of Horticultural Sciences, Bagalkote, 587104, India.
| | - Mantapla Puttappa Basavarajappa
- Department of Plant Pathology, College of Horticulture, Bagalkote, University of Horticultural Sciences, Bagalkote, 587104, India
| | | | | | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, Bangalore, University of Horticultural Sciences, Bagalkote, 560065, India
| |
Collapse
|
2
|
Ros-Moner E, Jiménez-Góngora T, Villar-Martín L, Vogrinec L, González-Miguel VM, Kutnjak D, Rubio-Somoza I. Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha. Nat Commun 2024; 15:8326. [PMID: 39333479 PMCID: PMC11436993 DOI: 10.1038/s41467-024-52610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.
Collapse
Affiliation(s)
- Eric Ros-Moner
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Luis Villar-Martín
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Lana Vogrinec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Víctor M González-Miguel
- Data Analysis area, Bioinformatics Core Unit, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
3
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
4
|
Zhao W, Zhao H, Wang H, He Y. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1044500. [PMID: 36352873 PMCID: PMC9638160 DOI: 10.3389/fpls.2022.1044500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is one of the adaptive mechanisms formed by plants over a long period of evolution. Leaf senescence is accompanied by various changes in cell structure, physiological metabolism, and gene expressions. This process is controlled by a variety of internal and external factors. Meanwhile, the genes and plant hormones involved in leaf aging affect the quality, yield and stress resistance in horticultural plants. Leaf senescence mediated by plant hormones affected plant quality at both pre-harvest and post-harvest stages. Exogenous plant growth regulators or plant hormone inhibitors has been applied to delay leaf senescence. Modification of related gene expression by over-expression or antisense inhibition could delay or accelerate leaf senescence, and thus influence quality. Environmental factors such as light, temperature and water status also trigger or delay leaf senescence. Delaying leaf senescence could increase chloroplast lifespan and photosynthesis and thus improve source strength, leading to enhanced yield. Accelerating leaf senescence promotes nutrient redistribution from old leaves into young leaves, and may raise yield under certain circumstances. Many genes and transcriptional factors involved in leaf senescence are associated with responses to abiotic and biotic stresses. WRKY transcriptional factors play a vital role in this process and they could interact with JA signalling. This review summarized how genes, plant hormones and environmental factors affect the quality, yield. Besides, the regulation of leaf senescence holds great promise to improving the resistance to plant biotic and abiotic stresses.
Collapse
Affiliation(s)
- Wenxue Zhao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| | - Huayuan Zhao
- Bashan Management Area of the Management Committee for Taishan Historic and Scenic Area in Tai’an City, Tai’an, China
| | - Huasen Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| |
Collapse
|
5
|
Guo C, Li X, Zhang Z, Wang Q, Zhang Z, Wen L, Liu C, Deng Z, Chu Y, Liu T, Guo Y. The INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 Peptide Functions as a Positive Modulator of Leaf Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:909378. [PMID: 35845701 PMCID: PMC9280484 DOI: 10.3389/fpls.2022.909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a highly coordinated process and has a significant impact on agriculture. Plant peptides are known to act as important cell-to-cell communication signals that are involved in multiple biological processes such as development and stress responses. However, very limited number of peptides has been reported to be associated with leaf senescence. Here, we report the characterization of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 (IDL6) peptide as a regulator of leaf senescence. The expression of IDL6 was up-regulated in senescing leaves. Exogenous application of synthetic IDL6 peptides accelerated the process of leaf senescence. The idl6 mutant plants showed delayed natural leaf senescence as well as senescence included by darkness, indicating a regulatory role of IDL6 peptides in leaf senescence. The role of IDL6 as a positive regulator of leaf senescence was further supported by the results of overexpression analysis and complementation test. Transcriptome analysis revealed differential expression of phytohormone-responsive genes in idl6 mutant plants. Further analysis indicated that altered expression of IDL6 led to changes in leaf senescence phenotypes induced by ABA and ethylene treatments. The results from this study suggest that the IDL6 peptide positively regulates leaf senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Cun Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zenglin Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Qi Wang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Wen
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- QuJing Tobacco Company, Qujing, China
| | - Zhichao Deng
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Chu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Tao Liu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| |
Collapse
|
6
|
Wu H, Si Q, Liu J, Yang L, Zhang S, Xu J. Regulation of Arabidopsis Matrix Metalloproteinases by Mitogen-Activated Protein Kinases and Their Function in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:864986. [PMID: 35463412 PMCID: PMC9024413 DOI: 10.3389/fpls.2022.864986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is a developmentally programmed cell death process that is influenced by a variety of endogenous signals and environmental factors. Here, we report that MPK3 and MPK6, two Arabidopsis mitogen-activated protein kinases (MAPKs or MPKs), and their two upstream MAPK kinases (MAPKKs or MKKs), MKK4 and MKK5, are key regulators of leaf senescence. Weak induction of constitutively active MAPKKs driven by steroid-inducible promoter, which activates endogenous MPK3 and MPK6, induces leaf senescence. This gain-of-function phenotype requires functional endogenous MPK3 and MPK6. Furthermore, loss of function of both MKK4 and MKK5 delays leaf senescence. Expression profiling leads to the identification of matrix metalloproteinases (MMPs), a family of zinc- and calcium-dependent endopeptidases, as the downstream target genes of MPK3/MPK6 cascade. MPK3/MPK6 activation-triggered leaf senescence is associated with rapid and strong induction of At3-MMP and At2-MMP. Expression of Arabidopsis MMP genes is strongly induced during leaf senescence, qualifying them as senescence-associated genes (SAGs). In addition, either constitutive or inducible overexpression of At3-MMP is sufficient to trigger leaf senescence. Based on these findings, we conclude that MPK3/MPK6 MAPK cascade and MMP target genes further downstream are involved in regulating leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Hongjiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Si
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianmin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuqun Zhang
- Interdisciplinary Plant Group, Division of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Wen YX, Wang JY, Zhu HH, Han GH, Huang RN, Huang L, Hong YG, Zheng SJ, Yang JL, Chen WW. Potential Role of Domains Rearranged Methyltransferase7 in Starch and Chlorophyll Metabolism to Regulate Leaf Senescence in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:836015. [PMID: 35211145 PMCID: PMC8860812 DOI: 10.3389/fpls.2022.836015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation is an important epigenetic mark involved in diverse biological processes. Here, we report the critical function of tomato (Solanum lycopersicum) Domains Rearranged Methyltransferase7 (SlDRM7) in plant growth and development, especially in leaf interveinal chlorosis and senescence. Using a hairpin RNA-mediated RNA interference (RNAi), we generated SlDRM7-RNAi lines and observed pleiotropic developmental defects including small and interveinal chlorosis leaves. Combined analyses of whole genome bisulfite sequence (WGBS) and RNA-seq revealed that silencing of SlDRM7 caused alterations in both methylation levels and transcript levels of 289 genes, which are involved in chlorophyll synthesis, photosynthesis, and starch degradation. Furthermore, the photosynthetic capacity decreased in SlDRM7-RNAi lines, consistent with the reduced chlorophyll content and repression of genes involved in chlorophyll biosynthesis, photosystem, and photosynthesis. In contrast, starch granules were highly accumulated in chloroplasts of SlDRM7-RNAi lines and associated with lowered expression of genes in the starch degradation pathway. In addition, SlDRM7 was activated by aging- and dark-induced senescence. Collectively, these results demonstrate that SlDRM7 acts as an epi-regulator to modulate the expression of genes related to starch and chlorophyll metabolism, thereby affecting leaf chlorosis and senescence in tomatoes.
Collapse
Affiliation(s)
- Yu Xin Wen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guang Hao Han
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ru Nan Huang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yi Guo Hong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Luo J, Chen S, Cao S, Zhang T, Li R, Chan ZL, Wang C. Rose (Rosa hybrida) Ethylene Responsive Factor 3 Promotes Rose Flower Senescence via Direct Activation of the Abscisic Acid Synthesis-Related 9-CIS-EPOXYCAROTENOID DIOXYGENASE Gene. PLANT & CELL PHYSIOLOGY 2021; 62:1030-1043. [PMID: 34156085 DOI: 10.1093/pcp/pcab085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
During plant senescence, energy and nutrients are transferred to young leaves, fruits or seeds. However, senescence reduces flower quality, which leads to huge economic losses in flower production. Ethylene is an important factor affecting the quality of cut roses during transportation and storage. Ethylene-responsive factors (ERFs) are key nodes in ethylene signaling, but the molecular mechanism underlying ERFs regulated flower senescence is not well understood. We addressed this issue in the present study by focusing on RhERF3 from Rosa hybrida, an ERF identified in a previous transcriptome analysis of ethylene-treated rose flowers. Expression of RhERF3 was strongly induced by ethylene during rose flower senescence. Transient silencing of RhERF3 delayed flower senescence, whereas overexpression (OE) accelerated the process. RNA sequencing analysis of RhERF3 OE and pSuper vector control samples identified 13,214 differentially expressed genes that were mostly related to metabolic process and plant hormone signal transduction. Transient activation and yeast one-hybrid assays demonstrated that RhERF3 directly bound the promoter of the 9-cis-epoxycarotenoid dioxygenase (RhNCED1) gene and activated gene expression. Thus, a RhERF3/RhNCED1 axis accelerates rose flower senescence.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Sijia Chen
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Shenghai Cao
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Ruirui Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Zhu Long Chan
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
9
|
Miryeganeh M. Senescence: The Compromised Time of Death That Plants May Call on Themselves. Genes (Basel) 2021; 12:143. [PMID: 33499161 PMCID: PMC7912376 DOI: 10.3390/genes12020143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
Plants synchronize their life history events with proper seasonal conditions, and as the fitness consequences of each life stage depend on previous and/or subsequent one, changes in environmental cues create cascading effects throughout their whole life cycle. For monocarpic plants, proper senescence timing is very important as the final production of plants depends on it. Citing available literatures, this review discusses how plants not only may delay senescence until after they reproduce successfully, but they may also bring senescence time forward, in order to reproduce in favored conditions. It demonstrates that even though senescence is part of aging, it does not necessarily mean plants have to reach a certain age to senesce. Experiments using different aged plants have suggested that in interest of their final outcome and fitness, plants carefully weigh out environmental cues and transit to next developmental phase at proper time, even if that means transiting to terminal senescence phase earlier and shortening their lifespan. How much plants have control over senescence timing and how they balance internal and external signals for that is not well understood. Future studies are needed to identify processes that trigger senescence timing in response to environment and investigate genetic/epigenetic mechanisms behind it.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
10
|
Shahinnia F, Tula S, Hensel G, Reiahisamani N, Nasr N, Kumlehn J, Gómez R, Lodeyro AF, Carrillo N, Hajirezaei MR. Plastid-Targeted Cyanobacterial Flavodiiron Proteins Maintain Carbohydrate Turnover and Enhance Drought Stress Tolerance in Barley. FRONTIERS IN PLANT SCIENCE 2021; 11:613731. [PMID: 33519872 PMCID: PMC7838373 DOI: 10.3389/fpls.2020.613731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/18/2020] [Indexed: 05/10/2023]
Abstract
Chloroplasts, the sites of photosynthesis in higher plants, have evolved several means to tolerate short episodes of drought stress through biosynthesis of diverse metabolites essential for plant function, but these become ineffective when the duration of the stress is prolonged. Cyanobacteria are the closest bacterial homologs of plastids with two photosystems to perform photosynthesis and to evolve oxygen as a byproduct. The presence of Flv genes encoding flavodiiron proteins has been shown to enhance stress tolerance in cyanobacteria. In an attempt to support the growth of plants exposed to drought, the Synechocystis genes Flv1 and Flv3 were expressed in barley with their products being targeted to the chloroplasts. The heterologous expression of both Flv1 and Flv3 accelerated days to heading, increased biomass, promoted the number of spikes and grains per plant, and improved the total grain weight per plant of transgenic lines exposed to drought. Improved growth correlated with enhanced availability of soluble sugars, a higher turnover of amino acids and the accumulation of lower levels of proline in the leaf. Flv1 and Flv3 maintained the energy status of the leaves in the stressed plants by converting sucrose to glucose and fructose, immediate precursors for energy production to support plant growth under drought. The results suggest that sugars and amino acids play a fundamental role in the maintenance of the energy status and metabolic activity to ensure growth and survival under stress conditions, that is, water limitation in this particular case. Engineering chloroplasts by Flv genes into the plant genome, therefore, has the potential to improve plant productivity wherever drought stress represents a significant production constraint.
Collapse
Affiliation(s)
- Fahimeh Shahinnia
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Suresh Tula
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Goetz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Narges Reiahisamani
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nasrin Nasr
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Biology, Payame Noor University, Teheran, Iran
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rodrigo Gómez
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mohammad R. Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
11
|
Yuan L, Wang D, Cao L, Yu N, Liu K, Guo Y, Gan S, Chen L. Regulation of Leaf Longevity by DML3-Mediated DNA Demethylation. MOLECULAR PLANT 2020; 13:1149-1161. [PMID: 32561358 DOI: 10.1016/j.molp.2020.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/25/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is driven by the expression of senescence-associated genes (SAGs). Development-specific genes often undergo DNA demethylation in their promoter and other regions, which regulates gene expression. Whether and how DNA demethylation regulates the expression of SAGs and thus leaf senescence remain elusive. Whole-genome bisulfite sequencing (WGBS) analyses of wild-type (WT) and demeter-like 3 (dml3) Arabidopsis leaves at three developmental stages revealed hypermethylation during leaf senescence in dml3 compared with WT, and 20 556 differentially methylated regions (DMRs) were identified by comparing the methylomes of dml3 and WT in the CG, CHG, and CHH contexts. Furthermore, we identified that 335 DMR-associated genes (DMGs), such as NAC016 and SEN1, are upregulated during leaf senescence, and found an inverse correlation between the DNA methylation levels (especially in the promoter regions) and the transcript abundances of the related SAGs in WT. In contrast, in dml3 the promoters of SAGs were hypermethylated and their transcript levels were remarkably reduced, and leaf senescence was significantly delayed. Collectively, our study unraveled a novel epigenetic regulatory mechanism underlying leaf senescence in which DML3 is expressed at the onset of and during senescence to demethylate promoter, gene body or 3' UTR regions to activate a set of SAGs.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liwen Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ningning Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Gietler M, Fidler J, Labudda M, Nykiel M. Abscisic Acid-Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int J Mol Sci 2020; 21:E4607. [PMID: 32610484 PMCID: PMC7369871 DOI: 10.3390/ijms21134607] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.
Collapse
Affiliation(s)
- Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.L.); (M.N.)
| | | | | | | |
Collapse
|
13
|
Jiao Z, Li J, Ni Y, Jiang Y, Sun Y, An J, Li H, Zhang J, Hu X, Li Q, Niu J. Enhanced Senescence Process is the Major Factor Stopping Spike Differentiation of Wheat Mutant ptsd1. Int J Mol Sci 2019; 20:ijms20184642. [PMID: 31546802 PMCID: PMC6770497 DOI: 10.3390/ijms20184642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Complete differentiation of the spikes guarantees the final wheat (Triticum aestivum L.) grain yield. A unique wheat mutant that prematurely terminated spike differentiation (ptsd1) was obtained from cultivar Guomai 301 treated with ethyl methane sulfonate (EMS). The molecular mechanism study on ptsd1 showed that the senescence-associated genes (SAGs) were highly expressed, and spike differentiation related homeotic genes were depressed. Cytokinin signal transduction was weakened and ethylene signal transduction was enhanced. The enhanced expression of Ca2+ signal transduction related genes and the accumulation of reactive oxygen species (ROS) caused the upper spikelet cell death. Many genes in the WRKY, NAC and ethylene response factor (ERF) transcription factor (TF) families were highly expressed. Senescence related metabolisms, including macromolecule degradation, nutrient recycling, as well as anthocyanin and lignin biosynthesis, were activated. A conserved tae-miR164 and a novel-miR49 and their target genes were extensively involved in the senescence related biological processes in ptsd1. Overall, the abnormal phytohormone homeostasis, enhanced Ca2+ signaling and activated senescence related metabolisms led to the spikelet primordia absent their typical meristem characteristics, and ultimately resulted in the phenotype of ptsd1.
Collapse
Affiliation(s)
- Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yulong Sun
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Junhang An
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Huijuan Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Xin Hu
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
14
|
Abstract
Leaf senescence is an important developmental process involving orderly disassembly of macromolecules for relocating nutrients from leaves to other organs and is critical for plants' fitness. Leaf senescence is the response of an intricate integration of various environmental signals and leaf age information and involves a complex and highly regulated process with the coordinated actions of multiple pathways. Impressive progress has been made in understanding how senescence signals are perceived and processed, how the orderly degeneration process is regulated, how the senescence program interacts with environmental signals, and how senescence regulatory genes contribute to plant productivity and fitness. Employment of systems approaches using omics-based technologies and characterization of key regulators have been fruitful in providing newly emerging regulatory mechanisms. This review mainly discusses recent advances in systems understanding of leaf senescence from a molecular network dynamics perspective. Genetic strategies for improving the productivity and quality of crops are also described.
Collapse
Affiliation(s)
- Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
| | - Hong Gil Nam
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Republic of Korea
| |
Collapse
|
15
|
Gu L, Dou L, Guo Y, Wang H, Li L, Wang C, Ma L, Wei H, Yu S. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2019; 19:116. [PMID: 30922232 PMCID: PMC6440019 DOI: 10.1186/s12870-019-1688-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Premature senescence can reduce the yield and quality of crops. WRKY transcription factors (TFs) play important roles during leaf senescence, but little is known about their ageing mechanisms in cotton. RESULTS In this study, a group III WRKY TF, GhWRKY27, was isolated and characterized. The expression of GhWRKY27 was induced by leaf senescence and was higher in an early-ageing cotton variety than in a non-early-ageing cotton variety. Overexpression of GhWRKY27 in Arabidopsis promoted leaf senescence, as determined by reduced chlorophyll content and elevated expression of senescence-associated genes (SAGs). Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that GhWRKY27 interacted with an MYB TF, GhTT2. Putative target genes of GhWRKY27 were identified via chromatin immunoprecipitation followed by sequencing (ChIP-seq). Yeast one-hybrid (Y1H) assay and electrophoretic mobility shift assay (EMSA) revealed that GhWRKY27 binds directly to the promoters of cytochrome P450 94C1 (GhCYP94C1) and ripening-related protein 2 (GhRipen2-2). In addition, the expression patterns of GhTT2, GhCYP94C1 and GhRipen2-2 were identified during leaf senescence. Transient dual-luciferase reporter assay indicated that GhWRKY27 could activate the expression of GhCYP94C1 and GhRipen2-2. CONCLUSIONS Our work lays the foundation for further study of the functional roles of WRKY genes during leaf senescence in cotton. In addition, our data provide new insights into the senescence-associated mechanisms of WRKY genes in cotton.
Collapse
Affiliation(s)
- Lijiao Gu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Lingling Dou
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yaning Guo
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Congcong Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| |
Collapse
|
16
|
Nisler J, Zatloukal M, Sobotka R, Pilný J, Zdvihalová B, Novák O, Strnad M, Spíchal L. New Urea Derivatives Are Effective Anti-senescence Compounds Acting Most Likely via a Cytokinin-Independent Mechanism. FRONTIERS IN PLANT SCIENCE 2018; 9:1225. [PMID: 30271413 PMCID: PMC6142817 DOI: 10.3389/fpls.2018.01225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Stress-induced senescence is a global agro-economic problem. Cytokinins are considered to be key plant anti-senescence hormones, but despite this practical function their use in agriculture is limited because cytokinins also inhibit root growth and development. We explored new cytokinin analogs by synthesizing a series of 1,2,3-thiadiazol-5-yl urea derivatives. The most potent compound, 1-(2-methoxy-ethyl)-3-1,2,3-thiadiazol-5-yl urea (ASES - Anti-Senescence Substance), strongly inhibited dark-induced senescence in leaves of wheat (Triticum aestivum L.) and Arabidopsis thaliana. The inhibitory effect of ASES on wheat leaf senescence was, to the best of our knowledge, the strongest of any known natural or synthetic compound. In vivo, ASES also improved the salt tolerance of young wheat plants. Interestingly, ASES did not affect root development of wheat and Arabidopsis, and molecular and classical cytokinin bioassays demonstrated that ASES exhibits very low cytokinin activity. A proteomic analysis of the ASES-treated leaves further revealed that the senescence-induced degradation of photosystem II had been very effectively blocked. Taken together, our results including data from cytokinin content analysis demonstrate that ASES delays leaf senescence by mechanism(s) different from those of cytokinins and, more effectively. No such substance has yet been described in the literature, which makes ASES an interesting tool for research of photosynthesis regulation. Its simple synthesis and high efficiency predetermine ASES to become also a potent plant stress protectant in biotechnology and agricultural industries.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czechia
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Marek Zatloukal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jan Pilný
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Třeboň, Czechia
| | - Barbora Zdvihalová
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Třeboň, Czechia
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czechia
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| |
Collapse
|
17
|
Abstract
Concepts, classification, and the relationship between different types of senescence are discussed in this chapter. Senescence-related terminology frequently used in yeast, animal, and plant systems and senescence processes at cellular, organ, and organismal levels are clarified.
Collapse
|
18
|
Jehanzeb M, Zheng X, Miao Y. The Role of the S40 Gene Family in Leaf Senescence. Int J Mol Sci 2017; 18:ijms18102152. [PMID: 29035318 PMCID: PMC5666833 DOI: 10.3390/ijms18102152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Senescence affect different traits of plants, such as the ripening of fruit, number, quality and timing of seed maturation. While senescence is induced by age, growth hormones and different environmental stresses, a highly organized genetic mechanism related to substantial changes in gene expression regulates the process. Only a few genes associated to senescence have been identified in crop plants despite the vital significance of senescence for crop yield. The S40 gene family has been shown to play a role in leaf senescence. The barley HvS40 gene is one of the senescence marker genes which shows expression during age-dependent as well as dark-induced senescence. Like barley HvS40, the Arabidopsis AtS40-3 gene is also induced during natural senescence as well as in response to treatment with abscisic acid, salicylic acid, darkness and pathogen attack. It is speculated that rice OsS40 has a similar function in the leaf senescence of rice.
Collapse
Affiliation(s)
- Muhammad Jehanzeb
- The Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Xiangzi Zheng
- The Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Ying Miao
- The Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
The mitochondrial protease AtFTSH4 safeguards Arabidopsis shoot apical meristem function. Sci Rep 2016; 6:28315. [PMID: 27321362 PMCID: PMC4913265 DOI: 10.1038/srep28315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
The shoot apical meristem (SAM) ensures continuous plant growth and organogenesis. In LD 30 °C, plants lacking AtFTSH4, an ATP-dependent mitochondrial protease that counteracts accumulation of internal oxidative stress, exhibit a puzzling phenotype of premature SAM termination. We aimed to elucidate the underlying cellular and molecular processes that link AtFTSH4 with SAM arrest. We studied AtFTSH4 expression, internal oxidative stress accumulation, and SAM morphology. Directly in the SAM we analysed H2O2 accumulation, mitochondria behaviour, and identity of stem cells using WUS/CLV3 expression. AtFTSH4 was expressed in proliferating tissues, particularly during the reproductive phase. In the mutant, SAM, in which internal oxidative stress accumulates predominantly at 30 °C, lost its meristematic fate. This process was progressive and stage-specific. Premature meristem termination was associated with an expansion in SAM area, where mitochondria lost their functionality. All these effects destabilised the identity of the stem cells. SAM termination in ftsh4 mutants is caused both by internal oxidative stress accumulation with time/age and by the tissue-specific role of AtFTSH4 around the flowering transition. Maintaining mitochondria functionality within the SAM, dependent on AtFTSH4, is vital to preserving stem cell activity throughout development.
Collapse
|
20
|
Moschen S, Higgins J, Di Rienzo JA, Heinz RA, Paniego N, Fernandez P. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. BMC Bioinformatics 2016; 17 Suppl 5:174. [PMID: 27295368 PMCID: PMC4905614 DOI: 10.1186/s12859-016-1045-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. Results Weighted Gene Correlation Network Analysis (WGCNA) and BioSignature Discoverer (BioSD, Gnosis Data Analysis, Heraklion, Greece) were used to integrate transcriptomic and metabolomic data. WGCNA allowed the detection of 10 metabolites and 13 TFs whereas BioSD allowed the detection of 1 metabolite and 6 TFs as potential biomarkers. The comparative analysis demonstrated that three transcription factors were detected through both methodologies, highlighting them as potentially robust biomarkers associated with leaf senescence in sunflower. Conclusions The complementary use of network and BioSignature Discoverer analysis of transcriptomic and metabolomic data provided a useful tool for identifying candidate genes and metabolites which may have a role during the triggering and development of the leaf senescence process. The WGCNA tool allowed us to design and test a hypothetical network in order to infer relationships across selected transcription factor and metabolite candidate biomarkers involved in leaf senescence, whereas BioSignature Discoverer selected transcripts and metabolites which discriminate between different ages of sunflower plants. The methodology presented here would help to elucidate and predict novel networks and potential biomarkers of leaf senescence in sunflower. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1045-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastián Moschen
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Janet Higgins
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Julio A Di Rienzo
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruth A Heinz
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Norma Paniego
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Fernandez
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina. .,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|
22
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 612] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
23
|
Hosseini SA, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N. A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:206. [PMID: 26955376 PMCID: PMC4768371 DOI: 10.3389/fpls.2016.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid (PA) and dehydro-PA. Under K deficiency this went along with higher transcript levels of ABA8'-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars.
Collapse
Affiliation(s)
- Seyed A. Hosseini
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad R. Hajirezaei
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Christiane Seiler
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nese Sreenivasulu
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
24
|
Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY, Chu C. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 2015; 59:91-101. [PMID: 25912474 DOI: 10.1111/jpi.12243] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Melatonin, an antioxidant in both animals and plants, has been reported to have beneficial effects on the aging process. It was also suggested to play a role in extending longevity and enhancing abiotic stress resistance in plant. In this study, we demonstrate that melatonin acts as a potent agent to delay leaf senescence and cell death in rice. Treatments with melatonin significantly reduced chlorophyll degradation, suppressed the transcripts of senescence-associated genes, delayed the leaf senescence, and enhanced salt stress tolerance. Genome-wide expression profiling by RNA sequencing reveals that melatonin is a potent free radical scavenger, and its exogenous application results in enhanced antioxidant protection. Leaf cell death in noe1, a mutant with over-produced H2O2, can be relieved by exogenous application of melatonin. These data demonstrate that melatonin delays the leaf senescence and cell death and also enhances abiotic stress tolerance via directly or indirectly counteracting the cellular accumulation of H2O2.
Collapse
Affiliation(s)
- Chengzhen Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Guangyong Zheng
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Wenzhen Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongkai Wu
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Yangwen Qian
- Biogle Genome Editing Research Center, Hangzhou, China
| | - Xin-Guang Zhu
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
25
|
González-García MP, Pavelescu I, Canela A, Sevillano X, Leehy KA, Nelson ADL, Ibañes M, Shippen DE, Blasco MA, Caño-Delgado AI. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis. Cell Rep 2015; 11:977-989. [PMID: 25937286 PMCID: PMC4827700 DOI: 10.1016/j.celrep.2015.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 02/19/2015] [Accepted: 04/05/2015] [Indexed: 01/14/2023] Open
Abstract
Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants.
Collapse
Affiliation(s)
- Mary-Paz González-García
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain; Centro Nacional de Biotecnología (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Irina Pavelescu
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain; Department of Structure and Constituents of Matter, Faculty of Physics, University of Barcelona, Barcelona 08024, Spain
| | - Andrés Canela
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Xavier Sevillano
- Grup de Recerca en Tecnologies Mèdia, La Salle - Universitat Ramon Llull, Barcelona 08022, Spain
| | - Katherine A Leehy
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Andrew D L Nelson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Marta Ibañes
- Department of Structure and Constituents of Matter, Faculty of Physics, University of Barcelona, Barcelona 08024, Spain
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain.
| |
Collapse
|
26
|
Zhang H, Zhou C. Signal transduction in leaf senescence. PLANT MOLECULAR BIOLOGY 2013; 82:539-45. [PMID: 23096425 DOI: 10.1007/s11103-012-9980-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a complex developmental phase that involves both degenerative and nutrient recycling processes. It is characterized by loss of chlorophyll and the degradation of proteins, nucleic acids, lipids, and nutrient remobilization. The onset and progression of leaf senescence are controlled by an array of environmental cues (such as drought, darkness, extreme temperatures, and pathogen attack) and endogenous factors (including age, ethylene, jasmonic acid, salicylic acid, abscisic acid, and cytokinin). This review discusses the major breakthroughs in signal transduction during the onset of leaf senescence, in dark- and drought-mediated leaf senescence, and in various hormones regulating leaf senescence achieved in the past several years. Various signals show different mechanisms of controlling leaf senescence, and cross-talks between different signaling pathways make it more complex. Key senescence regulatory networks still need to be elucidated, including cross-talks and the interaction mechanisms of various environmental signals and internal factors.
Collapse
Affiliation(s)
- Haoshan Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | | |
Collapse
|
27
|
Gregersen PL, Culetic A, Boschian L, Krupinska K. Plant senescence and crop productivity. PLANT MOLECULAR BIOLOGY 2013; 82:603-22. [PMID: 23354836 DOI: 10.1007/s11103-013-0013-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/15/2013] [Indexed: 05/18/2023]
Abstract
Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops transformed with such constructs the stay-green character has led to increased biomass, but only in few cases to increased seed yield. A coincidence of drought stress resistance and stay-green trait is observed in many transgenic plants.
Collapse
Affiliation(s)
- Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Forsoegsvej 1, 4200 Slagelse, Denmark
| | | | | | | |
Collapse
|
28
|
Guo Y, Gan SS. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. PLANT, CELL & ENVIRONMENT 2012; 35:644-55. [PMID: 21988545 DOI: 10.1111/j.1365-3040.2011.02442.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In addition to age and developmental progress, leaf senescence and senescence-associated genes (SAGs) can be induced by other factors such as plant hormones, pathogen infection and environmental stresses. The relationship is not clear, however, between these induced senescence processes and developmental leaf senescence, and to what extent these senescence-promoting signals mimic age and developmental senescence in terms of gene expression profiles. By analysing microarray expression data from 27 different treatments (that are known to promote senescence) and comparing them with that from developmental leaf senescence, we were able to show that at early stages of treatments, different hormones and stresses showed limited similarity in the induction of gene expression to that of developmental leaf senescence. Once the senescence process is initiated, as evidenced by visible yellowing, generally after a prolonged period of treatments, a great proportion of SAGs of developmental leaf senescence are shared by gene expression profiles in response to different treatments. This indicates that although different signals that lead to initiation of senescence may do so through distinct signal transduction pathways, senescence processes induced either developmentally or by different senescence-promoting treatments may share common execution events.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Horticulture, Cornell University, Ithaca, NY 14853-5904, USA
| | | |
Collapse
|
29
|
Fernandez P, Di Rienzo JA, Moschen S, Dosio GAA, Aguirrezábal LAN, Hopp HE, Paniego N, Heinz RA. Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. PLANT CELL REPORTS 2011; 30:63-74. [PMID: 21076836 DOI: 10.1007/s00299-010-0944-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 05/22/2023]
Abstract
The selection and validation of reference genes constitute a key point for gene expression analysis based on qPCR, requiring efficient normalization approaches. In this work, the expression profiles of eight genes were evaluated to identify novel reference genes for transcriptional studies associated to the senescence process in sunflower. Three alternative strategies were applied for the evaluation of gene expression stability in leaves of different ages and exposed to different treatments affecting the senescence process: algorithms implemented in geNorm, BestKeeper software, and the fitting of a statistical linear mixed model (LMModel). The results show that geNorm suggested the use of all combined genes, although identifying α-TUB1 as the most stable expressing gene. BestKeeper revealed α-TUB and β-TUB as stable genes, scoring β-TUB as the most stable one. The statistical LMModel identified α-TUB, actin, PEP, and EF-1α as stable genes in this order. The model-based approximation allows not only the estimation of systematic changes in gene expression, but also the identification of sources of random variation through the estimation of variance components, considering the experimental design applied. Validation of α-TUB and EF-1α as reference genes for expression studies of three sunflower senescence associated genes showed that the first one was more stable for the assayed conditions. We conclude that, when biological replicates are available, LMModel allows a more reliable selection under the assayed conditions. This study represents the first analysis of identification and validation of genuine reference genes for use as internal control in qPCR expression studies in sunflower, experimentally validated throughout six different controlled leaf senescence conditions.
Collapse
Affiliation(s)
- Paula Fernandez
- Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Los Reseros, (1686) Hurlingham, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Espinoza C, Medina C, Somerville S, Arce-Johnson P. Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3197-212. [PMID: 17761729 DOI: 10.1093/jxb/erm165] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The senescence process is the last stage in leaf development and is characterized by dramatic changes in cellular metabolism and the degeneration of cellular structures. Several reports of senescence-associated genes (SAGs) have appeared, and an overlap in some of the genes induced during senescence and pathogen infections has been observed. For example, the enhanced expression of SAGs in response to diseases caused by fungi, bacteria, and viruses that trigger the hypersensitive response (HR) or during infections induced by virulent fungi and bacteria that elicit necrotic symptoms has been observed. The present work broadens the search for SAGs induced during compatible viral interactions with both the model plant Arabidopsis thaliana and a commercially important grapevine cultivar. The transcript profiles of Arabidopsis ecotype Uk-4 infected with tobacco mosaic virus strain Cg (TMV-Cg) and Vitis vinifera cv. Carménère infected with grapevine leafroll-associated virus strain 3 (GLRaV-3) were analysed using microarray slides of the reference species Arabidopsis. A large number of SAGs exhibited altered expression during these two compatible interactions. Among the SAGs were genes that encode proteins such as proteases, lipases, proteins involved in the mobilization of nutrients and minerals, transporters, transcription factors, proteins related to translation and antioxidant enzymes, among others. Thus, part of the plant's response to virus infection appears to be the activation of the senescence programme. Finally, it was demonstrated that several virus-induced genes are also expressed at elevated levels during natural senescence in healthy plants.
Collapse
Affiliation(s)
- C Espinoza
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago de Chile, Casilla 114-D, Chile
| | | | | | | |
Collapse
|
31
|
van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge UI, Kunze R. Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. PLANT PHYSIOLOGY 2006; 141:776-92. [PMID: 16603661 PMCID: PMC1475451 DOI: 10.1104/pp.106.079293] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network.
Collapse
|
32
|
Jing HC, Schippers JHM, Hille J, Dijkwel PP. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2915-23. [PMID: 16172137 DOI: 10.1093/jxb/eri287] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ethylene can only induce senescence in leaves that have reached a defined age. Thus, ethylene-induced senescence depends on age-related changes (ARCs) of individual leaves. The relationship between ethylene and age in the induction of leaf senescence was tested in Arabidopsis Ler-0, Col-0, and Ws-0 accessions as well as in eight old (onset of leaf death) mutants, isolated from the Ler-0 background. Plants with a constant final age of 24 d were exposed to ethylene for 3-16 d. The wild-type accessions showed a common response to the ethylene treatment. Increasing ethylene treatments of 3-12 d caused an increase in the number of yellow leaves. However, an ethylene exposure time of 16 d resulted in a decrease in the amount of yellowing. Thus, ethylene can both positively and negatively influence ARCs and the subsequent induction of leaf senescence, depending on the length of the treatment. The old mutants showed altered responses to the ethylene treatments. old1 and old11 were hypersensitive to ethylene in the triple response assay and a 12-d ethylene exposure resulted in a decrease in the amount of yellow leaves. The other six mutants did not show a decrease in yellow leaves with an ethylene treatment of 16 d. The results revealed that the effect of ethylene on the induction of senescence can be modified by at least eight genes.
Collapse
Affiliation(s)
- Hai-Chun Jing
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | | | | | | |
Collapse
|
33
|
Abstract
Leaf senescence is a type of postmitotic senescence. The onset and progression of leaf senescence are controlled by an array of external and internal factors including age, levels of plant hormones/growth regulators, and reproductive growth. Many environmental stresses and biological insults such as extreme temperature, drought, nutrient deficiency, insufficient light/shadow/darkness, and pathogen infection can induce senescence. Perception of signals often leads to changes in gene expression, and the upregulation of thousands of senescence-associated genes (SAGs) causes the senescence syndrome: decline in photosynthesis, degradation of macromolecules, mobilization of nutrients, and ultimate cell death. Identification and analysis of SAGs, especially genome-scale investigations on gene expression during leaf senescence, make it possible to decipher the molecular mechanisms of signal perception, execution, and regulation of the leaf senescence process. Biochemical and metabolic changes during senescence have been elucidated, and potential components in signal transduction such as receptor-like kinases and MAP kinase cascade have been identified. Studies on some master regulators such as WRKY transcription factors and the senescence-responsive cis element of the senescence-specific SAG12 have shed some light on transcriptional regulation of leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Cornell Genomics Initiative and Department of Horticulture, Cornell University, Ithaca, New York 14853-5904, USA
| | | |
Collapse
|
34
|
Lin JF, Wu SH. Molecular events in senescing Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:612-28. [PMID: 15272878 DOI: 10.1111/j.1365-313x.2004.02160.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Senescence is the final stage of leaf development. Although it means the loss of vitality of leaf tissue, leaf senescence is tightly controlled by the development to increase the fitness of the whole plant. The molecular mechanisms regulating the induction and progression of leaf senescence are complex. We used a cDNA microarray, containing 11 500 Arabidopsis DNA elements, and the whole-genome Arabidopsis ATH1 Genome Array to examine global gene expression in dark-induced leaf senescence. By monitoring the gene expression patterns at carefully chosen time points, with three biological replicates each time, we identified thousands of up- or down-regulated genes involved in dark-induced senescence. These genes were clustered and categorized according to their expression patterns and responsiveness to dark treatment. Genes with different expression kinetics were classified according to different biological processes. Genes showing significant alteration of expression patterns in all available biochemical pathways were plotted to envision the molecular events occurring in the processes examined. With the expression data, we postulated an innovative biochemical pathway involving pyruvate orthophosphate dikinase in generating asparagine for nitrogen remobilization in dark-treated leaves. We also surveyed the alteration in expression of Arabidopsis transcription factor genes and established an apparent association of GRAS, bZIP, WRKY, NAC, and C2H2 transcription factor families with leaf senescence.
Collapse
Affiliation(s)
- Ji-Feng Lin
- Institute of Botany, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|