1
|
Kumar Nayak A, Steinbok A, Roet Y, Koo J, Feldman I, Almoalem A, Kanigel A, Yan B, Rosch A, Avraham N, Beidenkopf H. First-order quantum phase transition in the hybrid metal-Mott insulator transition metal dichalcogenide 4Hb-TaS 2. Proc Natl Acad Sci U S A 2023; 120:e2304274120. [PMID: 37856542 PMCID: PMC10614784 DOI: 10.1073/pnas.2304274120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/19/2023] [Indexed: 10/21/2023] Open
Abstract
Coupling together distinct correlated and topologically nontrivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases, and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here, we investigate the compound 4Hb-TaS2 that interleaves the Mott-insulating state of 1T-TaS2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS2 and the low-temperature superconducting phase it harbors using scanning tunneling spectroscopy. We reveal a thermodynamic phase diagram that hosts a first-order quantum phase transition between a correlated Kondo-like cluster state and a depleted flat band state. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo-like cluster and the depleted flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low-frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.
Collapse
Affiliation(s)
- Abhay Kumar Nayak
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Aviram Steinbok
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Yotam Roet
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Jahyun Koo
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Irena Feldman
- Department of Physics, Technion - Israel Institute of Technology, Haifa32000, Israel
| | - Avior Almoalem
- Department of Physics, Technion - Israel Institute of Technology, Haifa32000, Israel
| | - Amit Kanigel
- Department of Physics, Technion - Israel Institute of Technology, Haifa32000, Israel
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Achim Rosch
- Institute for Theoretical Physics, University of Cologne, Zülpicher Str. 77, Köln50937, Germany
| | - Nurit Avraham
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Haim Beidenkopf
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
2
|
Pancsa R, Schad E, Tantos A, Tompa P. Emergent functions of proteins in non-stoichiometric supramolecular assemblies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:970-979. [PMID: 30826453 DOI: 10.1016/j.bbapap.2019.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Proteins are the basic functional units of the cell, carrying out myriads of functions essential for life. There are countless reports in molecular cell biology addressing the functioning of proteins under physiological and pathological conditions, aiming to understand life at the atomistic-molecular level and thereby being able to develop remedies against diseases. The central theme in most of these studies is that the functional unit under study is the protein itself. Recent rapid progress has radically challenged and extended this protein-function paradigm, by demonstrating that novel function(s) may emerge when proteins form dynamic and non-stoichiometric supramolecular assemblies. There is an increasing number of cases for such collective functions, such as targeting, localization, protection/shielding and filtering effects, as exemplified by signaling complexes and prions, biominerals and mucus, amphibian adhesions and bacterial biofilms, and a broad range of membraneless organelles (bio-condensates) formed by liquid-liquid phase separation in the cell. In this short review, we show that such non-stoichiometric organization may derive from the heterogeneity of the system, a mismatch in valency and/or geometry of the partners, and/or intrinsic structural disorder and multivalency of the component proteins. Either way, the resulting functional features cannot be simply described by, or predicted from, the properties of the isolated single protein(s), as they belong to the collection of proteins.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary; VIB Center for Structural Biology (CSB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
3
|
Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S, Kondo T. Observation of Bogoliubov Band Hybridization in the Optimally Doped Trilayer Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ}. PHYSICAL REVIEW LETTERS 2017; 119:217001. [PMID: 29219391 DOI: 10.1103/physrevlett.119.217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Using a laser-excited angle-resolved photoemission spectroscopy capable of bulk sensitive and high-energy resolution measurements, we reveal a new phenomenon of superconductors in the optimally doped trilayer Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ}. We observe a hybridization of the Bogoliubov bands derived from the inner and outer CuO_{2} planes with different magnitudes of energy gaps. Our data clearly exhibit the splitting of coherent peaks and the consequent enhancement of spectral gaps. These features are reproduced by model calculations, which indicate that the gap enhancement extends over a wide range of Fermi surface up to the antinode. The significant modulation of electron pairing uncovered here might be a crucial factor to achieve the highest critical temperature in the trilayer cuprates.
Collapse
Affiliation(s)
- So Kunisada
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shintaro Adachi
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
- MANA, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Shiro Sakai
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Nae Sasaki
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | | | - Shuntaro Akebi
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Kenta Kuroda
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Takao Sasagawa
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takao Watanabe
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Shik Shin
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Takeshi Kondo
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
4
|
Ido K, Ohgoe T, Imada M. Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation. SCIENCE ADVANCES 2017; 3:e1700718. [PMID: 28835923 PMCID: PMC5562419 DOI: 10.1126/sciadv.1700718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems.
Collapse
|