1
|
Asada S, Shinokita K, Watanabe K, Taniguchi T, Matsuda K. Nonlinear photovoltaic effects in monolayer semiconductor and layered magnetic material hetero-interface with P- and T-symmetry broken system. Nat Commun 2025; 16:4827. [PMID: 40413204 PMCID: PMC12103524 DOI: 10.1038/s41467-025-58918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/03/2025] [Indexed: 05/27/2025] Open
Abstract
Stacking two non-polar materials with different inversion- and rotational-symmetries shows unique nonlinear photovoltaic properties, with potential applications such as in next generation solar-cells. These nonlinear photocurrent properties could be further extended with broken time reversal symmetry present in magnetic materials, however, the combination of time reversal and rotation symmetry breaking has not been fully explored. Herein, we investigate the nonlinear photovoltaic responses in van der Waals heterostructure compromising of monolayer semiconductor and layered magnetic material, MoS2/CrPS4; a system with broken P- and T-symmetry. We clearly observe the finite spontaneous photocurrent as shift current at the interface of the MoS2/CrPS4 heterostructure. Moreover, we demonstrate that the spontaneous photocurrent drastically changes according to the magnetic phases of CrPS4. The magnetic phase dependent spontaneous nonlinear photocurrent provides a platform for studying nonlinear photoresponses in systems with broken P- and T-symmetry, and the potential development of magnetic controllable photovoltaic devices.
Collapse
Affiliation(s)
- Shuichi Asada
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
2
|
Tan Q, Rasmita A, Zhang Z, Dai X, He R, Cai X, Watanabe K, Taniguchi T, Cai H, Gao WB. Enhanced coherence from correlated states in WSe 2/MoS 2 moiré heterobilayer. Nat Commun 2025; 16:4518. [PMID: 40374611 PMCID: PMC12081726 DOI: 10.1038/s41467-025-57391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Moiré superlattices in van der Waals materials have emerged as a promising platform for studying the correlated states in condensed matter physics. These correlated states have substantial effects on the emission coherence, an important parameter for quantum light applications. However, the effect of correlated states on the excitonic emission coherence is largely unexplored. Here, we show that the coherence of moiré interlayer exciton emission in tungsten diselenide (WSe2)/molybdenum disulfide (MoS2) heterobilayers is sensitive to the correlated insulating states in this material. We demonstrate that the emission linewidth of interlayer exciton shows a dip at a particular power range, which we attributed to the excitonic (bosonic) interaction. Moreover, such linewidth minima also appear in the doping dependence of the photoluminescence spectrum at the integer electronic filling factor, fel = 1, demonstrating the effect of the electronic (fermionic) correlated insulating state on the interlayer exciton emission coherence. Our results demonstrate the richness of exciton-exciton and exciton-electron interactions in moiré semiconductors and pave the way for engineering emission coherence by controlling such interactions.
Collapse
Affiliation(s)
- Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- School of Microelectonics, University of Science and Technology of China, Hefei, China.
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhaowei Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xuran Dai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ruihua He
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei Anhui, China.
| | - Wei-Bo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
- Centre for Quantum Technologies, Nanyang Technological University, Singapore, Singapore.
- Quantum Science and Engineering Centre, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Xiao Y, Hu W, Li K, Liu X, Zhang J, Liu S, Zhang C, Zheng Q, Li SY, Pan A. Deep Moiré Potential and Absence of Layer Polarization in Twisted Trilayer WS 2. NANO LETTERS 2025; 25:6935-6941. [PMID: 40237566 DOI: 10.1021/acs.nanolett.5c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Twisted transition metal dichalcogenides (TMDs) hetero/homobilayers have been extensively reported to exhibit strongly correlated states and interfacial ferroelectricity. It is reasonable to anticipate that the twist angle could also significantly influence the electronic properties of multilayer TMDs. However, the quantitative study of moiré potential and the exploration of interlayer charge transfer in twisted multilayer TMDs have not been carried out. Here, using scanning tunneling microscopy and spectroscopy, we study the structure and in situ electronic properties of a twisted trilayer WS2 (TT-WS2) with twist angles of 3.35° and 0.35°. A "double-moiré" superlattice structure is detected, consisting of a completely reconstructed moiré into triangular domains and an unreconstructed one. Through comparing with the electronic properties of twisted bilayer WS2, we observe a significantly enhanced moiré potential up to 200 meV and the absence of layer polarization in the TT-WS2. Our results pave the way for further research and application of twisted multilayer TMDs.
Collapse
Affiliation(s)
- Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Wen Hu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Kaihui Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xueying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jinding Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shiying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chi Zhang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Qi Zheng
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Si-Yu Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Tachizaki T, Kanemitsu Y, Hirori H. Time resolution of terahertz scanning tunneling microscopy measurements inside a superconducting magnet using a hollow waveguide. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:043004. [PMID: 40243513 DOI: 10.1063/5.0247691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
A terahertz scanning tunneling microscope (THz-STM) is an STM that allows us to perform time-resolved measurements of tunneling currents with high temporal resolution, in addition to the high spatial resolution of STMs. In such a device, it is necessary to guide the THz beam to the STM tip, which can be difficult if there are tight space restrictions due to experimental requirements, such as ultra-high vacuum and high magnetic fields. We aim to develop a THz-STM that allows us to measure tunneling currents in high magnetic fields at cryogenic temperatures with a time resolution on the order of picoseconds. In this paper, we placed a specially designed chamber containing a homemade STM head inside a superconducting magnet and performed time-resolved measurements of the tunneling current between the Pt-Ir tip and a highly oriented pyrolytic graphite (HOPG) sample. To introduce the THz pulse into the STM chamber, we used a narrow pipe as a waveguide and evaluated a time resolution of better than 1 ps, which suggests that the realization of a THz-STM for multi-extreme conditions with picosecond time resolution is possible.
Collapse
Affiliation(s)
- Takehiro Tachizaki
- School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideki Hirori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Xu Z, Palm ML, Huxter W, Herb K, Abendroth JM, Bouzehouane K, Boulle O, Gabor MS, Urrestarazu Larranaga J, Morales A, Rhensius J, Puebla-Hellmann G, Degen CL. Minimizing Sensor-Sample Distances in Scanning Nitrogen-Vacancy Magnetometry. ACS NANO 2025; 19:8255-8265. [PMID: 39983234 PMCID: PMC11887488 DOI: 10.1021/acsnano.4c18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/23/2025]
Abstract
Scanning magnetometry with nitrogen-vacancy (NV) centers in diamond has led to significant advances in the sensitive imaging of magnetic systems. The spatial resolution of the technique, however, remains limited to tens to hundreds of nanometers, even for probes where NV centers are engineered within 10 nm from the tip apex. Here, we present a correlated investigation of the crucial parameters that determine the spatial resolution: the mechanical and magnetic stand-off distances, as well as the subsurface NV center depth in diamond. We study their contributions using mechanical approach curves, photoluminescence measurements, magnetometry scans, and nuclear magnetic resonance (NMR) spectroscopy of surface adsorbates. We first show that the stand-off distance is mainly limited by features on the surface of the diamond tip, hindering mechanical access. Next, we demonstrate that frequency-modulated (FM) atomic force microscopy feedback partially overcomes this issue, leading to closer and more consistent magnetic stand-off distances (26-87 nm) compared with the more common amplitude-modulated feedback (43-128 nm). FM operation thus permits improved magnetic imaging of sub-100-nm spin textures, shown for the spin cycloid in BiFeO3 and domain walls in a CoFeB synthetic antiferromagnet. Finally, by examining 1H and 19F NMR signals in soft contact with a polytetrafluoroethylene surface, we demonstrate a minimum NV-to-sample distance of 7.9 ± 0.4 nm.
Collapse
Affiliation(s)
- Zhewen Xu
- Department
of Physics, ETH Zürich, Otto Stern Weg 1, 8093 Zürich, Switzerland
- QZabre
AG, Neubrunnenstrasse
50, 8050 Zürich, Switzerland
| | - Marius L. Palm
- Department
of Physics, ETH Zürich, Otto Stern Weg 1, 8093 Zürich, Switzerland
| | - William Huxter
- Department
of Physics, ETH Zürich, Otto Stern Weg 1, 8093 Zürich, Switzerland
| | - Konstantin Herb
- Department
of Physics, ETH Zürich, Otto Stern Weg 1, 8093 Zürich, Switzerland
| | - John M. Abendroth
- Department
of Physics, ETH Zürich, Otto Stern Weg 1, 8093 Zürich, Switzerland
| | - Karim Bouzehouane
- Laboratoire
Albert Fert, CNRS, Thales, Université
Paris-Saclay, 91767 Palaiseau, France
| | - Olivier Boulle
- Université
Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
| | - Mihai S. Gabor
- Technical
University of Cluj-Napoca, Memorandumului 28, Cluj-Napoca 400347, Romania
| | | | - Andrea Morales
- QZabre
AG, Neubrunnenstrasse
50, 8050 Zürich, Switzerland
| | - Jan Rhensius
- QZabre
AG, Neubrunnenstrasse
50, 8050 Zürich, Switzerland
| | | | - Christian L. Degen
- Department
of Physics, ETH Zürich, Otto Stern Weg 1, 8093 Zürich, Switzerland
- Quantum
Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Bao T, Li N, Jiang X, Zhao J, Su Y. Understanding Twist-Angle-Dependent Carrier Lifetimes in MoSSe Bilayer. J Phys Chem Lett 2025; 16:2072-2079. [PMID: 39973144 DOI: 10.1021/acs.jpclett.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Two-dimensional (2D) materials with tunable interlayer interactions hold immense potential for optoelectronic and photocatalytic applications. Understanding the dependence of carrier dynamics on twist angle in Janus bilayers is essential, as it directly impacts device efficiency. This study employs time-dependent density functional theory (TD-DFT) and nonadiabatic molecular dynamics (NAMD) to investigate twist-angle-dependent carrier dynamics in Janus MoSSe bilayers with type-II band alignment. Simulations reveal ultrafast charge transfer times of approximately 70 and 500 fs, largely independent of the twist angle due to multiple intermediate states. In contrast, the electron-hole recombination times depend strongly on twist angles, extending up to 133 ns for twisted configurations (21.8° and 38.2°) compared to 57 ns in high-symmetry bilayers (0.0° and 60.0°). Structural randomness in twisted bilayers weakens interlayer interactions, reducing nonadiabatic coupling and coherence time, which collectively prolong carrier lifetimes. These findings offer valuable guidance for designing 2D materials for high-efficiency photovoltaics and long-durable photocatalysts.
Collapse
Affiliation(s)
- Tianqi Bao
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Ning Li
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Jijun Zhao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
7
|
Wang X, Wang P, Liu X, Wang X, Lu Y, Shen L. Data-Driven Discovery of High-Performance Heterobilayer Transition Metal Dichalcogenide-Based Sliding Ferroelectrics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7164-7173. [PMID: 39825797 DOI: 10.1021/acsami.4c19017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS2/WS2. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations. On the basis of the generated data, we developed an efficient descriptor, named the amplitude of Allen electronegativity difference (Δχm), for identifying van der Waals heterobilayers with sliding FE properties. Finally, 16 semiconducting TMD heterobilayers are identified as exhibiting interlayer sliding FE alongside low switching barriers (<21 meV/f.u.), with 10 outperforming the experimental MoS2/WS2 system, showing the largest out-of-plane polarization (OPP) values up to 10 times higher than MoS2/WS2. These materials exhibit favorable band gaps (0.60-1.80 eV) using the HSE06 method, making them suitable for sliding FE applications. Our findings reveal that polarization switching in these heterobilayers is strongly influenced by the interplay of stacking patterns, material electronegativity, charge transfer, and electronic structures. This study provides a robust framework for designing novel sliding ferroelectric materials and offers a theoretical basis for future experimental research.
Collapse
Affiliation(s)
- Xian Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Peng Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoqing Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Yunpeng Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
8
|
Xu Y, Sun D, Huang B, Dai Y, Wei W. Circular Dichroism and Interlayer Exciton Hall Effect in Transition Metal Dichalcogenides Homobilayers. NANO LETTERS 2025; 25:1150-1157. [PMID: 39772704 DOI: 10.1021/acs.nanolett.4c05592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In van der Waals (vdW) architectures of transition metal dichalcogenides (TMDCs), the coupling between interlayer exciton and quantum degrees of freedom opens unprecedented opportunities for excitonic physics. Taking the MoSe2 homobilayer as representative, we identify that the interlayer registry defines the nature and dynamics of the lowest-energy interlayer exciton. The large layer polarization (Pn) is proved, which ensures the formation of layer-resolved interlayer excitons. In particular, sliding ferroelectric polarization couples to the dipole orientation of the interlayer exciton, thus achieving the long-sought electric control of excitonic states. In line with the phase winding of the Bloch states under C3 rotational symmetry, we clarify the valley optical circular dichroism, enriching the exciton valleytronics. We also elucidate the Hall effect of the layer- and valley-polarized interlayer excitons, which advances our understanding of the spatial transport properties of the composite particles and provides new insights into the exciton-based applications.
Collapse
Affiliation(s)
- Yushuo Xu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dongyue Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Gao Y, Deng F, He R, Zhong Z. Spontaneous curvature in two-dimensional van der Waals heterostructures. Nat Commun 2025; 16:717. [PMID: 39819969 PMCID: PMC11739405 DOI: 10.1038/s41467-025-56055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Two-dimensional (2D) van der Waals heterostructures consist of different 2D crystals with diverse properties, constituting the cornerstone of the new generation of 2D electronic devices. Yet interfaces in heterostructures inevitably break bulk symmetry and structural continuity, resulting in delicate atomic rearrangements and novel electronic structures. In this paper, we predict that 2D interfaces undergo "spontaneous curvature", which means when two flat 2D layers approach each other, they inevitably experience out-of-plane curvature. Based on deep-learning-assisted large-scale molecular dynamics simulations, we observe significant out-of-plane displacements up to 3.8 Å in graphene/BN bilayers induced by curvature, producing a stable hexagonal moiré pattern, which agrees well with experimentally observations. Additionally, the out-of-plane flexibility of 2D crystals enables the propagation of curvature throughout the system, thereby influencing the mechanical properties of the heterostructure. These findings offer fundamental insights into the atomic structure in 2D van der Waals heterostructures and pave the way for their applications in devices.
Collapse
Affiliation(s)
- Yuxiang Gao
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Fenglin Deng
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Ri He
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Zhicheng Zhong
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
| |
Collapse
|
10
|
Ou H, Oi K, Usami R, Endo T, Shinokita K, Kitaura R, Matsuda K, Miyata Y, Pu J, Takenobu T. Continuous Strain Modulation of Moiré Superlattice Symmetry From Triangle to Rectangle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2407316. [PMID: 39821651 DOI: 10.1002/smll.202407316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/25/2024] [Indexed: 01/19/2025]
Abstract
Moiré superlattices formed in van der Waals (vdW) bilayers of 2D materials provide an ideal platform for studying previously undescribed physics, including correlated electronic states and moiré excitons, owing to the wide-range tunability of their lattice constants. However, their crystal symmetry is fixed by the monolayer structure, and the lack of a straightforward technique for modulating the symmetry of moiré superlattices has impeded progress in this field. Herein, a simple, room-temperature, ambient method for controlling superlattice symmetry is reported. The method uses vdW heterostructures on a flexible substrate; by bending the substrate, a uniaxial strain is introduced. Based on numerical calculations, a strain condition is designed to deform the moiré superlattice from triangular to rectangular, and visualized the continuous deformation of real-space moiré superlattices using piezoresponse force microscopy. The band calculations show that nearly flat moiré minibands remain in the rectangular lattice; therefore, this method provides an additional tuning knob for the Hamiltonian of moiré quantum matter.
Collapse
Affiliation(s)
- Hao Ou
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Koshi Oi
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Rei Usami
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Ryo Kitaura
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Jiang Pu
- Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Taishi Takenobu
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
11
|
Zhang C, Wu K, Gan L, Liu X, Zhang C, Wu S, Yuan X, Zhang L, Xi J, Yang J, Li X. Momentum-Direct Infrared Interlayer Exciton and Photodetection in Multilayer van der Waals Heterostructures. ACS NANO 2024; 18:33520-33530. [PMID: 39603986 DOI: 10.1021/acsnano.4c11195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Interlayer excitons (IX), spatially separated electron-hole pair quasiparticles, can form in type-II van der Waals heterostructures (vdWH). To date, the most widely studied IX in hetero- and homobilayer transition metal dichalcogenides feature momentum-indirect and visible interlayer recombinations. However, momentum-direct IX emissions and interlayer absorptions, especially in the infrared, are crucial for excitonic devices but remain underexplored. In this work, we propose and construct a multilayer WSe2/InSe vdWH that hosts momentum-direct IX and manifests near-infrared interlayer absorptions at room temperature, verified by first-principles density functional theory calculations. We conduct power- and temperature-dependent photoluminescence spectroscopies and extract the IX binding energy to be 43 ± 5 meV. Furthermore, we manipulate the IX emission electrically via the Stark effect and tune its energy by 180 meV. Taking advantage of the direct interlayer absorption, we fabricate a near-infrared vdWH photodetector modulated by strong photogating effect, and achieve the optimal photoresponsivity, specific detectivity, and response time of 33 A W-1, 1.8 × 1010 Jones, and 3.7 μs at 1150 nm. In addition, we test the imaging capability of the photodetector by integrating it into a single-pixel imaging system. Our work showcases the possibility for constructing infrared-responsive vdWH that hosts momentum-direct IX for future excitonic devices of optoelectronic applications.
Collapse
Affiliation(s)
- Chao Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Kai Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Lu Gan
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xiaoyi Liu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Cheng Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Shaolong Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xiaoming Yuan
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China
| | - Linglong Zhang
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Jinyang Xi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
| | - Jiong Yang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xiaofeng Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Lee WG, Lee JH. A Deterministic Method to Construct a Common Supercell Between Two Similar Crystalline Surfaces. SMALL METHODS 2024; 8:e2400579. [PMID: 39192466 DOI: 10.1002/smtd.202400579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/04/2024] [Indexed: 08/29/2024]
Abstract
Here, a deterministic algorithm is proposed, that is capable of constructing a common supercell between two similar crystalline surfaces without scanning all possible cases. Using the complex plane, the 2D lattice is defined as the 2D complex vector. Then, the relationship between two surfaces becomes the eigenvector-eigenvalue relation where an operator corresponds to a transformation matrix. It is shown that this transformation matrix can be directly determined from the lattice parameters and rotation angle of the two given crystalline surfaces with O(log Nmax) time complexity, where Nmax is the maximum index of repetition matrix elements. This process is much faster than the conventional brute force approach (O ( N max 4 ) $O(N_{\mathrm{max}}^4)$ ). By implementing the method in Python code, experimental 2D heterostructures and their moiré patterns and additionally find new moiré patterns that have not yet been reported are successfully generated. According to the density functional theory (DFT) calculations, some of the new moiré patterns are expected to be as stable as experimentally-observed moiré patterns. Taken together, it is believed that the method can be widely applied as a useful tool for designing new heterostructures with interesting properties.
Collapse
Affiliation(s)
- Weon-Gyu Lee
- Computational Science Research Center, Korean Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- inCerebro Co., Ltd, Seoul, 06234, South Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korean Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| |
Collapse
|
13
|
He Z, Guo XY, Ma Z, Gao JH. Energy spectrum theory of incommensurate systems. Natl Sci Rev 2024; 11:nwae083. [PMID: 39712666 PMCID: PMC11660950 DOI: 10.1093/nsr/nwae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 12/24/2024] Open
Abstract
Because of the lack of translational symmetry, calculating the energy spectrum of an incommensurate system has always been a theoretical challenge. Here, we propose a natural approach to generalize energy band theory to incommensurate systems without reliance on the commensurate approximation, thus providing a comprehensive energy spectrum theory of incommensurate systems. Except for a truncation-dependent weighting factor, the formulae of this theory are formally almost identical to that of Bloch electrons, making it particularly suitable for complex incommensurate structures. To illustrate the application of this theory, we give three typical examples: one-dimensional bichromatic and trichromatic incommensurate potential models, as well as a moiré quasicrystal. Our theory establishes a fundamental framework for understanding incommensurate systems.
Collapse
Affiliation(s)
- Zhe He
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin-Yu Guo
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Ma
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jin-Hua Gao
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Hagel J, Brem S, Malic E. Polarization and Charge-Separation of Moiré Excitons in van der Waals Heterostructures. NANO LETTERS 2024; 24:14702-14708. [PMID: 39527953 PMCID: PMC11583365 DOI: 10.1021/acs.nanolett.4c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Twisted transition metal dichalcogenide (TMD) bilayers exhibit periodic moiré potentials, which can trap excitons at certain high-symmetry sites. At small twist angles, TMD lattices undergo an atomic reconstruction, altering the moiré potential landscape via the formation of large domains, potentially separating the charges in-plane and leading to the formation of intralayer charge-transfer (CT) excitons. Here, we employ a microscopic, material-specific theory to investigate the intralayer charge-separation in atomically reconstructed MoSe2-WSe2 heterostructures. We identify three distinct and twist-angle-dependent exciton regimes including localized Wannier-like excitons, polarized excitons, and intralayer CT excitons. We calculate the moiré site hopping for these excitons and predict a fundamentally different twist-angle-dependence compared to regular Wannier excitons - presenting an experimentally accessible key signature for the emergence of intralayer CT excitons. Furthermore, we show that the charge separation and its impact on the hopping can be efficiently tuned via dielectric engineering.
Collapse
Affiliation(s)
- Joakim Hagel
- Department
of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Samuel Brem
- Department
of Physics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Ermin Malic
- Department
of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department
of Physics, Philipps University of Marburg, 35037 Marburg, Germany
| |
Collapse
|
15
|
Zhou Z, Szwed EA, Choksy DJ, Fowler-Gerace LH, Butov LV. Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure. Nat Commun 2024; 15:9454. [PMID: 39487115 PMCID: PMC11530635 DOI: 10.1038/s41467-024-53445-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024] Open
Abstract
In addition to its fundamental interest, the long-distance spin transport is essential for spintronic devices. However, the spin relaxation caused by scattering of the particles carrying the spin limits spin transport. We explored spatially indirect excitons (IXs) in van der Waals heterostructures composed of atomically thin layers of transition-metal dichalcogenides as spin carries. We observed the long-distance spin transport: the spin polarized excitons travel over the entire sample, ~10 micron away from the excitation spot, with no spin density decay. This transport is characterized by the 1/e decay distances reaching ~100 micron. The 1/e decay distances are extracted from fits over the ~10 micron sample size. The emergence of long-distance spin transport is observed at the densities and temperatures where the IX transport decay distances and, in turn, scattering times are strongly enhanced. The suppression of IX scattering suppresses the spin relaxation and enables the long-distance spin transport.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - E A Szwed
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - D J Choksy
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - L H Fowler-Gerace
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - L V Butov
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Zhao H, Yang S, Ge C, Zhang D, Huang L, Chen M, Pan A, Wang X. Tunable Out-of-Plane Reconstructions in Moiré Superlattices of Transition Metal Dichalcogenide Heterobilayers. ACS NANO 2024; 18:27479-27486. [PMID: 39316511 DOI: 10.1021/acsnano.4c08081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The reconstructed moiré superlattices of the transition metal chalcogenide (TMD), formed by the combined effects of interlayer coupling and intralayer strain, provide a platform for exploring quantum physics. Here, using scanning tunneling microscopy/spectroscopy, we observe that the strained WSe2/WS2 moiré superlattices undergo various out-of-plane atomically buckled configurations, a phenomenon termed out-of-plane reconstruction. This evolution is attributed to the differentiated response of intralayer strain in high-symmetry stacking regions to external strain. Notably, in larger out-of-plane reconstructions, there is a significant alteration in the local density of states (LDOS) near the Γ point in the valence band, exceeding 300%, with the moiré potential in the valence band surpassing 200 meV. Further, we confirm that the variation in interlayer coupling within high-symmetry stacking regions is the main factor affecting the moiré electronic states rather than the intralayer strain. Our study unveils intrinsic regulating mechanisms of out-of-plane reconstructed moiré superlattices and contributes to the study of reconstructed moiré physics.
Collapse
Affiliation(s)
- Haipeng Zhao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shengguo Yang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
| | - Cuihuan Ge
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Danliang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Lanyu Huang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingxing Chen
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Li J, Yang X, Zhang Z, Yang W, Duan X, Duan X. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. NATURE MATERIALS 2024; 23:1326-1338. [PMID: 39227467 DOI: 10.1038/s41563-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Two-dimensional transition metal dichalcogenides, which feature atomically thin geometry and dangling-bond-free surfaces, have attracted intense interest for diverse technology applications, including ultra-miniaturized transistors towards the subnanometre scale. A straightforward exfoliation-and-restacking approach has been widely used for nearly arbitrary assembly of diverse two-dimensional (2D) heterostructures, superlattices and moiré superlattices, providing a versatile materials platform for fundamental investigations of exotic physical phenomena and proof-of-concept device demonstrations. While this approach has contributed importantly to the recent flourishing of 2D materials research, it is clearly unsuitable for practical technologies. Capturing the full potential of 2D transition metal dichalcogenides requires robust and scalable synthesis of these atomically thin materials and their heterostructures with designable spatial modulation of chemical compositions and electronic structures. The extreme aspect ratio, lack of intrinsic substrate and highly delicate nature of the atomically thin crystals present fundamental difficulties in material synthesis. Here we summarize the key challenges, highlight current advances and outline opportunities in the scalable synthesis of transition metal dichalcogenide-based heterostructures, superlattices and moiré superlattices.
Collapse
Affiliation(s)
- Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Zhengwei Zhang
- School of Physics and Electronics, Central South University, Changsha, China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
de la Torre A, Kennes DM, Malic E, Kar S. Advanced Characterization of the Spatial Variation of Moiré Heterostructures and Moiré Excitons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401474. [PMID: 39248703 DOI: 10.1002/smll.202401474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/24/2024] [Indexed: 09/10/2024]
Abstract
In this short review, an overview of recent progress in deploying advanced characterization techniques is provided to understand the effects of spatial variation and inhomogeneities in moiré heterostructures over multiple length scales. Particular emphasis is placed on correlating the impact of twist angle misalignment, nano-scale disorder, and atomic relaxation on the moiré potential and its collective excitations, particularly moiré excitons. Finally, future technological applications leveraging moiré excitons are discussed.
Collapse
Affiliation(s)
- Alberto de la Torre
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, MA, 01803, USA
| | - Dante M Kennes
- Institute for Theory of Statistical Physics, RWTH Aachen University, and JARA Fundamentals of Future Information Technology, 52062, Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761, Hamburg, Germany
| | - Ermin Malic
- Fachbereich Physik, Philipps-Universität Marburg, 35032, Marburg, Germany
- Department of Physics, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Swastik Kar
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, MA, 01803, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Bera KP, Solanki D, Mandal S, Biswas R, Taniguchi T, Watanabe K, Raghunathan V, Jain M, Sood AK, Das A. Twist Angle-Dependent Phonon Hybridization in WSe 2/WSe 2 Homobilayer. ACS NANO 2024; 18:24379-24390. [PMID: 39159430 DOI: 10.1021/acsnano.4c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The emerging moiré superstructure of twisted transition metal dichalcogenides (TMDs) leads to various correlated electronic and optical properties compared to those of twisted bilayer graphene. In such a versatile architecture, phonons can also be renormalized and evolve due to atomic reconstruction, which, in turn, depends on the twist angle. However, observing this reconstruction and its relationship to phonon behavior with conventional, cost-effective imaging methods remains challenging. Here, we used noninvasive Raman spectroscopy on twisted WSe2/WSe2 (t-WSe2) homobilayers to examine the evolution of phonon modes due to interlayer coupling and atomic reconstruction. Unlike in the natural bilayer (NB), ∼0° as well as ∼60° t-WSe2 samples, the nearly degenerate A1g/E2g mode in the twisted samples (1-7°) split into a doublet in addition to the nondegenerate B2g mode, and the maximum splitting is observed around 2-3°. Our detailed theoretical calculations qualitatively capture the splitting and its dependence as a function of the twist angle and highlight the role of the moiré potential in phonon hybridization. Additionally, we found that around the 2° twist angle, the anharmonic phonon-phonon interaction is higher than the natural bilayer and decreases for larger twist angles. Interestingly, we observed anomalous Raman frequency softening and line-width increase with the decreasing temperature below 50 K, pointing to the combined effect of enhanced electron-phonon coupling and cubic anharmonic interactions in moiré superlattice.
Collapse
Affiliation(s)
| | - Darshit Solanki
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Shinjan Mandal
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Rabindra Biswas
- Department of Electrical and Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Varun Raghunathan
- Department of Electrical and Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Manish Jain
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anindya Das
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Brotons-Gisbert M, Gerardot BD, Holleitner AW, Wurstbauer U. Interlayer and Moiré excitons in atomically thin double layers: From individual quantum emitters to degenerate ensembles. MRS BULLETIN 2024; 49:914-931. [PMID: 39247683 PMCID: PMC11379794 DOI: 10.1557/s43577-024-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Abstract Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered. This article covers fundamental aspects of IXs, including correlation phenomena as well as the consequence of Moiré superlattices with a strong focus on TMD homo- and heterobilayers. Graphical abstract
Collapse
Affiliation(s)
- Mauro Brotons-Gisbert
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Brian D Gerardot
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Alexander W Holleitner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
21
|
Karmakar A, Al-Mahboob A, Zawadzka N, Raczyński M, Yang W, Arfaoui M, Gayatri, Kucharek J, Sadowski JT, Shin HS, Babiński A, Pacuski W, Kazimierczuk T, Molas MR. Twisted MoSe 2 Homobilayer Behaving as a Heterobilayer. NANO LETTERS 2024; 24:9459-9467. [PMID: 39042710 PMCID: PMC11311526 DOI: 10.1021/acs.nanolett.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.
Collapse
Affiliation(s)
- Arka Karmakar
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Abdullah Al-Mahboob
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Natalia Zawadzka
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mateusz Raczyński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Weiguang Yang
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Mehdi Arfaoui
- Département
de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia
| | - Gayatri
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Julia Kucharek
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jerzy T. Sadowski
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Hyeon Suk Shin
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
- Center
for 2D Quantum Heterostructures, Institute
for Basic Science (IBS), Suwon 16419, Republic
of Korea
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Adam Babiński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Wojciech Pacuski
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Tomasz Kazimierczuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej R. Molas
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
22
|
Kinoshita K, Lin YC, Moriya R, Okazaki S, Onodera M, Zhang Y, Senga R, Watanabe K, Taniguchi T, Sasagawa T, Suenaga K, Machida T. Crossover between rigid and reconstructed moiré lattice in h-BN-encapsulated twisted bilayer WSe 2 with different twist angles. NANOSCALE 2024; 16:14358-14365. [PMID: 38953240 DOI: 10.1039/d4nr01863j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A moiré lattice in a twisted-bilayer transition metal dichalcogenide (tBL-TMD) exhibits a complex atomic reconstruction effect when its twist angle is less than a few degrees. The influence of the atomic reconstruction on material properties of the tBL-TMD has been of particular interest. In this study, we performed scanning transmission electron microscopy (STEM) imaging of a moiré lattice in h-BN-encapsulated twisted bilayer WSe2 with various twist angles. Atomic-resolution imaging of the moiré lattice revealed a reconstructed moiré lattice below a crossover twist angle of ∼4° and a rigid moiré lattice above this angle. Our findings indicate that h-BN encapsulation has a considerable influence on lattice reconstruction, as the crossover twist angle was larger in h-BN-encapsulated devices compared to non-encapsulated devices. We believe that this difference is due to the improved flatness and uniformity of the twisted bilayers with h-BN encapsulation. Our results provide a foundation for a deeper understanding of the lattice reconstruction in twisted TMD materials with h-BN encapsulation.
Collapse
Affiliation(s)
- Kei Kinoshita
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
| | - Yung-Chang Lin
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Rai Moriya
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
| | - Shota Okazaki
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan
| | - Momoko Onodera
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
| | - Yijin Zhang
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
| | - Ryosuke Senga
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takao Sasagawa
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoki Machida
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
| |
Collapse
|
23
|
Groll M, Bürger J, Caltzidis I, Jöns KD, Schmidt WG, Gerstmann U, Lindner JKN. DFT-Assisted Investigation of the Electric Field and Charge Density Distribution of Pristine and Defective 2D WSe 2 by Differential Phase Contrast Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311635. [PMID: 38703033 DOI: 10.1002/smll.202311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Most properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe2 bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). For pristine material, a higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is obtained and tentatively explained by a coherent scattering effect. Furthermore, the change in the electric field distribution induced by a missing selenium atomic column is investigated. A characteristic electric field distribution in the vicinity of the defect with locally reduced magnitudes compared to the pristine lattice is observed. This effect is accompanied by a considerable inward relaxation of the surrounding lattice, which according to first principles DFT calculation is fully compatible with a missing column of Se atoms. This shows that DPC imaging, as an electric field sensitive technique, provides additional and remarkable information to the otherwise only structural analysis obtained with conventional STEM imaging.
Collapse
Affiliation(s)
- Maja Groll
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Julius Bürger
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Ioannis Caltzidis
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Klaus D Jöns
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Wolf Gero Schmidt
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Uwe Gerstmann
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Jörg K N Lindner
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| |
Collapse
|
24
|
Choudhary T, Peter J, Biswas RK. Exploring Anisotropic Carrier Transport in WSe 2-WTe 2 Superlattices: A Computational Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13476-13485. [PMID: 38889432 DOI: 10.1021/acs.langmuir.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Superlattice structures offer distinct benefits in modern semiconductor technology, enabling the development of a deeper understanding of their sublayer arising from the interfaces. However, the advancement of large-scale applications encounters additional concerns, such as the stability and performance of the superlattice. In this study, we employ density functional theory calculations combined with the Boltzmann transport theory to comprehensively analyze the electronic structural and transport properties of the hexagonal phase of WSe2 and the WSe2-WTe2 superlattice for their applications in carrier transport fields. Previous studies showed that longitudinal acoustics phonon limited carrier mobility determined by deformation potential theory (DPT) often compromises the accuracy and overestimates the relaxation time by 2 orders. Herein, we conduct an in-depth analysis of band structural and transport properties, addressing the aforementioned inconsistency by exclusively incorporating scattering from longitudinal optical phonons to accurately compute mobility using the Fröhlich interaction. Our findings reveal a significant enhancement in mobility for both electrons and holes in the WSe2-WTe2 superlattice, reaching 545 and 476 cm2 V-1 s-1, respectively, compared to 104 and 132 cm2 V-1 s-1 for WSe2, which suggests that this superlattice is a promising material for electronics and transport applications.
Collapse
Affiliation(s)
- Tanu Choudhary
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru 560058, India
| | - Jipin Peter
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru 560058, India
| | - Raju K Biswas
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru 560058, India
| |
Collapse
|
25
|
Yao D, Ye L, Fu Z, Wang Q, He H, Lu J, Deng W, Huang X, Ke M, Liu Z. Topological Network Modes in a Twisted Moiré Phononic Crystal. PHYSICAL REVIEW LETTERS 2024; 132:266602. [PMID: 38996328 DOI: 10.1103/physrevlett.132.266602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/11/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
Twisted moiré materials, a new class of layered structures with different twist angles for neighboring layers, are attracting great attention because of the rich intriguing physical phenomena associated with them. Of particular interest are the topological network modes, first proposed in the small angle twisted bilayer graphene under interlayer bias. Here we report the observations of such topological network modes in twisted moiré phononic crystals without requiring the external bias fields. Acoustic topological network modes that can be constructed in a wide range of twist angles are both observed in the domain walls with and without reconstructions, which serve as the analogy of the lattice relaxations in electronic moiré materials. Topological robustness of the topological network modes is observed by introducing valley-preserved defects to the network channel. Furthermore, the network can be reconfigured into two-dimensional patterns with any desired connectivity, offering a unique prototype platform for acoustic applications.
Collapse
Affiliation(s)
- Dan Yao
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Liping Ye
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhonghao Fu
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qing Wang
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hailong He
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | | | | | | | - Manzhu Ke
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhengyou Liu
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Graham AJ, Park H, Nguyen PV, Nunn J, Kandyba V, Cattelan M, Giampietri A, Barinov A, Watanabe K, Taniguchi T, Andreev A, Rudner M, Xu X, Wilson NR, Cobden DH. Conduction Band Replicas in a 2D Moiré Semiconductor Heterobilayer. NANO LETTERS 2024; 24:5117-5124. [PMID: 38629940 DOI: 10.1021/acs.nanolett.3c04866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Stacking monolayer semiconductors creates moiré patterns, leading to correlated and topological electronic phenomena, but measurements of the electronic structure underpinning these phenomena are scarce. Here, we investigate the properties of the conduction band in moiré heterobilayers of WS2/WSe2 using submicrometer angle-resolved photoemission spectroscopy with electrostatic gating. We find that at all twist angles the conduction band edge is the K-point valley of the WS2, with a band gap of 1.58 ± 0.03 eV. From the resolved conduction band dispersion, we deduce an effective mass of 0.15 ± 0.02 me. Additionally, we observe replicas of the conduction band displaced by reciprocal lattice vectors of the moiré superlattice. We argue that the replicas result from the moiré potential modifying the conduction band states rather than final-state diffraction. Interestingly, the replicas display an intensity pattern with reduced 3-fold symmetry, which we show implicates the pseudo vector potential associated with in-plane strain in moiré band formation.
Collapse
Affiliation(s)
- Abigail J Graham
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Heonjoon Park
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Paul V Nguyen
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - James Nunn
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Viktor Kandyba
- Elettra - Sincrotrone Trieste, S.C.p.A, Basovizza (TS), Friuli-Venezia Giulia 34149, Italy
| | - Mattia Cattelan
- Elettra - Sincrotrone Trieste, S.C.p.A, Basovizza (TS), Friuli-Venezia Giulia 34149, Italy
| | - Alessio Giampietri
- Elettra - Sincrotrone Trieste, S.C.p.A, Basovizza (TS), Friuli-Venezia Giulia 34149, Italy
| | - Alexei Barinov
- Elettra - Sincrotrone Trieste, S.C.p.A, Basovizza (TS), Friuli-Venezia Giulia 34149, Italy
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Anton Andreev
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Mark Rudner
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - David H Cobden
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
27
|
Zhang J, Xiao Y, Li K, Chen Y, Liu S, Luo W, Liu X, Liu S, Wang Y, Li SY, Pan A. Microscopy aided detection of the self-intercalation mechanism and in situ electronic properties in chromium selenide. NANOSCALE 2024; 16:8028-8035. [PMID: 38546273 DOI: 10.1039/d4nr00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Two-dimensional (2D) chromium-based self-intercalated materials Cr1+nX2 (0 ≤ n ≤ 1, X = S, Se, Te) have attracted much attention because of their tunable magnetism with good environmental stability. Intriguingly, the magnetic and electrical properties of the materials can be effectively tuned by altering the coverage and spatial arrangement of the intercalated Cr (ic-Cr) within the van der Waals gap, contributing to different stoichiometries. Several different Cr1+nX2 systems have been widely investigated recently; however, those with the same stoichiometric ratio (such as Cr1.25Te2) were reported to exhibit disparate magnetic properties, which still lacks explanation. Therefore, a systematic in situ study of the mechanisms with microscopy techniques is in high demand to look into the origin of these discrepancies. Herein, 2D self-intercalated Cr1+nSe2 nanoflakes were synthesized as a platform to conduct the characterization. Combining scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM), we studied in depth the microscopic structure and local electronic properties of the Cr1+nSe2 nanoflakes. The self-intercalation mechanism of ic-Cr and local stoichiometric-ratio variation in a Cr1+nSe2 ultrathin nanoflake is clearly detected at the nanometer scale. Scanning tunneling spectroscopy (STS) measurements indicate that Cr1.5Se2/Cr2Se2 and Cr1.25Se2 exhibit conductive and semiconductive behaviors, respectively. The STM tip manipulation method is further applied to manipulate the microstructure of Cr1+nSe2, which successfully produces clean zigzag-type boundaries. Our systematic microscopy study paves the way for the in-depth study of the magnetic mechanism of 2D self-intercalated magnets at the nano/micro scale and the development of new magnetic and spintronic devices.
Collapse
Affiliation(s)
- Jinding Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Kaihui Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Ying Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Songlong Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Xueying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Shiying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yiliu Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Si-Yu Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, People's Republic of China.
| |
Collapse
|
28
|
Yang K, Xu Z, Feng Y, Schindler F, Xu Y, Bi Z, Bernevig BA, Tang P, Liu CX. Topological minibands and interaction driven quantum anomalous Hall state in topological insulator based moiré heterostructures. Nat Commun 2024; 15:2670. [PMID: 38531879 PMCID: PMC11258263 DOI: 10.1038/s41467-024-46717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers' pair of minibands can beZ 2 non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers' minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2 on top of Sb2Te3 films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.
Collapse
Affiliation(s)
- Kaijie Yang
- Department of Physics, the Pennsylvania State University, University Park, PA, 16802, USA
| | - Zian Xu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yanjie Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Frank Schindler
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yuanfeng Xu
- Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou, 310058, China
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Zhen Bi
- Department of Physics, the Pennsylvania State University, University Park, PA, 16802, USA
| | - B Andrei Bernevig
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, 22761, Germany
| | - Chao-Xing Liu
- Department of Physics, the Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
29
|
Zhou H, Liang K, Bi L, Shi Y, Wang Z, Li S. Spotlight: Visualization of Moiré Quantum Phenomena in Transition Metal Dichalcogenide with Scanning Tunneling Microscopy. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:1530-1541. [PMID: 38558951 PMCID: PMC10976882 DOI: 10.1021/acsaelm.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/04/2024]
Abstract
Transition metal dichalcogenide (TMD) moiré superlattices have emerged as a significant area of study in condensed matter physics. Thanks to their superior optical properties, tunable electronic band structure, strong Coulomb interactions, and quenched electron kinetic energy, they offer exciting avenues to explore correlated quantum phenomena, topological properties, and light-matter interactions. In recent years, scanning tunneling microscopy (STM) has made significant impacts on the study of these fields by enabling intrinsic surface visualization and spectroscopic measurements with unprecedented atomic scale detail. Here, we spotlight the key findings and innovative developments in imaging and characterization of TMD heterostructures via STM, from its initial implementation on the in situ grown sample to the latest photocurrent tunneling microscopy. The evolution in sample design, progressing from a conductive to an insulating substrate, has not only expanded our control over TMD moiré superlattices but also promoted an understanding of their structures and strongly correlated properties, such as the structural reconstruction and formation of generalized two-dimensional Wigner crystal states. In addition to highlighting recent advancements, we outline upcoming challenges, suggest the direction of future research, and advocate for the versatile use of STM to further comprehend and manipulate the quantum dynamics in TMD moiré superlattices.
Collapse
Affiliation(s)
- Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Yueqing Shi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Zihao Wang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
30
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
31
|
Balisetty L, Wilfong B, Zhou X, Zheng H, Liou SC, Rodriguez EE. Twisting two-dimensional iron sulfide layers into coincident site superlattices via intercalation chemistry. Chem Sci 2024; 15:3223-3232. [PMID: 38425529 PMCID: PMC10901521 DOI: 10.1039/d3sc02994h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Layered van der Waals (vdW) materials are susceptible not only to various stacking polymorphs through translations but also twisted structures due to rotations between layers. Here, we study the influence of such layer-to-layer twisting through the intercalation of ethylenediamine (EDA) molecules into tetragonal iron sulfide (Mackinawite FeS). Selected area electron diffraction patterns of intercalated FeS display reflections corresponding to multiple square lattices with a fixed angle between them, contrary to a single square lattice seen in the unintercalated phase. The observed twist angles of 49.13° and 22.98° result from a superstructure formation well described by the coincident site lattice (CSL) theory. According to the CSL theory, these measured twist angles lead to the formation of larger coincident site supercells. We build these CSL models for FeS using crystallographic group-subgroup transformations and find simulated electron diffraction patterns from the model to agree with the experimentally measured data.
Collapse
Affiliation(s)
- Lahari Balisetty
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
| | - Brandon Wilfong
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
- Maryland Quantum Materials Center, University of Maryland College Park MD 20742 USA
| | - Xiuquan Zhou
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
- Maryland Quantum Materials Center, University of Maryland College Park MD 20742 USA
| | - Huafei Zheng
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
| | - Sz-Chian Liou
- Electron Microscopy Facility, Institute for Functional Materials and Devices, Lehigh University Bethlehem PA 18015 USA
| | - Efrain E Rodriguez
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
- Maryland Quantum Materials Center, University of Maryland College Park MD 20742 USA
| |
Collapse
|
32
|
Yang X, Wang X, Faizan M, He X, Zhang L. Second-harmonic generation in 2D moiré superlattices composed of bilayer transition metal dichalcogenides. NANOSCALE 2024; 16:2913-2922. [PMID: 38247404 DOI: 10.1039/d3nr05805k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Moiré superlattices (MSLs) in twisted two-dimensional van der Waals materials feature twist-angle-dependent crystal symmetry and strong optical nonlinearities. By adjusting the twist angle in bilayer van der Waals materials, the second-harmonic generation (SHG) can be controlled. Here, we focus on exploring the electronic and SHG properties of MSLs in 2D bilayer transition metal dichalcogenides (TMDs) with different twist angles through first-principles calculations. We constructed MSL structures of five TMD materials, including three single-phase materials (MoS2, WS2, and MoSe2) and two heterojunctions (MoS2/MoSe2 and MoS2/WS2) with twist angles of 9.4°, 13.2°, 21.8°, 32.2°, and 42.1° without lattice mismatch. Our findings demonstrate a consistent variation in the SHG susceptibility among different TMD MSLs as a response to twist-angle changes. The underlying reason for the twist-angle dependence of SHG is that the twist angle regulates the interlayer coupling strength, affecting the optical band gap of MSLs and subsequently tuning the SHG susceptibility. Through a comparison of the static SHG susceptibility values, we identified the twist angle of 9.4° as the configuration that yields the highest SHG susceptibility (e.g. 358.5 pm V-1 for the 9.4° MoSe2 MSL). This value is even twice that of the monolayer (173.3 pm V-1 for monolayer MoSe2) and AA'-stacked bilayer structures (139.8 pm V-1 for AA' MoSe2). This high SHG susceptibility is attributed to the strong interlayer coupling in the 9.4° MSL, which enhances the valence band energy (contributed by the antibonding orbitals of chalcogen-pz and transition metal-dz2) and consequently leads to a small optical band gap, thus improving the optical transitions. The findings of this study provide a straightforward way to improve the SHG performance of bilayer TMDs and also throw light on the sensitive relationship between the twist angle, band structure and SHG properties of TMD MSLs.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Xinjiang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Muhammad Faizan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Xin He
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Lijun Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
33
|
Blundo E, Tuzi F, Cianci S, Cuccu M, Olkowska-Pucko K, Kipczak Ł, Contestabile G, Miriametro A, Felici M, Pettinari G, Taniguchi T, Watanabe K, Babiński A, Molas MR, Polimeni A. Localisation-to-delocalisation transition of moiré excitons in WSe 2/MoSe 2 heterostructures. Nat Commun 2024; 15:1057. [PMID: 38316753 PMCID: PMC10844653 DOI: 10.1038/s41467-024-44739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Moiré excitons (MXs) are electron-hole pairs localised by the periodic (moiré) potential forming in two-dimensional heterostructures (HSs). MXs can be exploited, e.g., for creating nanoscale-ordered quantum emitters and achieving or probing strongly correlated electronic phases at relatively high temperatures. Here, we studied the exciton properties of WSe2/MoSe2 HSs from T = 6 K to room temperature using time-resolved and continuous-wave micro-photoluminescence also under a magnetic field. The exciton dynamics and emission lineshape evolution with temperature show clear signatures that MXs de-trap from the moiré potential and turn into free interlayer excitons (IXs) for temperatures above 100 K. The MX-to-IX transition is also apparent from the exciton magnetic moment reversing its sign when the moiré potential is not capable of localising excitons at elevated temperatures. Concomitantly, the exciton formation and decay times reduce drastically. Thus, our findings establish the conditions for a truly confined nature of the exciton states in a moiré superlattice with increasing temperature and photo-generated carrier density.
Collapse
Affiliation(s)
- Elena Blundo
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Federico Tuzi
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Salvatore Cianci
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marzia Cuccu
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Katarzyna Olkowska-Pucko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Łucja Kipczak
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Giorgio Contestabile
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Miriametro
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Felici
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgio Pettinari
- Institute for Photonics and Nanotechnologies, National Research Council, 00133, Rome, Italy
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Antonio Polimeni
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
34
|
Shayeganfar F, Ramazani A, Habibiyan H, Rafiee Diznab M. Terahertz linear/non-linear anomalous Hall conductivity of moiré TMD hetero-nanoribbons as topological valleytronics materials. Sci Rep 2024; 14:1581. [PMID: 38238394 PMCID: PMC10796390 DOI: 10.1038/s41598-024-51721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Twisted moiré van der Waals heterostructures hold promise to provide a robust quantum simulation platform for strongly correlated materials and realize elusive states of matter such as topological states in the laboratory. We demonstrated that the moiré bands of twisted transition metal dichalcogenide (TMD) hetero-nanoribbons exhibit non-trivial topological order due to the tendency of valence and conduction band states in K valleys to form giant band gaps when spin-orbit coupling (SOC) is taken into account. Among the features of twisted WS[Formula: see text]/MoS[Formula: see text] and WSe[Formula: see text]/MoSe[Formula: see text], we found that the heavy fermions associated with the topological flat bands and the presence of strongly correlated states, enhance anomalous Hall conductivity (AHC) away from the magic angle. By band analysis, we showed that the topmost conduction bands from the ± K-valleys are perfectly flat and carry a spin/valley Chern number. Moreover, we showed that the non-linear anomalous Hall effect in moiré TMD hetero-nanoribbons can be used to manipulate terahertz (THz) radiation. Our findings establish twisted heterostructures of group-VI TMD nanoribbons as a tunable platform for engineering topological valley quantum phases and THz non-linear Hall conductivity.
Collapse
Affiliation(s)
- Farzaneh Shayeganfar
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Ali Ramazani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hamidreza Habibiyan
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rafiee Diznab
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
35
|
Yang A, Luo J, Xie Z, Chen Q, Xie Q. Ab Initio Quantum Dynamics Simulation of the Impact of Graphene on the Carrier Lifetime of the ZnV 2O 6 Photocatalyst. J Phys Chem Lett 2024; 15:23-33. [PMID: 38127901 DOI: 10.1021/acs.jpclett.3c02387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We used a nonadiabatic molecular dynamics simulation to determine the carrier dynamics of a graphene/ZnV2O6 heterostructure in the search for an effective photocatalyst material. The C-2p orbital promotes the wave function overlap, guiding electrons to move between graphene and ZnV2O6, successfully achieving good mixing with the valence and conduction bands in ZnV2O6 materials, which is conducive to supporting carrier migration. The overlap between graphene/ZnV2O6 electrons and hole wave functions is less than that of ZnV2O6, and there is small absolute nonadiabatic coupling. The charge separation caused by graphene increases the carrier lifetime and prevents nonradiative electron-hole recombination. This study reveals the microscopic mechanism of extending the carrier lifetime of ZnV2O6 by introducing graphene, providing useful insights for regulating the electronic structure, promoting electron transfer and ultrafast electron and hole transfer. This strategy provides design considerations for advanced photocatalytic materials.
Collapse
Affiliation(s)
- Anqi Yang
- Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
- Special and Key Laboratory of Guizhou Provincial Higher Education for Green Energy-Saving Materials, Guiyang 550025, China
| | - Jiaolian Luo
- Special and Key Laboratory of Guizhou Provincial Higher Education for Green Energy-Saving Materials, Guiyang 550025, China
- School of materials science and engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zhenyu Xie
- Special and Key Laboratory of Guizhou Provincial Higher Education for Green Energy-Saving Materials, Guiyang 550025, China
- Architectural Engineering College, Guizhou Minzu University, Guiyang 550025, China
| | - Qian Chen
- Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
| | - Quan Xie
- Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
36
|
Liu H, Wang J, Chen S, Sun Z, Xu H, Han Y, Wang C, Liu H, Huang L, Luo J, Liu D. Direct Visualization of Dark Interlayer Exciton Transport in Moiré Superlattices. NANO LETTERS 2024; 24:339-346. [PMID: 38147355 DOI: 10.1021/acs.nanolett.3c04105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Moiré superlattices have emerged as an unprecedented manipulation tool for engineering correlated quantum phenomena in van der Waals heterostructures. With moiré potentials as a naturally configurable solid-state that sustains high exciton density, interlayer excitons in transition metal dichalcogenide heterostructures are expected to achieve high-temperature exciton condensation. However, the exciton degeneracy state is usually optically inactive due to the finite momentum of interlayer excitons. Experimental observation of dark interlayer excitons in moiré potentials remains challenging. Here we directly visualize the dark interlayer exciton transport in WS2/h-BN/WSe2 heterostructures using femtosecond transient absorption microscopy. We observe a transition from classical free exciton gas to quantum degeneracy by imaging temperature-dependent exciton transport. Below a critical degeneracy temperature, exciton diffusion rates exhibit an accelerating downward trend, which can be explained well by a nonlinear quantum diffusion model. These results open the door to quantum information processing and high-precision metrology in moiré superlattices.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jiangcai Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Shihong Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zejun Sun
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Haowen Xu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yishu Han
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Chong Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Huixian Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Li Huang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Dameng Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Li Y, Zhang F, Ha VA, Lin YC, Dong C, Gao Q, Liu Z, Liu X, Ryu SH, Kim H, Jozwiak C, Bostwick A, Watanabe K, Taniguchi T, Kousa B, Li X, Rotenberg E, Khalaf E, Robinson JA, Giustino F, Shih CK. Tuning commensurability in twisted van der Waals bilayers. Nature 2024; 625:494-499. [PMID: 38233619 DOI: 10.1038/s41586-023-06904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.
Collapse
Affiliation(s)
- Yanxing Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Fan Zhang
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Viet-Anh Ha
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Chuan Lin
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chengye Dong
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Qiang Gao
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Zhida Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaohui Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Sae Hee Ryu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsue Kim
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenji Watanabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Bishoy Kousa
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaoqin Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eslam Khalaf
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Joshua A Robinson
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Feliciano Giustino
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
38
|
Qian W, Qi P, Dai Y, Shi B, Tao G, Liu H, Zhang X, Xiang D, Fang Z, Liu W. Strongly Localized Moiré Exciton in Twisted Homobilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305200. [PMID: 37649150 DOI: 10.1002/smll.202305200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Indexed: 09/01/2023]
Abstract
Artificially molding exciton flux is the cornerstone for developing promising excitonic devices. In the emerging hetero/homobilayers, the spatial separated charges prolong exciton lifetimes and create out-plane dipoles, facilitating electrically control exciton flux on a large scale, and the nanoscale periodic moiré potentials arising from twist-angle or/and lattice mismatch can substantially alter exciton dynamics, which are mainly proved in the heterostructures. However, the spatially indirect excitons dynamics in homobilayers without lattice mismatch remain elusive. Here the nonequilibrium dynamics of indirect exciton in homobilayers are systematically investigated. The homobilayers with slightly twist-angle can induce a deep moiré potential (>50 meV) in the energy landscape of indirect excitons, resulting in a strongly localized moiré excitons insulating the transport dynamics from phonons and disorder. These findings provide insights into the exciton dynamics and many-body physics in moiré superlattices modulated energy landscape, with implications for designing excitonic devices operating at room temperature.
Collapse
Affiliation(s)
- Wenqi Qian
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Pengfei Qi
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Beibei Shi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haiyi Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Xubin Zhang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Dong Xiang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Weiwei Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| |
Collapse
|
39
|
Won J, Bae J, Kim H, Kim T, Nemati N, Choi S, Jung MC, Kim S, Choi H, Kim B, Jin D, Kim M, Han MJ, Kim JY, Shim W. Polytypic Two-Dimensional FeAs with High Anisotropy. NANO LETTERS 2023. [PMID: 38048278 DOI: 10.1021/acs.nanolett.3c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
In the realm of two-dimensional (2D) crystal growth, the chemical composition often determines the thermodynamically favored crystallographic structures. This relationship poses a challenge in synthesizing novel 2D crystals without altering their chemical elements, resulting in the rarity of achieving specific crystallographic symmetries or lattice parameters. We present 2D polymorphic FeAs crystals that completely differ from bulk orthorhombic FeAs (Pnma), differing in the stacking sequence, i.e., polytypes. Preparing polytypic FeAs outlines a strategy for independently controlling each symmetry operator, which includes the mirror plane for 2Q-FeAs (I4/mmm) and the glide plane for 1Q-FeAs (P4/nmm). As such, compared to bulk FeAs, polytypic 2D FeAs shows highly anisotropic properties such as electrical conductivity, Young's modulus, and friction coefficient. This work represents a concept of expanding 2D crystal libraries with a given chemical composition but various crystal symmetries.
Collapse
Affiliation(s)
- Jongbum Won
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Hyesoo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Narguess Nemati
- Department of Mechanical and Production Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Sangjin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Myung-Chul Jung
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sungsoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Dana Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Minjun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jong-Young Kim
- Icheon branch, Korea Institute of Ceramic Engineering and Technology, Icheon 17303, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
40
|
Jiang W, Sofer R, Gao X, Tkatchenko A, Kronik L, Ouyang W, Urbakh M, Hod O. Anisotropic Interlayer Force Field for Group-VI Transition Metal Dichalcogenides. J Phys Chem A 2023; 127:9820-9830. [PMID: 37938019 DOI: 10.1021/acs.jpca.3c04540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
An anisotropic interlayer force field that describes the interlayer interactions in homogeneous and heterogeneous interfaces of group-VI transition metal dichalcogenides (MX2, where M = Mo, W, and X = S, Se) is presented. The force field is benchmarked against density functional theory calculations for bilayer systems within the Heyd-Scuseria-Ernzerhof hybrid density functional approximation, augmented by a nonlocal many-body dispersion treatment of long-range correlation. The parametrization yields good agreement with the reference calculations of binding energy curves and sliding potential energy surfaces. It is found to be transferable to transition metal dichalcogenide (TMD) junctions outside of the training set that contain the same atom types. Calculated bulk moduli agree with most previous dispersion-corrected density functional theory predictions, which underestimate the available experimental values. Calculated phonon spectra of the various junctions under consideration demonstrate the importance of appropriately treating the anisotropic nature of the layered interfaces. Considering our previous parametrization for MoS2, the anisotropic interlayer potential enables accurate and efficient large-scale simulations of the dynamical, tribological, and thermal transport properties of a large set of homogeneous and heterogeneous TMD interfaces.
Collapse
Affiliation(s)
- Wenwu Jiang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Reut Sofer
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Xiang Gao
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oded Hod
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
41
|
Wen Y, Coupin MJ, Hou L, Warner JH. Moiré Superlattice Structure of Pleated Trilayer Graphene Imaged by 4D Scanning Transmission Electron Microscopy. ACS NANO 2023; 17:19600-19612. [PMID: 37791789 DOI: 10.1021/acsnano.2c12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Moiré superlattices in graphene arise from rotational twists in stacked 2D layers, leading to specific band structures, charge density and interlayer electron and excitonic interactions. The periodicities in bilayer graphene moiré lattices are given by a simple moiré basis vector that describes periodic oscillations in atomic density. The addition of a third layer to form trilayer graphene generates a moiré lattice comprised of multiple harmonics that do not occur in bilayer systems, leading to nontrivial crystal symmetries. Here, we use atomic resolution 4D-scanning transmission electron microscopy to study atomic structure in bilayer and trilayer graphene moiré superlattices and use 4D-STEM to map the electric fields to show subtle variations in the long-range moiré patterns. We show that monolayer graphene folded into an S-bend graphene pleat produces trilayer moiré superlattices with both small (<2°) and larger twist angles (7-30°). Annular in-plane electric field concentrations are detected in high angle bilayers due to overlapping rotated graphene hexagons in each layer. The presence of a third low angle twisted layer in S-bend trilayer graphene, introduces a long-range modulation of the atomic structure so that no real space unit cell is detected. By directly imaging trilayer moiré harmonics that span from picoscale to nanoscale using 4D-STEM, we gain insights into the complex spatial distributions of atomic density and electric fields in trilayer twisted layered materials.
Collapse
Affiliation(s)
- Yi Wen
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Matthew J Coupin
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Linlin Hou
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jamie H Warner
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
42
|
Hung NT, Zhang K, Van Thanh V, Guo Y, Puretzky AA, Geohegan DB, Kong J, Huang S, Saito R. Nonlinear Optical Responses of Janus MoSSe/MoS 2 Heterobilayers Optimized by Stacking Order and Strain. ACS NANO 2023; 17:19877-19886. [PMID: 37643404 DOI: 10.1021/acsnano.3c04436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nonlinear optical responses in second harmonic generation (SHG) of van der Waals heterobilayers, Janus MoSSe/MoS2, are theoretically optimized as a function of strain and stacking order by adopting an exchange-correlation hybrid functional and a real-time approach in first-principles calculation. We find that the calculated nonlinear susceptibility, χ(2), in AA stacking (550 pm/V) becomes three times as large as AB stacking (170 pm/V) due to the broken inversion symmetry in the AA stacking. The present theoretical prediction is compared with the observed SHG spectra of Janus MoSSe/MoS2 heterobilayers, in which the peak SHG intensity of AA stacking becomes four times as large as AB stacking. Furthermore, a relatively large, two-dimensional strain (4%) that breaks the C3v point group symmetry of the MoSSe/MoS2, enhances calculated χ(2) values for both AA (900 pm/V) and AB (300 pm/V) stackings 1.6 times as large as that without strain.
Collapse
Affiliation(s)
- Nguyen Tuan Hung
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Vuong Van Thanh
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 100000, Viet Nam
| | - Yunfan Guo
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Riichiro Saito
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
43
|
Liu J, Yang X, Fang H, Yan W, Ouyang W, Liu Z. In Situ Twistronics: A New Platform Based on Superlubricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305072. [PMID: 37867201 DOI: 10.1002/adma.202305072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Indexed: 10/24/2023]
Abstract
Twistronics, an emerging field focused on exploring the unique electrical properties induced by twist interface in graphene multilayers, has garnered significant attention in recent years. The general manipulation of twist angle depends on the assembly of van der Waals (vdW) layered materials, which has led to the discovery of unconventional superconductivity, ferroelectricity, and nonlinear optics, thereby expanding the realm of twistronics. Recently, in situ tuning of interlayer conductivity in vdW layered materials has been achieved based on scanning probe microscope. In this Perspective, the advancements in in situ twistronics are focused on by reviewing the state-of-the-art in situ manipulating technology, discussing the underlying mechanism based on the concept of structural superlubricity, and exploiting the real-time twistronic tests under scanning electron microscope (SEM). It is shown that the real-time manipulation under SEM allows for visualizing and monitoring the interface status during in situ twistronic testing. By harnessing the unique tribological properties of vdW layered materials, this novel platform not only enhances the fabrication of twistronic devices but also facilitates the fundamental understanding of interface phenomena in vdW layered materials. Moreover, this platform holds great promise for the application of twistronic-mechanical systems, providing avenues for the integration of twistronics into various mechanical frameworks.
Collapse
Affiliation(s)
- Jianxin Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaoqi Yang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hui Fang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Weidong Yan
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
44
|
Pimenta Martins LG, Ruiz-Tijerina DA, Occhialini CA, Park JH, Song Q, Lu AY, Venezuela P, Cançado LG, Mazzoni MSC, Matos MJS, Kong J, Comin R. Pressure tuning of minibands in MoS 2/WSe 2 heterostructures revealed by moiré phonons. NATURE NANOTECHNOLOGY 2023; 18:1147-1153. [PMID: 37322144 DOI: 10.1038/s41565-023-01413-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Moiré superlattices of two-dimensional heterostructures arose as a new platform to investigate emergent behaviour in quantum solids with unprecedented tunability. To glean insights into the physics of these systems, it is paramount to discover new probes of the moiré potential and moiré minibands, as well as their dependence on external tuning parameters. Hydrostatic pressure is a powerful control parameter, since it allows to continuously and reversibly enhance the moiré potential. Here we use high pressure to tune the minibands in a rotationally aligned MoS2/WSe2 moiré heterostructure, and show that their evolution can be probed via moiré phonons. The latter are Raman-inactive phonons from the individual layers that are activated by the moiré potential. Moiré phonons manifest themselves as satellite Raman peaks arising exclusively from the heterostructure region, increasing in intensity and frequency under applied pressure. Further theoretical analysis reveals that their scattering rate is directly connected to the moiré potential strength. By comparing the experimental and calculated pressure-induced enhancement, we obtain numerical estimates for the moiré potential amplitude and its pressure dependence. The present work establishes moiré phonons as a sensitive probe of the moiré potential as well as the electronic structures of moiré systems.
Collapse
Affiliation(s)
| | - David A Ruiz-Tijerina
- Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Connor A Occhialini
- Physics Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ji-Hoon Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qian Song
- Physics Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ang-Yu Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pedro Venezuela
- Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil
| | - Luiz G Cançado
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário S C Mazzoni
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus J S Matos
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Riccardo Comin
- Physics Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Man P, Huang L, Zhao J, Ly TH. Ferroic Phases in Two-Dimensional Materials. Chem Rev 2023; 123:10990-11046. [PMID: 37672768 DOI: 10.1021/acs.chemrev.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Two-dimensional (2D) ferroics, namely ferroelectric, ferromagnetic, and ferroelastic materials, are attracting rising interest due to their fascinating physical properties and promising functional applications. A variety of 2D ferroic phases, as well as 2D multiferroics and the novel 2D ferrovalleytronics/ferrotoroidics, have been recently predicted by theory, even down to the single atomic layers. Meanwhile, some of them have already been experimentally verified. In addition to the intrinsic 2D ferroics, appropriate stacking, doping, and defects can also artificially regulate the ferroic phases of 2D materials. Correspondingly, ferroic ordering in 2D materials exhibits enormous potential for future high density memory devices, energy conversion devices, and sensing devices, among other applications. In this paper, the recent research progresses on 2D ferroic phases are comprehensively reviewed, with emphasis on chemistry and structural origin of the ferroic properties. In addition, the promising applications of the 2D ferroics for information storage, optoelectronics, and sensing are also briefly discussed. Finally, we envisioned a few possible pathways for the future 2D ferroics research and development. This comprehensive overview on the 2D ferroic phases can provide an atlas for this field and facilitate further exploration of the intriguing new materials and physical phenomena, which will generate tremendous impact on future functional materials and devices.
Collapse
Affiliation(s)
- Ping Man
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Lingli Huang
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
46
|
Cai H, Rasmita A, Tan Q, Lai JM, He R, Cai X, Zhao Y, Chen D, Wang N, Mu Z, Huang Z, Zhang Z, Eng JJH, Liu Y, She Y, Pan N, Miao Y, Wang X, Liu X, Zhang J, Gao W. Interlayer donor-acceptor pair excitons in MoSe 2/WSe 2 moiré heterobilayer. Nat Commun 2023; 14:5766. [PMID: 37723156 PMCID: PMC10507070 DOI: 10.1038/s41467-023-41330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Localized interlayer excitons (LIXs) in two-dimensional moiré superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moiré MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moiré heterostructures and pave new directions for engineering interlayer exciton properties in moiré superlattices.
Collapse
Affiliation(s)
- Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jia-Min Lai
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruihua He
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yan Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Disheng Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Naizhou Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhao Mu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zumeng Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhaowei Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - John J H Eng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuanda Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yongzhi She
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Nan Pan
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiaoping Wang
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore.
- Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
47
|
Li W, Gao Q, Wang Y, Cheng P, Zhang YQ, Feng B, Hu Z, Wu K, Chen L. Moiré-Pattern Modulated Electronic Structures of GaSe/HOPG Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302192. [PMID: 37127860 DOI: 10.1002/smll.202302192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Conventional two-dimensional electron gas (2DEG) typically occurs at the interface of semiconductor heterostructures and noble metal surfaces, but it is scarcely observed in individual 2D semiconductors. In this study, few-layer gallium selenide (GaSe) grown on highly ordered pyrolytic graphite (HOPG) is demonstrated using scanning tunneling microscopy and spectroscopy (STM/STS), revealing that the coexistence of quantum well states (QWS) and 2DEG. The QWS are located in the valence bands and exhibit a peak feature, with the number of quantum wells being equal to the number of atomic layers. Meanwhile, the 2DEG is located in the conduction bands and exhibits a standing-wave feature. Additionally, monolayer GaSe/HOPG heterostructures with different stacking angles (0°, 33°, 8°) form distinct moiré patterns that arise from lattice mismatch and angular rotation between adjacent atomic layers in 2D materials, which effectively modulate the electron effective mass, charge redistribution, and band gap of GaSe. Overall, this work reveals a paradigm of band engineering based on layer numbers and moiré patterns that can modulate the electronic properties of 2D materials.
Collapse
Affiliation(s)
- Wenhui Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qian Gao
- School of Physics, Nankai University, Tianjin, 300071, China
| | - Yu Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi-Qi Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin, 300071, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
48
|
Conti S, Chaves A, Pandey T, Covaci L, Peeters FM, Neilson D, Milošević MV. Flattening conduction and valence bands for interlayer excitons in a moiré MoS 2/WSe 2 heterobilayer. NANOSCALE 2023; 15:14032-14042. [PMID: 37575033 DOI: 10.1039/d3nr01183f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moiré pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moiré potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Γ-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moiré hole, and (ii) that the moiré depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude - leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moiré twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.
Collapse
Affiliation(s)
- Sara Conti
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| | - Andrey Chaves
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Fortaleza 60455-760, Brazil
| | - Tribhuwan Pandey
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| | - Lucian Covaci
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - François M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Fortaleza 60455-760, Brazil
| | - David Neilson
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| | - Milorad V Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
- Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| |
Collapse
|
49
|
Ge C, Zhang D, Xiao F, Zhao H, He M, Huang L, Hou S, Tong Q, Pan A, Wang X. Observation and Modulation of High-Temperature Moiré-Locale Excitons in van der Waals Heterobilayers. ACS NANO 2023; 17:16115-16122. [PMID: 37560986 DOI: 10.1021/acsnano.3c04943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Transition metal dichalcogenide heterobilayers feature strong moiré potentials with multiple local minima, which can spatially trap interlayer excitons at different locations within one moiré unit cell (dubbed moiré locales). However, current studies mainly focus on moiré excitons trapped at a single moiré locale. Exploring interlayer excitons trapped at different moiré locales is highly desirable for building polarized light-emitter arrays and studying multiorbital correlated and topological physics. Here, via enhancing the interlayer coupling and engineering the heterointerface, we report the observation and modulation of high-temperature interlayer excitons trapped at separate moiré locales in WS2/WSe2 heterobilayers. These moiré-locale excitons are identified by two emission peaks with an energy separation of ∼60 meV, exhibiting opposite circular polarizations due to their distinct local stacking registries. With the increase of temperature, two momentum-indirect moiré-locale excitons are observed, which show a distinct strain dependence with the momentum-direct one. The emission of these moiré-locale excitons can be controlled via engineering the heterointerface with different phonon scattering, while their emission energy can be further modulated via strain engineering. Our reported highly tunable interlayer excitons provide important information on understanding moiré excitonic physics, with possible applications in building high-temperature excitonic devices.
Collapse
Affiliation(s)
- Cuihuan Ge
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Danliang Zhang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Feiping Xiao
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haipeng Zhao
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Mai He
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lanyu Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shijin Hou
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Qingjun Tong
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xiao Wang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
50
|
Chen J, Yue X, Shan Y, Wang H, Han J, Wang H, Sheng C, Hu L, Liu R, Yang W, Qiu ZJ, Cong C. Twist-angle-dependent momentum-space direct and indirect interlayer excitons in WSe 2/WS 2 heterostructure. RSC Adv 2023; 13:18099-18107. [PMID: 37323440 PMCID: PMC10267672 DOI: 10.1039/d3ra02952b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Interlayer excitons (ILEs) in the van der Waals (vdW) heterostructures of type-II band alignment transition metal dichalcogenides (TMDCs) have attracted significant interest owing to their unique exciton properties and potential in quantum information applications. However, the new dimension that emerges with the stacking of structures with a twist angle leads to a more complex fine structure of ILEs, presenting both an opportunity and a challenge for the regulation of the interlayer excitons. In this study, we report the evolution of interlayer excitons with the twist angle in the WSe2/WS2 heterostructure and identify the direct (indirect) interlayer excitons by combining photoluminescence (PL) and density functional theory (DFT) calculations. Two interlayer excitons with opposite circular polarization assigned to the different transition paths of K-K and Q-K were observed. The nature of the direct (indirect) interlayer exciton was confirmed by circular polarization PL measurement, excitation power-dependent PL measurement and DFT calculations. Furthermore, by applying an external electric field to regulate the band structure of the WSe2/WS2 heterostructure and control the transition path of the interlayer excitons, we could successfully realize the regulation of interlayer exciton emission. This study provides more evidence for the twist-angle-based control of heterostructure properties.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Xiaofei Yue
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Yabing Shan
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Huishan Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Changning Road 865 Shanghai 200050 China
| | - Jinkun Han
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Haomin Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Changning Road 865 Shanghai 200050 China
| | - Chenxu Sheng
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Laigui Hu
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Ran Liu
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Weihuang Yang
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University Hangzhou 310018 China
| | - Zhi-Jun Qiu
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
| | - Chunxiao Cong
- State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University Shanghai 200433 China
- Yiwu Research Institute of Fudan University Chengbei Road Yiwu City 322000 Zhejiang China
| |
Collapse
|