1
|
Xu X, Xu C, Zhang W, Liu Z, Wei Y, Yang K, Yuan B. Single-Lipid Diffusion Behaviors in Cell Membranes Modulated by Cholesterol-Based Heterogeneity. J Phys Chem B 2025. [PMID: 40418728 DOI: 10.1021/acs.jpcb.5c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Over a century after the proposal of Fluid Mosaic Model, the relationship between functionally related multiple-scale spatial heterogeneity of the cell membrane and mobility of component molecules, both inherent features of cell membrane, remains elusive. Single-lipid tracking enables the analysis of structural heterogeneity at different spatial scales within the cell membrane from a lipid diffusion perspective. Herein, specifically designed cholesterol (Chol)-based membrane systems were utilized to investigate the distinct impacts of molecular-level interactions between diverse membrane components and micrometer-scale spatial confinement on lipid diffusion. The results demonstrate that the incorporation of Chol into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes decelerates lipid diffusion, with a positive correlation observed between the degree of deceleration and the mole ratio of Chol molecules. Across all these systems, lipid diffusion consistently adheres to the continuous time random walk (CTRW) model, indicating lipid entrapment resulting from specific molecular interactions. Conversely, micrometer-scale spatial confinement induced by phase separation not only reduces the diffusion rate of DOPC molecules but also triggers a transition from CTRW to fractional Brownian motion (fBM) or random walk on a fractal (RWF) mode within a confinement width range of 6.3-5.4 μm, suggesting a crowded microenvironment. In living cell membranes, this transformation in lipid diffusion is observed following Chol depletion, implying that lipid raft disruption leads to increased crowding within the lipid microenvironment. This study enhances our understanding of the relationship between lipid diffusion and membrane microenvironment across different spatial scales while providing insights into characterizing spatially heterogeneous structures within cell membranes from the perspective of lipid diffusion.
Collapse
Affiliation(s)
- Xiao Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiheng Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
2
|
Klinger J, Rotskoff GM. Computing Nonequilibrium Responses with Score-Shifted Stochastic Differential Equations. PHYSICAL REVIEW LETTERS 2025; 134:097101. [PMID: 40131078 DOI: 10.1103/physrevlett.134.097101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/22/2025] [Indexed: 03/26/2025]
Abstract
Using equilibrium fluctuations to understand the response of a physical system to an externally imposed perturbation is the basis for linear response theory, which is widely used to interpret experiments and shed light on microscopic dynamics. For nonequilibrium systems, perturbations cannot be interpreted simply by monitoring fluctuations in a conjugate observable and general response results rely on path ensemble averaging. These techniques do not apply to perturbations that affect the diffusion tensor in a stochastic system. Here, we introduce an "effective" physical process that represents the diffusion perturbed dynamics and enables accurate calculations of responses to a change in the diffusion. Interestingly, the effective dynamics contain an additional drift involving the instantaneous "score" of the system, and we leverage score matching algorithms to carry out nonequilibrium response calculations on systems for which the exact stationary distribution is unknown.
Collapse
Affiliation(s)
- Jérémie Klinger
- Stanford University, Department of Chemistry, Stanford, California 94305, USA
| | - Grant M Rotskoff
- Stanford University, Department of Chemistry, Stanford, California 94305, USA
- Stanford University, Institute for Computational and Mathematical Engineering, Stanford, California 94305, USA
| |
Collapse
|
3
|
Moqadam M, Gartan P, Talandashti R, Chiapparino A, Titeca K, Gavin AC, Reuter N. A Membrane-Assisted Mechanism for the Release of Ceramide from the CERT START Domain. J Phys Chem B 2024; 128:6338-6351. [PMID: 38903016 PMCID: PMC11228987 DOI: 10.1021/acs.jpcb.4c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Ceramide transfer protein CERT is the mediator of nonvesicular transfer of ceramide from the ER to Golgi. In CERT, START is the domain responsible for the binding and transport of ceramide. A wealth of structural data has revealed a helix-grip fold surrounding a large hydrophobic cavity holding the ceramide. Yet, little is known about the mechanisms by which START releases the ceramide through the polar region and into the packed environment of cellular membranes. As such events do not lend themselves easily to experimental investigations, we used multiple unbiased microsecond-long molecular simulations. We propose a membrane-assisted mechanism in which the membrane acts as an allosteric effector initiating the release of ceramide and where the passage of the ceramide acyl chains is facilitated by the intercalation of a single phosphatidylcholine lipid in the cavity, practically greasing the ceramide way out. We verify using free energy calculation and experimental lipidomics data that CERT forms stable complexes with phosphatidylcholine lipids, in addition to ceramide, thus providing validation for the proposed mechanism.
Collapse
Affiliation(s)
- Mahmoud Moqadam
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Parveen Gartan
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Reza Talandashti
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Antonella Chiapparino
- European
Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Kevin Titeca
- European
Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, Heidelberg D-69117, Germany
- Department
of Cell Physiology and Metabolism, University
of Geneva, CMU Rue Michel-Servet 1, Genève 4 1211, Switzerland
| | - Anne-Claude Gavin
- Department
of Cell Physiology and Metabolism, University
of Geneva, CMU Rue Michel-Servet 1, Genève 4 1211, Switzerland
| | - Nathalie Reuter
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| |
Collapse
|
4
|
Sposini V, Nampoothiri S, Chechkin A, Orlandini E, Seno F, Baldovin F. Being Heterogeneous Is Advantageous: Extreme Brownian Non-Gaussian Searches. PHYSICAL REVIEW LETTERS 2024; 132:117101. [PMID: 38563912 DOI: 10.1103/physrevlett.132.117101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
Redundancy in biology may be explained by the need to optimize extreme searching processes, where one or few among many particles are requested to reach the target like in human fertilization. We show that non-Gaussian rare fluctuations in Brownian diffusion dominates such searches, introducing drastic corrections to the known Gaussian behavior. Our demonstration entails different physical systems and pinpoints the relevance of diversity within redundancy to boost fast targeting. We sketch an experimental context to test our results: polydisperse systems.
Collapse
Affiliation(s)
- Vittoria Sposini
- Faculty of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| | - Sankaran Nampoothiri
- Department of Physics, Gandhi Institute of Technology and Management (GITAM) University, Bengaluru 561203, India
| | - Aleksei Chechkin
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego Str. 27, 50-370 Wroclaw, Poland
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Akhiezer Institute for Theoretical Physics, 61108 Kharkov, Ukraine
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| | - Flavio Seno
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| | - Fulvio Baldovin
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| |
Collapse
|
5
|
Sposini V, Nampoothiri S, Chechkin A, Orlandini E, Seno F, Baldovin F. Being heterogeneous is disadvantageous: Brownian non-Gaussian searches. Phys Rev E 2024; 109:034120. [PMID: 38632764 DOI: 10.1103/physreve.109.034120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/01/2024] [Indexed: 04/19/2024]
Abstract
Diffusing diffusivity models, polymers in the grand canonical ensemble and polydisperse, and continuous-time random walks all exhibit stages of non-Gaussian diffusion. Is non-Gaussian targeting more efficient than Gaussian? We address this question, central to, e.g., diffusion-limited reactions and some biological processes, through a general approach that makes use of Jensen's inequality and that encompasses all these systems. In terms of customary mean first-passage time, we show that Gaussian searches are more effective than non-Gaussian ones. A companion paper argues that non-Gaussianity becomes instead highly more efficient in applications where only a small fraction of tracers is required to reach the target.
Collapse
Affiliation(s)
- Vittoria Sposini
- Faculty of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| | - Sankaran Nampoothiri
- Department of Physics, Gandhi Institute of Technology and Management (GITAM) University, Bengaluru 561203, India
| | - Aleksei Chechkin
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego Street 27, 50-370 Wroclaw, Poland
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Akhiezer Institute for Theoretical Physics, 61108 Kharkov, Ukraine
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| | - Flavio Seno
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| | - Fulvio Baldovin
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| |
Collapse
|
6
|
Hu M, Chen H, Wang H, Burov S, Barkai E, Wang D. Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping. ACS NANO 2023; 17:21708-21718. [PMID: 37879044 DOI: 10.1021/acsnano.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle-polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find "knobs", namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via reversible adsorption to the nanoparticle surface. Our work bears significance in unraveling the fundamental physics behind the exponential decay of the displacement distribution at the tails, which is commonly observed in soft materials and nanomaterials.
Collapse
Affiliation(s)
- Ming Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongru Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Stanislav Burov
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
7
|
Waigh TA, Korabel N. Heterogeneous anomalous transport in cellular and molecular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:126601. [PMID: 37863075 DOI: 10.1088/1361-6633/ad058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
It is well established that a wide variety of phenomena in cellular and molecular biology involve anomalous transport e.g. the statistics for the motility of cells and molecules are fractional and do not conform to the archetypes of simple diffusion or ballistic transport. Recent research demonstrates that anomalous transport is in many cases heterogeneous in both time and space. Thus single anomalous exponents and single generalised diffusion coefficients are unable to satisfactorily describe many crucial phenomena in cellular and molecular biology. We consider advances in the field ofheterogeneous anomalous transport(HAT) highlighting: experimental techniques (single molecule methods, microscopy, image analysis, fluorescence correlation spectroscopy, inelastic neutron scattering, and nuclear magnetic resonance), theoretical tools for data analysis (robust statistical methods such as first passage probabilities, survival analysis, different varieties of mean square displacements, etc), analytic theory and generative theoretical models based on simulations. Special emphasis is made on high throughput analysis techniques based on machine learning and neural networks. Furthermore, we consider anomalous transport in the context of microrheology and the heterogeneous viscoelasticity of complex fluids. HAT in the wavefronts of reaction-diffusion systems is also considered since it plays an important role in morphogenesis and signalling. In addition, we present specific examples from cellular biology including embryonic cells, leucocytes, cancer cells, bacterial cells, bacterial biofilms, and eukaryotic microorganisms. Case studies from molecular biology include DNA, membranes, endosomal transport, endoplasmic reticula, mucins, globular proteins, and amyloids.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
Liu P, Beltramo PJ. Effects of crowding on the diffusivity of membrane adhered particles. SOFT MATTER 2023; 19:7708-7716. [PMID: 37791427 DOI: 10.1039/d3sm01269g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The lateral diffusion of cell membrane inclusions, such as integral membrane proteins and bound receptors, drives critical biological processes, including the formation of complexes, cell-cell signaling, and membrane trafficking. These diffusive processes are complicated by how concentrated, or "crowded", the inclusions are, which can occupy between 30-50% of the area fraction of the membrane. In this work, we elucidate the effects of increasing concentration of model membrane inclusions in a free-standing artificial cell membrane on inclusion diffusivity and the apparent viscosity of the membrane. By multiple particle tracking of fluorescent microparticles covalently tethered to the bilayer, we show the transition from expected Brownian dynamics, which accurately measure the membrane viscosity, to subdiffusive behavior with decreased diffusion coefficient as the particle area fraction increases from 1% to around 30%, approaching physiological levels of crowding. At high crowding, the onset of non-Gaussian behavior is observed. Using hydrodynamic models relating the 2D diffusion coefficient to the viscosity of a membrane, we determine the apparent viscosity of the bilayer from the particle diffusivity and show an increase in the apparent membrane viscosity with increasing particle area fraction. However, the scaling of this increase is in contrast with the behavior of monolayer inclusion diffusion and bulk suspension rheology. These results demonstrate that physiological levels of model membrane crowding nontrivially alter the dynamics and apparent viscosity of the system, which has implications for understanding membrane protein interactions and particle-membrane transport processes.
Collapse
Affiliation(s)
- Paige Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
9
|
Wu J, Xu C, Ye Z, Chen H, Wang Y, Yang K, Yuan B. Transition between Different Diffusion Modes of Individual Lipids during the Membrane-Specific Action of As-CATH4 Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301713. [PMID: 37093200 DOI: 10.1002/smll.202301713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The cell membrane permeabilization ability of immune defense antimicrobial peptides (AMPs) is widely applied in biomedicine. Although the mechanisms of peptide-membrane interactions have been widely investigated, analyses at the molecular level are still lacking. Herein, the membrane-specific action of a native AMP, As-CATH4, is investigated using a single-lipid tracking method in combination with live cell and model membrane assays conducted at different scales. The peptide-membrane interaction process is characterized by analyzing single-lipid diffusion behaviors. As-CATH4 exhibits potent antimicrobial activity through bacterial membrane permeabilization, with moderate cytotoxicity against mammalian cells. In-plane diffusion analyses of individual lipids show that the lipid molecules exhibit non-Gaussian and heterogeneous diffusion behaviors in both pristine and peptide-treated membranes, which can be decomposed into two Gaussian subgroups corresponding to normal- and slow-diffusive lipids. Assessment of the temporal evolution of these two diffusion modes of lipids reveal that the peptide action states of As-CATH4 include surface binding, transmembrane defect formation, and dynamic equilibrium. The action mechanisms of As-CATH4 at varying concentrations and against different membranes are distinguished. This work resolves the simultaneous mixed diffusion mechanisms of single lipids in biomimetic cell membranes, especially during dynamic membrane permeabilization by AMPs.
Collapse
Affiliation(s)
- Jinfeng Wu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Haibo Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
10
|
Sakamoto K, Akimoto T, Muramatsu M, Sansom MSP, Metzler R, Yamamoto E. Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity. PNAS NEXUS 2023; 2:pgad258. [PMID: 37593200 PMCID: PMC10427746 DOI: 10.1093/pnasnexus/pgad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Cell membranes phase separate into ordered L o and disordered L d domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in L o and L d domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation into L o and L d domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the L o domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.
Collapse
Affiliation(s)
- Ken Sakamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mayu Muramatsu
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
11
|
Xu C, Yang K, Yuan B. Non-Gaussian Diffusion of Individual Lipids Unveils the Unique Peptide-Membrane Interaction Dynamics. J Phys Chem Lett 2023; 14:854-862. [PMID: 36656807 DOI: 10.1021/acs.jpclett.2c03467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The dynamics of protein (or peptide)-membrane interactions plays a central role in cellular functions; however, the underlying mechanisms remain unclear. Herein, through analyzing the diffusion of individual lipids in a bilayer membrane during the membrane actions of typical peptides (e.g., pore-forming peptide melittin and cell-penetrating peptide TAT) at varying concentrations, the spatial heterogeneity as well as temporal dynamics of lipid motions were investigated which showed close correlation with the peptide action mechanism. Specifically, the spatial heterogeneity of lipid diffusion was characterized by the non-Gaussianity of lipid trajectories, which was further decomposed into two basic diffusion modes; moreover, the temporal evolution of the Gaussian fitting parameters provided quantitative information on the varying metastable interaction states between peptides and the membrane (e.g., peptide landing, membrane insertion, and equilibrium). Generally, this work gives an insight into the correlation between single-lipid diffusion and function-realization of membrane-active peptides.
Collapse
Affiliation(s)
- Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006, Jiangsu, China
- Songshan Lake Materials Laboratory, Dongguan523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan523808, Guangdong, China
| |
Collapse
|
12
|
Liu Y, Zheng X, Guan D, Jiang X, Hu G. Heterogeneous Nanostructures Cause Anomalous Diffusion in Lipid Monolayers. ACS NANO 2022; 16:16054-16066. [PMID: 36149751 DOI: 10.1021/acsnano.2c04089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The diffusion and mobility in biomembranes are crucial for various cell functions; however, the mechanisms involved in such processes remain ambiguous due to the complex membrane structures. Herein, we investigate how the heterogeneous nanostructures cause anomalous diffusion in dipalmitoylphosphatidylcholine (DPPC) monolayers. By identifying the existence of condensed nanodomains and clarifying their impact, our findings renew the understanding of the hydrodynamic description and the statistical feature of the diffusion in the monolayers. We find a universal characteristic of the multistage mean square displacement (MSD) with an intermediate crossover, signifying two membrane viscosities at different scales: the short-time scale describes the local fluidity and is independent of the nominal DPPC density, and the long-time scale represents the global continuous phase taking into account nanodomains and increases with DPPC density. The constant short-time viscosity reflects a dynamic equilibrium between the continuous fluid phase and the condensed nanodomains in the molecular scale. Notably, we observe an "anomalous yet Brownian" phenomenon exhibiting an unusual double-peaked displacement probability distribution (DPD), which is attributed to the net dipolar repulsive force from the heterogeneous nanodomains around the microdomains. The findings provide physical insights into the transport of membrane inclusions that underpin various biological functions and drug deliveries.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Frontier Scientific Research Centre for Fluidized Mining of Deep Underground Resources, China University of Mining & Technology, Xuzhou 221116, People's Republic of China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xikai Jiang
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
13
|
Bressloff PC. Stochastically switching diffusion with partially reactive surfaces. Phys Rev E 2022; 106:034108. [PMID: 36266901 DOI: 10.1103/physreve.106.034108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
In this paper we develop a hybrid version of the encounter-based approach to diffusion-mediated absorption at a reactive surface, which takes into account stochastic switching of a diffusing particle's conformational state. For simplicity, we consider a two-state model in which the probability of surface absorption depends on the current particle state and the amount of time the particle has spent in a neighborhood of the surface in each state. The latter is determined by a pair of local times ℓ_{n,t}, n=0,1, which are Brownian functionals that keep track of particle-surface encounters over the time interval [0,t]. We proceed by constructing a differential Chapman-Kolmogorov equation for a pair of generalized propagators P_{n}(x,ℓ_{0},ℓ_{1},t), where P_{n} is the joint probability density for the set (X_{t},ℓ_{0,t},ℓ_{1,t}) when N_{t}=n, where X_{t} denotes the particle position and N_{t} is the corresponding conformational state. Performing a double Laplace transform with respect to ℓ_{0},ℓ_{1} yields an effective system of equations describing diffusion in a bounded domain Ω, in which there is switching between two Robin boundary conditions on ∂Ω. The corresponding constant reactivities are κ_{j}=Dz_{j} and j=0,1, where z_{j} is the Laplace variable corresponding to ℓ_{j} and D is the diffusivity. Given the solution for the propagators in Laplace space, we construct a corresponding probabilistic model for partial absorption, which requires finding the inverse Laplace transform with respect to z_{0},z_{1}. We illustrate the theory by considering diffusion of a particle on the half-line with the boundary at x=0 effectively switching between a totally reflecting and a partially absorbing state. We calculate the flux due to absorption and use this to compute the resulting MFPT in the presence of a renewal-based stochastic resetting protocol. The latter resets the position and conformational state of the particle as well as the corresponding local times. Finally, we indicate how to extend the analysis to higher spatial dimensions using the spectral theory of Dirichlet-to-Neumann operators.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
14
|
Topology mediates transport of nanoparticles in macromolecular networks. Nat Commun 2022; 13:4094. [PMID: 35835763 PMCID: PMC9283426 DOI: 10.1038/s41467-022-31861-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Diffusion transport of nanoparticles in confined environments of macromolecular networks is common in diverse physical systems and regulates many biological responses. Macromolecular networks possess various topologies, featured by different numbers of degrees and genera. Although the network topologies can be manipulated from a molecular level, how the topology impacts the transport of nanoparticles in macromolecular networks remains unexplored. Here, we develop theoretical approaches combined with simulations to study nanoparticle transport in a model system consisting of network cells with defined topologies. We find that the topology of network cells has a profound effect on the free energy landscape experienced by a nanoparticle in the network cells, exhibiting various scaling laws dictated by the topology. Furthermore, the examination of the impact of cell topology on the detailed behavior of nanoparticle dynamics leads to different dynamical regimes that go beyond the particulars regarding the local network loop. The results might alter the conventional picture of the physical origin of transport in networks. Macromolecular networks relevant for biological processes and technological applications, are often characterized by complex architectures. The authors uncover the impact of topology on the properties of nanoparticle transport in macromolecular networks.
Collapse
|
15
|
Le Huray KIP, Wang H, Sobott F, Kalli AC. Systematic simulation of the interactions of pleckstrin homology domains with membranes. SCIENCE ADVANCES 2022; 8:eabn6992. [PMID: 35857458 PMCID: PMC9258823 DOI: 10.1126/sciadv.abn6992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Pleckstrin homology (PH) domains can recruit proteins to membranes by recognition of phosphatidylinositol phosphate (PIP) lipids. Several family members are linked to diseases including cancer. We report the systematic simulation of the interactions of 100 mammalian PH domains with PIP-containing membranes. The observed PIP interaction hotspots recapitulate crystallographic binding sites and reveal a number of insights: (i) The β1 and β2 strands and their connecting loop constitute the primary PIP interaction site but are typically supplemented by interactions at the β3-β4 and β5-β6 loops; (ii) we reveal exceptional cases such as the Exoc8 PH domain; (iii) PH domains adopt different membrane-bound orientations and induce clustering of anionic lipids; and (iv) beyond family-level insights, our dataset sheds new light on individual PH domains, e.g., by providing molecular detail of secondary PIP binding sites. This work provides a global view of PH domain/membrane association involving multivalent association with anionic lipids.
Collapse
Affiliation(s)
- Kyle I. P. Le Huray
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - He Wang
- School of Computing, University of Leeds, Leeds, UK
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C. Kalli
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Li J. Role of ergodicity, aging, and Gaussianity in resolving the origins of biomolecule subdiffusion. Phys Chem Chem Phys 2022; 24:16050-16057. [PMID: 35731614 DOI: 10.1039/d2cp01161a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The internal motions of biomolecules are essential to their function. Although biological macromolecules conventionally show subdiffusive dynamics, only recently has subdiffusion been associated with non-ergodicity. These findings have stimulated new questions in biophysics and statistical mechanics. Is non-ergodic subdiffusion a general strategy shared by biomolecules? What underlying mechanisms are responsible for it? Here, we performed extensive molecular dynamics (MD) simulations to characterize the internal dynamics of six different biomolecules, ranging from single or double-stranded DNA, a single domain protein (KRAS), two globular proteins (PGK and SHP2), to an intrinsically disordered protein (SNAP-25). We found that the subdiffusive behavior of these biomolecules falls into two classes. The internal motion of the first three cases is ergodic subdiffusion and can be interpreted by fractional Brownian motion (FBM), while the latter three cases involve non-ergodic subdiffusion and can be modeled by mixed origins of continuous-time random walk (CTRW) and FBM.
Collapse
Affiliation(s)
- Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Abstract
Lipid-protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host-pathogen interactions, and transmembrane transport. At the plasma membrane, lipid-protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid-protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid-protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid-protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions.
Collapse
Affiliation(s)
- Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA;
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Nampoothiri S, Orlandini E, Seno F, Baldovin F. Polymers critical point originates Brownian non-Gaussian diffusion. Phys Rev E 2022; 104:L062501. [PMID: 35030826 DOI: 10.1103/physreve.104.l062501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/11/2021] [Indexed: 01/04/2023]
Abstract
We demonstrate that size fluctuations close to polymers critical point originate the non-Gaussian diffusion of their center of mass. Static universal exponents γ and ν-depending on the polymer topology, on the dimension of the embedding space, and on equilibrium phase-concur to determine the potential divergency of a dynamic response, epitomized by the center-of-mass kurtosis. Prospects in experiments and stochastic modeling brought about by this result are briefly outlined.
Collapse
Affiliation(s)
- Sankaran Nampoothiri
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| | - Flavio Seno
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| | - Fulvio Baldovin
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA, Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova (PD), Italy
| |
Collapse
|
19
|
Braun L, Schoen I, Vogel V. PIP 2-induced membrane binding of the vinculin tail competes with its other binding partners. Biophys J 2021; 120:4608-4622. [PMID: 34411575 DOI: 10.1016/j.bpj.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vinculin plays a key role during the first phase of focal adhesion formation and interacts with the plasma membrane through specific binding of its tail domain to the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our understanding of the PIP2-vinculin interaction has been hampered by contradictory biochemical and structural data. Here, we used a multiscale molecular dynamics simulation approach, in which unbiased coarse-grained molecular dynamics were used to generate starting structures for subsequent microsecond-long all-atom simulations. This allowed us to map the interaction of the vinculin tail with PIP2-enriched membranes in atomistic detail. In agreement with experimental data, we have shown that membrane binding is sterically incompatible with the intramolecular interaction between vinculin's head and tail domain. Our simulations further confirmed biochemical and structural results, which identified two positively charged surfaces, the basic collar and the basic ladder, as the main PIP2 interaction sites. By introducing a valency-disaggregated binding network analysis, we were able to map the protein-lipid interactions in unprecedented detail. In contrast to the basic collar, in which PIP2 is specifically recognized by an up to hexavalent binding pocket, the basic ladder forms a series of low-valency binding sites. Importantly, many of these PIP2 binding residues are also involved in maintaining vinculin in a closed, autoinhibited conformation. These findings led us to propose a molecular mechanism for the coupling between vinculin activation and membrane binding. Finally, our refined binding site suggests an allosteric relationship between PIP2 and F-actin binding that disfavors simultaneous interaction with both ligands, despite nonoverlapping binding sites.
Collapse
Affiliation(s)
- Lukas Braun
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Chen X, Ding H, Zhang D, Zhao K, Gao J, Lin B, Huang C, Song Y, Zhao G, Ma Y, Wu L, Yang C. Reversible Immunoaffinity Interface Enables Dynamic Manipulation of Trapping Force for Accumulated Capture and Efficient Release of Circulating Rare Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102070. [PMID: 34473422 PMCID: PMC8529431 DOI: 10.1002/advs.202102070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Indexed: 05/04/2023]
Abstract
Controllable assembly and disassembly of recognition interface are vital for bioanalysis. Herein, a strategy of dynamic manipulation of trapping force by engineering a dynamic and reversible immunoaffinity microinterface (DynarFace) in a herringbone chip (DynarFace-Chip) for liquid biopsy is proposed. The DynarFace is assembled by magnetically attracting immunomagnetic beads (IMBs) on chip substrate, with merits of convenient operation and reversible assembly. The DynarFace allows accumulating attachment of IMBs on circulating rare cell (CRC) surfaces during hydrodynamically enhanced interface collision, where accumulatively enhanced magnetic trapping force improves capture efficiency toward CRCs with medium expression of biomarkers from blood samples by 134.81% compared with traditional non-dynamic interfaces. Moreover, magnet withdrawing-induced disappearance of trapping force affords DynarFace disassembly and CRC release with high efficiency (>98%) and high viability (≈98%), compatible with downstream in vitro culture and gene analysis of CRCs. This DynarFace strategy opens a new avenue to accumulated capture and reversible release of CRCs, holding great potential for liquid biopsy-based precision medicine.
Collapse
Affiliation(s)
- Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Hongming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary ResearchSchool of Physical Science and TechnologySoochow UniversitySuzhou215021China
| | - Dongdong Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Kaifeng Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jiafeng Gao
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Chen Huang
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Gang Zhao
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210046China
| | - Lingling Wu
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| |
Collapse
|
21
|
Geragotelis AD, Freites JA, Tobias DJ. Anomalous Diffusion of Peripheral Membrane Signaling Proteins from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2021; 125:9990-9998. [PMID: 34459592 DOI: 10.1021/acs.jpcb.1c04905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peripheral membrane proteins bind transiently to membrane surfaces as part of many signaling pathways. The bound proteins perform two-dimensional (2-D) diffusion on the membrane surface during the recruitment function. To better understand the interplay between the 2-D diffusion of these protein domains and their membrane binding modes, we performed multimicrosecond all-atom molecular dynamics simulations of two regulatory domains, a C2 domain and a pleckstrin homology (PH) domain, in their experimentally determined bound configuration to a lipid bilayer. The protein bound configurations are preserved throughout the simulation trajectories. Both protein domains exhibit anomalous diffusion with distinct features in their dynamics that reflect their different modes of binding. An analysis of their diffusive behavior reveals common features with the diffusion of lipid molecules in lipid bilayers, suggesting that the 2-D motion of protein domains bound to the membrane surface is modulated by the viscoelastic nature of the lipid bilayer.
Collapse
Affiliation(s)
- Andrew D Geragotelis
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - J Alfredo Freites
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
22
|
Yamamoto E, Akimoto T, Mitsutake A, Metzler R. Universal Relation between Instantaneous Diffusivity and Radius of Gyration of Proteins in Aqueous Solution. PHYSICAL REVIEW LETTERS 2021; 126:128101. [PMID: 33834804 DOI: 10.1103/physrevlett.126.128101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Protein conformational fluctuations are highly complex and exhibit long-term correlations. Here, molecular dynamics simulations of small proteins demonstrate that these conformational fluctuations directly affect the protein's instantaneous diffusivity D_{I}. We find that the radius of gyration R_{g} of the proteins exhibits 1/f fluctuations that are synchronous with the fluctuations of D_{I}. Our analysis demonstrates the validity of the local Stokes-Einstein-type relation D_{I}∝1/(R_{g}+R_{0}), where R_{0}∼0.3 nm is assumed to be a hydration layer around the protein. From the analysis of different protein types with both strong and weak conformational fluctuations, the validity of the Stokes-Einstein-type relation appears to be a general property.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ayori Mitsutake
- Department of Physics, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
23
|
Simcock PW, Bublitz M, Cipcigan F, Ryadnov MG, Crain J, Stansfeld PJ, Sansom MSP. Membrane Binding of Antimicrobial Peptides Is Modulated by Lipid Charge Modification. J Chem Theory Comput 2021; 17:1218-1228. [PMID: 33395285 DOI: 10.1021/acs.jctc.0c01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide interactions with lipid bilayers play a key role in a range of biological processes and depend on electrostatic interactions between charged amino acids and lipid headgroups. Antimicrobial peptides (AMPs) initiate the killing of bacteria by binding to and destabilizing their membranes. The multiple peptide resistance factor (MprF) provides a defense mechanism for bacteria against a broad range of AMPs. MprF reduces the negative charge of bacterial membranes through enzymatic conversion of the anionic lipid phosphatidyl glycerol (PG) to either zwitterionic alanyl-phosphatidyl glycerol (Ala-PG) or cationic lysyl-phosphatidyl glycerol (Lys-PG). The resulting change in the membrane charge is suggested to reduce the binding of AMPs to membranes, thus impeding downstream AMP activity. Using coarse-grained molecular dynamics to investigate the effects of these modified lipids on AMP binding to model membranes, we show that AMPs have substantially reduced affinity for model membranes containing Ala-PG or Lys-PG. More than 5000 simulations in total are used to define the relationship between lipid bilayer composition, peptide sequence (using five different membrane-active peptides), and peptide binding to membranes. The degree of interaction of a peptide with a membrane correlates with the membrane surface charge density. Free energy profile (potential of mean force) calculations reveal that the lipid modifications due to MprF alter the energy barrier to peptide helix penetration of the bilayer. These results will offer a guide to the design of novel peptides, which addresses the issue of resistance via MprF-mediated membrane modification.
Collapse
Affiliation(s)
- Patrick W Simcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | | | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Jason Crain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- IBM Research UK, Hartree Centre, Daresbury WA4 4AD, U.K
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
24
|
Sankaran J, Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng 2020; 4:020901. [PMID: 32478279 PMCID: PMC7228782 DOI: 10.1063/1.5143945] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence spectroscopy has been a cornerstone of research in membrane dynamics and organization. Technological advances in fluorescence spectroscopy went hand in hand with discovery of various physicochemical properties of membranes at nanometric spatial and microsecond timescales. In this perspective, we discuss the various challenges associated with quantification of physicochemical properties of membranes and how various modes of fluorescence spectroscopy have overcome these challenges to shed light on the structure and organization of membranes. Finally, we discuss newer measurement strategies and data analysis tools to investigate the structure, dynamics, and organization of membranes.
Collapse
|
25
|
Xu Z, Gao L, Chen P, Yan LT. Diffusive transport of nanoscale objects through cell membranes: a computational perspective. SOFT MATTER 2020; 16:3869-3881. [PMID: 32236197 DOI: 10.1039/c9sm02338k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion is an essential and fundamental means of transport of substances on cell membranes, and the dynamics of biomembranes plays a crucial role in the regulation of numerous cellular processes. The understanding of the complex mechanisms and the nature of particle diffusion have a bearing on establishing guidelines for the design of efficient transport materials and unique therapeutic approaches. Herein, this review article highlights the most recent advances in investigating diffusion dynamics of nanoscale objects on biological membranes, focusing on the approaches of tailored computer simulations and theoretical analysis. Due to the presence of the complicated and heterogeneous environment on native cell membranes, the diffusive transport behaviors of nanoparticles exhibit unique and variable characteristics. The general aspects and basic theories of normal diffusion and anomalous diffusion have been introduced. In addition, the influence of a series of external and internal factors on the diffusion behaviors is discussed, including particle size, membrane curvature, particle-membrane interactions or particle-inclusion, and the crowding degree of membranes. Finally, we seek to identify open problems in the existing experimental, simulation, and theoretical research studies, and to propose challenges for future development.
Collapse
Affiliation(s)
- Ziyang Xu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Lijuan Gao
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
26
|
Corey RA, Stansfeld PJ, Sansom MS. The energetics of protein-lipid interactions as viewed by molecular simulations. Biochem Soc Trans 2020; 48:25-37. [PMID: 31872229 PMCID: PMC7054751 DOI: 10.1042/bst20190149] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Membranes are formed from a bilayer containing diverse lipid species with which membrane proteins interact. Integral, membrane proteins are embedded in this bilayer, where they interact with lipids from their surroundings, whilst peripheral membrane proteins bind to lipids at the surface of membranes. Lipid interactions can influence the function of membrane proteins, either directly or allosterically. Both experimental (structural) and computational approaches can reveal lipid binding sites on membrane proteins. It is, therefore, important to understand the free energies of these interactions. This affords a more complete view of the engagement of a particular protein with the biological membrane surrounding it. Here, we describe many computational approaches currently in use for this purpose, including recent advances using both free energy and unbiased simulation methods. In particular, we focus on interactions of integral membrane proteins with cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bis-phosphate and cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains with phosphoinositide-containing membranes. We summarise the current state of the field and provide an outlook on likely future directions of investigation.
Collapse
Affiliation(s)
- Robin A. Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
27
|
Gupta A, Korte T, Herrmann A, Wohland T. Plasma membrane asymmetry of lipid organization: fluorescence lifetime microscopy and correlation spectroscopy analysis. J Lipid Res 2020; 61:252-266. [PMID: 31857388 PMCID: PMC6997606 DOI: 10.1194/jlr.d119000364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
A fundamental feature of the eukaryotic cell membrane is the asymmetric arrangement of lipids in its two leaflets. A cell invests significant energy to maintain this asymmetry and uses it to regulate important biological processes, such as apoptosis and vesiculation. The dynamic coupling of the inner or cytoplasmic and outer or exofacial leaflets is a challenging open question in membrane biology. Here, we combined fluorescence lifetime imaging microscopy (FLIM) with imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) to differentiate the dynamics and organization of the two leaflets of live mammalian cells. We characterized the biophysical properties of fluorescent analogs of phosphatidylcholine, sphingomyelin, and phosphatidylserine in the plasma membrane of two mammalian cell lines (CHO-K1 and RBL-2H3). Because of their specific transverse membrane distribution, these probes allowed leaflet-specific investigation of the plasma membrane. We compared the results of the two methods having different temporal and spatial resolution. Fluorescence lifetimes of fluorescent lipid analogs were in ranges characteristic for the liquid ordered phase in the outer leaflet and for the liquid disordered phase in the inner leaflet. The observation of a more fluid inner leaflet was supported by free diffusion in the inner leaflet, with high average diffusion coefficients. The liquid ordered phase in the outer leaflet was accompanied by slower diffusion and diffusion with intermittent transient trapping. Our results show that the combination of FLIM and ITIR-FCS with specific fluorescent lipid analogs is a powerful tool for investigating lateral and transbilayer characteristics of plasma membrane in live cell lines.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences National University of Singapore, Singapore
| | - Thomas Korte
- Institute for Biology/Biophysics, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institute for Biology/Biophysics, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thorsten Wohland
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences National University of Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
28
|
Yamamoto E, Domański J, Naughton FB, Best RB, Kalli AC, Stansfeld PJ, Sansom MSP. Multiple lipid binding sites determine the affinity of PH domains for phosphoinositide-containing membranes. SCIENCE ADVANCES 2020; 6:eaay5736. [PMID: 32128410 PMCID: PMC7030919 DOI: 10.1126/sciadv.aay5736] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 05/19/2023]
Abstract
Association of peripheral proteins with lipid bilayers regulates membrane signaling and dynamics. Pleckstrin homology (PH) domains bind to phosphatidylinositol phosphate (PIP) molecules in membranes. The effects of local PIP enrichment on the interaction of PH domains with membranes is unclear. Molecular dynamics simulations allow estimation of the binding energy of GRP1 PH domain to PIP3-containing membranes. The free energy of interaction of the PH domain with more than two PIP3 molecules is comparable to experimental values, suggesting that PH domain binding involves local clustering of PIP molecules within membranes. We describe a mechanism of PH binding proceeding via an encounter state to two bound states which differ in the orientation of the protein relative to the membrane, these orientations depending on the local PIP concentration. These results suggest that nanoscale clustering of PIP molecules can control the strength and orientation of PH domain interaction in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Jan Domański
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Fiona B. Naughton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Antreas C. Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
29
|
Basak S, Sengupta S, Chattopadhyay K. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys Rev 2019; 11:851-872. [PMID: 31444739 PMCID: PMC6957588 DOI: 10.1007/s12551-019-00580-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 01/24/2023] Open
Abstract
In order to maintain cellular function, biomolecules like protein, DNA, and RNAs have to diffuse to the target spaces within the cell. Changes in the cytosolic microenvironment or in the nucleus during the fulfillment of these cellular processes affect their mobility, folding, and stability thereby impacting the transient or stable interactions with their adjacent neighbors in the organized and dynamic cellular interior. Using classical Brownian motion to elucidate the diffusion behavior of these biomolecules is hard considering their complex nature. The understanding of biomolecular diffusion inside cells still remains elusive due to the lack of a proper model that can be extrapolated to these cases. In this review, we have comprehensively addressed the progresses in this field, laying emphasis on the different aspects of anomalous diffusion in the different biochemical reactions in cell interior. These experiment-based models help to explain the diffusion behavior of biomolecules in the cytosolic and nuclear microenvironment. Moreover, since understanding of biochemical reactions within living cellular system is our main focus, we coupled the experimental observations with the concept of sub-diffusion from in vitro to in vivo condition. We believe that the pairing between the understanding of complex behavior and structure-function paradigm of biological molecules would take us forward by one step in order to solve the puzzle around diseases caused by cellular dysfunction.
Collapse
Affiliation(s)
- Sujit Basak
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Sombuddha Sengupta
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
30
|
Qin X, Liu L, Lee SK, Alsina A, Liu T, Wu C, Park H, Yu C, Kim H, Chu J, Triller A, Tang BZ, Hyeon C, Park CY, Park H. Increased Confinement and Polydispersity of STIM1 and Orai1 after Ca 2+ Store Depletion. Biophys J 2019; 118:70-84. [PMID: 31818466 DOI: 10.1016/j.bpj.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
STIM1 (a Ca2+ sensor in the endoplasmic reticulum (ER) membrane) and Orai1 (a pore-forming subunit of the Ca2+-release-activated calcium channel in the plasma membrane) diffuse in the ER membrane and plasma membrane, respectively. Upon depletion of Ca2+ stores in the ER, STIM1 translocates to the ER-plasma membrane junction and binds Orai1 to trigger store-operated Ca2+ entry. However, the motion of STIM1 and Orai1 during this process and its roles to Ca2+ entry is poorly understood. Here, we report real-time tracking of single STIM1 and Orai1 particles in the ER membrane and plasma membrane in living cells before and after Ca2+ store depletion. We found that the motion of single STIM1 and Orai1 particles exhibits anomalous diffusion both before and after store depletion, and their mobility-measured by the radius of gyration of the trajectories, mean-square displacement, and generalized diffusion coefficient-decreases drastically after store depletion. We also found that the measured displacement distribution is non-Gaussian, and the non-Gaussian parameter drastically increases after store depletion. Detailed analyses and simulations revealed that single STIM1 and Orai1 particles are confined in the compartmentalized membrane both before and after store depletion, and the changes in the motion after store depletion are explained by increased confinement and polydispersity of STIM1-Orai1 complexes formed at the ER-plasma membrane junctions. Further simulations showed that this increase in the confinement and polydispersity after store depletion localizes a rapid increase of Ca2+ influx, which can facilitate the rapid activation of local Ca2+ signaling pathways and the efficient replenishing of Ca2+ store in the ER in store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lei Liu
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Sang Kwon Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Adolfo Alsina
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Teng Liu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Hojeong Park
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Hajin Kim
- Department of Biomedical Engineering and Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jun Chu
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Antoine Triller
- Biologie Cellulaire de la Synapse N&P, IBENS, Institut de Biologie de L'ENS, Ecole Normale Supérieure, Paris, France
| | - Ben Zhong Tang
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Department of Chemistry, Kowloon, Hong Kong, China, Kowloon, Hong Kong, China
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| | - Hyokeun Park
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Division of Life Science; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
31
|
Yu Y, Li M, Yu Y. Tracking Single Molecules in Biomembranes: Is Seeing Always Believing? ACS NANO 2019; 13:10860-10868. [PMID: 31589406 PMCID: PMC7179047 DOI: 10.1021/acsnano.9b07445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The spatial organization of molecules in cell membranes and their dynamic interactions play a central role in regulating cell functions. Single-particle tracking (SPT), a technique in which single molecules are imaged and tracked in real time, has led to breakthrough discoveries regarding these spatiotemporal complexities of cell membranes. There are, however, emerging concerns about factors that might produce misleading interpretations of SPT results. Here, we briefly review the application of SPT to understanding the nanoscale heterogeneities of plasma membranes, with a focus on the unique challenges, pitfalls, and limitations that confront the use of nanoparticles as imaging probes for tracking the dynamics of single molecules in cell membranes.
Collapse
|
32
|
Hachiya Y, Uneyama T, Kaneko T, Akimoto T. Unveiling diffusive states from center-of-mass trajectories in glassy dynamics. J Chem Phys 2019; 151:034502. [DOI: 10.1063/1.5100640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuto Hachiya
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takashi Uneyama
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Toshihiro Kaneko
- Department of Mechanical Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
33
|
Chen P, Yue H, Zhai X, Huang Z, Ma GH, Wei W, Yan LT. Transport of a graphene nanosheet sandwiched inside cell membranes. SCIENCE ADVANCES 2019; 5:eaaw3192. [PMID: 31187061 PMCID: PMC6555626 DOI: 10.1126/sciadv.aaw3192] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/29/2019] [Indexed: 05/19/2023]
Abstract
The transport of nanoparticles at bio-nano interfaces is essential for many cellular responses and biomedical applications. How two-dimensional nanomaterials, such as graphene and transition-metal dichalcogenides, diffuse along the cell membrane is, however, unknown, posing an urgent and important issue to promote their applications in the biomedical area. Here, we show that the transport of graphene oxides (GOs) sandwiched inside cell membranes varies from Brownian to Lévy and even directional dynamics. Specifically, experiments evidence sandwiched graphene-cell membrane superstructures in different cells. Combined simulations and analysis identify a sandwiched GO-induced pore in cell membrane leaflets, spanning unstable, metastable, and stable states. An analytical model that rationalizes the regimes of these membrane-pore states fits simulations quantitatively, resulting in a mechanistic interpretation of the emergence of Lévy and directional dynamics. We finally demonstrate the applicability of sandwiched GOs in enhanced efficiency of membrane-specific drug delivery. Our findings inform approaches to programming intramembrane transport of two-dimensional nanomaterials toward advantageous biomedical applications.
Collapse
Affiliation(s)
- Pengyu Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaobo Zhai
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Zihan Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
35
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Thapa S, Lukat N, Selhuber-Unkel C, Cherstvy AG, Metzler R. Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells. J Chem Phys 2019; 150:144901. [PMID: 30981236 DOI: 10.1063/1.5086269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samudrajit Thapa
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nils Lukat
- Institute of Materials Science, Christian-Albrechts-Universität zu Kiel, 24143 Kiel, Germany
| | | | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
37
|
Cherstvy AG, Thapa S, Wagner CE, Metzler R. Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels. SOFT MATTER 2019; 15:2526-2551. [PMID: 30734041 DOI: 10.1039/c8sm02096e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity", fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
38
|
Bressloff PC, Lawley SD, Murphy P. Protein concentration gradients and switching diffusions. Phys Rev E 2019; 99:032409. [PMID: 30999457 DOI: 10.1103/physreve.99.032409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Morphogen gradients play a vital role in developmental biology by enabling embryonic cells to infer their spatial location and determine their developmental fate accordingly. The standard mechanism for generating a morphogen gradient involves a morphogen being produced from a localized source and subsequently degrading. While this mechanism is effective over the length and time scales of tissue development, it fails over typical subcellular length scales due to the rapid dissipation of spatial asymmetries. In a recent theoretical work, we found an alternative mechanism for generating concentration gradients of diffusing molecules, in which the molecules switch between spatially constant diffusivities at switching rates that depend on the spatial location of a molecule. Independently, an experimental and computational study later found that Caenorhabditis elegans zygotes rely on this mechanism for cell polarization. In this paper, we extend our analysis of switching diffusivities to determine its role in protein concentration gradient formation. In particular, we determine how switching diffusivities modifies the standard theory and show how space-dependent switching diffusivities can yield a gradient in the absence of a localized source. Our mathematical analysis yields explicit formulas for the intracellular concentration gradient which closely match the results of previous experiments and numerical simulations.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Patrick Murphy
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
39
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Sikora G, Wyłomańska A, Krapf D. Recurrence statistics for anomalous diffusion regime change detection. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Cherstvy AG, Thapa S, Mardoukhi Y, Chechkin AV, Metzler R. Time averages and their statistical variation for the Ornstein-Uhlenbeck process: Role of initial particle distributions and relaxation to stationarity. Phys Rev E 2018; 98:022134. [PMID: 30253569 DOI: 10.1103/physreve.98.022134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 06/08/2023]
Abstract
How ergodic is diffusion under harmonic confinements? How strongly do ensemble- and time-averaged displacements differ for a thermally-agitated particle performing confined motion for different initial conditions? We here study these questions for the generic Ornstein-Uhlenbeck (OU) process and derive the analytical expressions for the second and fourth moment. These quantifiers are particularly relevant for the increasing number of single-particle tracking experiments using optical traps. For a fixed starting position, we discuss the definitions underlying the ensemble averages. We also quantify effects of equilibrium and nonequilibrium initial particle distributions onto the relaxation properties and emerging nonequivalence of the ensemble- and time-averaged displacements (even in the limit of long trajectories). We derive analytical expressions for the ergodicity breaking parameter quantifying the amplitude scatter of individual time-averaged trajectories, both for equilibrium and out-of-equilibrium initial particle positions, in the entire range of lag times. Our analytical predictions are in excellent agreement with results of computer simulations of the Langevin equation in a parabolic potential. We also examine the validity of the Einstein relation for the ensemble- and time-averaged moments of the OU-particle. Some physical systems, in which the relaxation and nonergodic features we unveiled may be observable, are discussed.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Samudrajit Thapa
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Yousof Mardoukhi
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
42
|
Naughton FB, Kalli AC, Sansom MS. Modes of Interaction of Pleckstrin Homology Domains with Membranes: Toward a Computational Biochemistry of Membrane Recognition. J Mol Biol 2018; 430:372-388. [DOI: 10.1016/j.jmb.2017.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
|
43
|
Muñoz-Gil G, Charalambous C, García-March MA, Garcia-Parajo MF, Manzo C, Lewenstein M, Celi A. Transient subdiffusion from an Ising environment. Phys Rev E 2018; 96:052140. [PMID: 29347809 DOI: 10.1103/physreve.96.052140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 11/07/2022]
Abstract
We introduce a model in which a particle performs a continuous-time random walk (CTRW) coupled to an environment with Ising dynamics. The particle shows locally varying diffusivity determined by the geometrical properties of the underlying Ising environment, that is, the diffusivity depends on the size of the connected area of spins pointing in the same direction. The model shows anomalous diffusion when the Ising environment is at critical temperature. We show that any finite scale introduced by a temperature different from the critical one, or a finite size of the environment, cause subdiffusion only during a transient time. The characteristic time, at which the system returns to normal diffusion after the subdiffusive plateau depends on the limiting scale and on how close the temperature is to criticality. The system also displays apparent ergodicity breaking at intermediate time, while ergodicity breaking at longer time occurs only under the idealized infinite environment at the critical temperature.
Collapse
Affiliation(s)
- G Muñoz-Gil
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - C Charalambous
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - M A García-March
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - M F Garcia-Parajo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.,ICREA-Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - C Manzo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), C. de la Laura, 13, 08500 Vic, Spain
| | - M Lewenstein
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.,ICREA-Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - A Celi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| |
Collapse
|
44
|
Feng J, He L, Li Y, Xiao F, Hu G. Modeling of PH Domains and Phosphoinositides Interactions and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:19-32. [DOI: 10.1007/5584_2018_236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Cherstvy AG, Nagel O, Beta C, Metzler R. Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. Phys Chem Chem Phys 2018; 20:23034-23054. [DOI: 10.1039/c8cp04254c] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells?
Collapse
Affiliation(s)
- Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Oliver Nagel
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Carsten Beta
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
46
|
Akimoto T, Yamamoto E. Detection of transition times from single-particle-tracking trajectories. Phys Rev E 2017; 96:052138. [PMID: 29347678 DOI: 10.1103/physreve.96.052138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 06/07/2023]
Abstract
In heterogeneous environments, the diffusivity is not constant but changes with time. It is important to detect changes in the diffusivity from single-particle-tracking trajectories in experiments. Here, we devise a novel method for detecting the transition times of the diffusivity from trajectory data. A key idea of this method is the introduction of a characteristic time scale of the diffusive states, which is obtained by a fluctuation analysis of the time-averaged mean square displacements. We test our method in silico by using the Langevin equation with a fluctuating diffusivity. We show that our method can successfully detect the transition times of diffusive states and obtain the diffusion coefficient as a function of time. This method will provide a quantitative description of the fluctuating diffusivity in heterogeneous environments and can be applied to time series with transitions of states.
Collapse
Affiliation(s)
- Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Eiji Yamamoto
- Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
47
|
Bressloff PC, Lawley SD. Hybrid colored noise process with space-dependent switching rates. Phys Rev E 2017; 96:012129. [PMID: 29347173 DOI: 10.1103/physreve.96.012129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 11/07/2022]
Abstract
A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ→0) and fast switching limit (ε→0) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ε,κ→0 with ε/κ^{2} fixed.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|