1
|
Lee MR, Alexander CMO, Bischoff A, Brearley AJ, Dobrică E, Fujiya W, Le Guillou C, King AJ, van Kooten E, Krot AN, Leitner J, Marrocchi Y, Patzek M, Petaev MI, Piani L, Pravdivtseva O, Remusat L, Telus M, Tsuchiyama A, Vacher LG. Low-Temperature Aqueous Alteration of Chondrites. SPACE SCIENCE REVIEWS 2025; 221:11. [PMID: 39916740 PMCID: PMC11794400 DOI: 10.1007/s11214-024-01132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
Chondritic meteorites (chondrites) contain evidence for the interaction of liquid water with the interiors of small bodies early in Solar System history. Here we review the processes, products and timings of the low-temperature aqueous alteration reactions in CR, CM, CI and ungrouped carbonaceous chondrites, the asteroids Ryugu and Bennu, and hydrated dark clasts in different types of meteorites. We first consider the nature of chondritic lithologies and the insights that they provide into alteration conditions, subdivided by the mineralogy and petrology of hydrated chondrites, the mineralogy of hydrated dark clasts, the effects of alteration on presolar grains, and the evolution of organic matter. We then describe the properties of the aqueous fluids and how they reacted with accreted material as revealed by physicochemical modelling and hydrothermal experiments, the analysis of fluid inclusions in aqueously formed minerals, and isotope tracers. Lastly, we outline the chronology of aqueous alteration reactions as determined using the 53Mn-53Cr and 129I-129Xe systems. Supplementary Information The online version contains supplementary material available at 10.1007/s11214-024-01132-8.
Collapse
Affiliation(s)
- Martin R. Lee
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ UK
| | - Conel M. O’D. Alexander
- Earth & Planets Laboratory, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 USA
| | - Addi Bischoff
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
| | - Adrian J. Brearley
- Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM USA
| | - Elena Dobrică
- Hawai‘i Institute of Geophysics & Planetology, The University of Hawai‘i at Mānoa, Honolulu, HI 96822 USA
| | - Wataru Fujiya
- Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 Japan
| | - Corentin Le Guillou
- Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France
| | - Ashley J. King
- Planetary Materials Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Elishevah van Kooten
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Alexander N. Krot
- Hawai‘i Institute of Geophysics & Planetology, The University of Hawai‘i at Mānoa, Honolulu, HI 96822 USA
| | - Jan Leitner
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany
- Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Yves Marrocchi
- Université de Lorraine, CNRS, CRPG, UMR 7358, Nancy, France
| | - Markus Patzek
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
| | - Michail I. Petaev
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, 02138, USA
| | - Laurette Piani
- Université de Lorraine, CNRS, CRPG, UMR 7358, Nancy, France
| | | | - Laurent Remusat
- CNRS–Museum National d’Histoire Naturelle, Laboratoire de Minéralogie et Cosmochimie du Museum–UMR 7202, Case 52, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Myriam Telus
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Akira Tsuchiyama
- Research Organization of Science & Technology, Ritsumeikan University, Shiga, 525-8577 Japan
- Chinese Academy of Sciences (CAS) Key Laboratory of Mineralogy & Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640 China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640 China
| | | |
Collapse
|
2
|
Materese CK, Aponte JC, McLain HL, Farnsworth KK, Tribbett PD, Ferguson FT, Knudson CA, McAdam AC, Thorpe MT, Dworkin JP. Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes. ASTROBIOLOGY 2024; 24:1220-1230. [PMID: 39605196 DOI: 10.1089/ast.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Amino acids have been identified in extraterrestrial materials such as meteorites and returned samples from asteroids and comets. Some of these amino acids or their precursors may have formed on icy interstellar dust grains or at a later phase when these grains became incorporated into larger parent bodies. In this work, we simulated parent body aqueous alteration of the residues from irradiated interstellar ice analogs in the presence of relevant minerals (pulverized serpentinite and Allende meteorite). We tracked the change in amino acid abundances as a function of hydrothermal processing time and examined how these differed based on the presence of minerals. We find that the presence of minerals and their mineralogy can have a significant impact on the formation and destruction of amino acids during simulated aqueous alteration experiments.
Collapse
Affiliation(s)
- Christopher K Materese
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Hannah L McLain
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Chemistry, Catholic University of America, Washington, District of Columbia, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
| | - Kendra K Farnsworth
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Patrick D Tribbett
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Frank T Ferguson
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Chemistry, Catholic University of America, Washington, District of Columbia, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
| | - Christine A Knudson
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Department of Astronomy, University of Maryland College Park, College Park, Maryland, USA
| | - Amy C McAdam
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Michael T Thorpe
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Department of Astronomy, University of Maryland College Park, College Park, Maryland, USA
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
3
|
Kuroda C, Kobayashi K. Alkylation of Complex Glycine Precursor (CGP) as a Prebiotic Route to 20 Proteinogenic Amino Acids Synthesis. Molecules 2024; 29:4403. [PMID: 39339398 PMCID: PMC11434435 DOI: 10.3390/molecules29184403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
It is not known why the number of proteinogenic amino acids is limited to 20. Since Miller's experiment, many studies have shown that amino acids could have been generated under prebiotic conditions. However, the amino acid compositions obtained from simulated experiments and exogenous origins are different from those of life. We hypothesized that some simple precursor compounds generated by high-energy reactions were selectively combined by organic reactions to afford a limited number of amino acids. To this direction, we propose two scenarios. One is the reaction of HCN with each side-chain precursor (the aminomalononitrile scenario), and the other is alkylation of the "complex glycine precursor", which is the main product of proton irradiation of the primordial atmosphere (the new polyglycine scenario). Here, selective formation of the 20 amino acids is described focusing on the latter scenario. The structural features of proteinogenic amino acids can be described systematically. The scenario consists of three stages: a high-energy reaction stage (Gly, Ala, Asn, and Asp were established); an alkylation stage (Gln, Glu, Ser, Thr, Val, Ile, Leu, and Pro were generated in considerable amounts); and a peptide formation stage (Phe, Tyr, Trp, His, Lys, Arg, Cys, and Met were selected due to their structural advantages). This scenario is a part of the evolution of Garakuta World, in which many prebiotic materials are contained.
Collapse
Affiliation(s)
- Chiaki Kuroda
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kensei Kobayashi
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
4
|
Koyama S, Kamada A, Furukawa Y, Terada N, Nakamura Y, Yoshida T, Kuroda T, Vandaele AC. Atmospheric formaldehyde production on early Mars leading to a potential formation of bio-important molecules. Sci Rep 2024; 14:2397. [PMID: 38336798 PMCID: PMC10858170 DOI: 10.1038/s41598-024-52718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Formaldehyde (H2CO) is a critical precursor for the abiotic formation of biomolecules, including amino acids and sugars, which are the building blocks of proteins and RNA. Geomorphological and geochemical evidence on Mars indicates a temperate environment compatible with the existence of surface liquid water during its early history at 3.8-3.6 billion years ago (Ga), which was maintained by the warming effect of reducing gases, such as H2. However, it remains uncertain whether such a temperate and weakly reducing surface environment on early Mars was suitable for producing H2CO. In this study, we investigated the atmospheric production of H2CO on early Mars using a 1-D photochemical model assuming a thick CO2-dominated atmosphere with H2 and CO. Our results show that a continuous supply of atmospheric H2CO can be used to form various organic compounds, including amino acids and sugars. This could be a possible origin for the organic matter observed on the Martian surface. Given the previously reported conversion rate from H2CO into ribose, the calculated H2CO deposition flux suggests a continuous supply of bio-important sugars on early Mars, particularly during the Noachian and early Hesperian periods.
Collapse
Affiliation(s)
- Shungo Koyama
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| | - Arihiro Kamada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yoshihiro Furukawa
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Naoki Terada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yuki Nakamura
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yoshida
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takeshi Kuroda
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | | |
Collapse
|
5
|
Ishikawa A, Kebukawa Y, Kobayashi K, Yoda I. Gamma-Ray-Induced Amino Acid Formation during Aqueous Alteration in Small Bodies: The Effects of Compositions of Starting Solutions. Life (Basel) 2024; 14:103. [PMID: 38255718 PMCID: PMC10817335 DOI: 10.3390/life14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Organic compounds, such as amino acids, are essential for the origin of life, and they may have been delivered to the prebiotic Earth from extra-terrestrial sources, such as carbonaceous chondrites. In the parent bodies of carbonaceous chondrites, the radioactive decays of short-lived radionuclides, such as 26Al, cause the melting of ice, and aqueous alteration occurs in the early stages of solar system formation. Many experimental studies have shown that complex organic matter, including amino acids and high-molecular-weight organic compounds, is produced by such hydrothermal processes. On the other hand, radiation, particularly gamma rays from radionuclides, can contribute to the formation of amino acids from simple molecules such as formaldehyde and ammonia. In this study, we investigated the details of gamma-ray-induced amino acid formation, focusing on the effects of different starting materials on aqueous solutions of formaldehyde, ammonia, methanol, and glycolaldehyde with various compositions, as well as hexamethylenetetramine. Alanine and glycine were the most abundantly formed amino acids after acid hydrolysis of gamma-ray-irradiated products. Amino acid formation increased with increasing gamma-ray irradiation doses. Lower amounts of ammonia relative to formaldehyde produced more amino acids. Glycolaldehyde significantly increased amino acid yields. Our results indicated that glycolaldehyde formation from formaldehyde enhanced by gamma rays is key for the subsequent production of amino acids.
Collapse
Affiliation(s)
- Akari Ishikawa
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (K.K.)
| | - Yoko Kebukawa
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (K.K.)
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Kensei Kobayashi
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (K.K.)
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Isao Yoda
- Co60 Irradiation Facility, Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
6
|
Li Y, Kurokawa H, Sekine Y, Kebukawa Y, Nakano Y, Kitadai N, Zhang N, Zang X, Ueno Y, Fujimori G, Nakamura R, Fujishima K, Isa J. Aqueous breakdown of aspartate and glutamate to n-ω-amino acids on the parent bodies of carbonaceous chondrites and asteroid Ryugu. SCIENCE ADVANCES 2023; 9:eadh7845. [PMID: 38100590 PMCID: PMC10848742 DOI: 10.1126/sciadv.adh7845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Amino acids in carbonaceous chondrites may have seeded the origin of life on Earth and possibly elsewhere. Recently, the return samples from a C-type asteroid Ryugu were found to contain amino acids with a similar distribution to Ivuna-type CI chondrites, suggesting the potential of amino acid abundances as molecular descriptors of parent body geochemistry. However, the chemical mechanisms responsible for the amino acid distributions remain to be elucidated particularly at low temperatures (<50°C). Here, we report that two representative proteinogenic amino acids, aspartic acid and glutamic acid, decompose to β-alanine and γ-aminobutyric acid, respectively, under simulated geoelectrochemical conditions at 25°C. This low-temperature conversion provides a plausible explanation for the enrichment of these two n-ω-amino acids compared to their precursors in heavily aqueously altered CI chondrites and Ryugu's return samples. The results suggest that these heavily aqueously altered samples originated from the water-rich mantle of their water/rock differentiated parent planetesimals where protein α-amino acids were decomposed.
Collapse
Affiliation(s)
- Yamei Li
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yasuhito Sekine
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Institute of Nature and Environmental Technology, Japan Kanazawa University, Ishikawa, Kanazawa, Kakumachi 920-1192, Japan
- Planetary Plasma and Atmospheric Research Center, Tohoku University, Aramaki-aza-Aoba 6-3, Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Kebukawa
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan
| | - Yuko Nakano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Norio Kitadai
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Naizhong Zhang
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Xiaofeng Zang
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Gen Fujimori
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan
| | - Ryuhei Nakamura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa 252-0882, Japan
| | - Junko Isa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
7
|
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life (Basel) 2023; 13:2281. [PMID: 38137883 PMCID: PMC10744825 DOI: 10.3390/life13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Would another origin of life resemble Earth's biochemical use of amino acids? Here, we review current knowledge at three levels: (1) Could other classes of chemical structure serve as building blocks for biopolymer structure and catalysis? Amino acids now seem both readily available to, and a plausible chemical attractor for, life as we do not know it. Amino acids thus remain important and tractable targets for astrobiological research. (2) If amino acids are used, would we expect the same L-alpha-structural subclass used by life? Despite numerous ideas, it is not clear why life favors L-enantiomers. It seems clearer, however, why life on Earth uses the shortest possible (alpha-) amino acid backbone, and why each carries only one side chain. However, assertions that other backbones are physicochemically impossible have relaxed into arguments that they are disadvantageous. (3) Would we expect a similar set of side chains to those within the genetic code? Many plausible alternatives exist. Furthermore, evidence exists for both evolutionary advantage and physicochemical constraint as explanatory factors for those encoded by life. Overall, as focus shifts from amino acids as a chemical class to specific side chains used by post-LUCA biology, the probable role of physicochemical constraint diminishes relative to that of biological evolution. Exciting opportunities now present themselves for laboratory work and computing to explore how changing the amino acid alphabet alters the universe of protein folds. Near-term milestones include: (a) expanding evidence about amino acids as attractors within chemical evolution; (b) extending characterization of other backbones relative to biological proteins; and (c) merging computing and laboratory explorations of structures and functions unlocked by xeno peptides.
Collapse
|
8
|
Potiszil C, Yamanaka M, Sakaguchi C, Ota T, Kitagawa H, Kunihiro T, Tanaka R, Kobayashi K, Nakamura E. Organic Matter in the Asteroid Ryugu: What We Know So Far. Life (Basel) 2023; 13:1448. [PMID: 37511823 PMCID: PMC10381145 DOI: 10.3390/life13071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The Hayabusa2 mission was tasked with returning samples from the C-complex asteroid Ryugu (1999 JU3), in order to shed light on the formation, evolution and composition of such asteroids. One of the main science objectives was to understand whether such bodies could have supplied the organic matter required for the origin of life on Earth. Here, a review of the studies concerning the organic matter within the Ryugu samples is presented. This review will inform the reader about the Hayabusa2 mission, the nature of the organic matter analyzed and the various interpretations concerning the analytical findings including those concerning the origin and evolution of organic matter from Ryugu. Finally, the review puts the findings and individual interpretations in the context of the current theories surrounding the formation and evolution of Ryugu. Overall, the summary provided here will help to inform those operating in a wide range of interdisciplinary fields, including planetary science, astrobiology, the origin of life and astronomy, about the most recent developments concerning the organic matter in the Ryugu return samples and their relevance to understanding our solar system and beyond. The review also outlines the issues that still remain to be solved and highlights potential areas for future work.
Collapse
Affiliation(s)
- Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Masahiro Yamanaka
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Tsutomu Ota
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Hiroshi Kitagawa
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Ryoji Tanaka
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| |
Collapse
|
9
|
Furukawa Y, Saigusa D, Kano K, Uruno A, Saito R, Ito M, Matsumoto M, Aoki J, Yamamoto M, Nakamura T. Distributions of CHN compounds in meteorites record organic syntheses in the early solar system. Sci Rep 2023; 13:6683. [PMID: 37095091 PMCID: PMC10125961 DOI: 10.1038/s41598-023-33595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Carbonaceous meteorites contain diverse soluble organic compounds. These compounds formed in the early solar system from volatiles accreted on tiny dust particles. However, the difference in the organic synthesis on respective dust particles in the early solar system remains unclear. We found micrometer-scale heterogeneous distributions of diverse CHN1-2 and CHN1-2O compounds in two primitive meteorites: the Murchison and NWA 801, using a surface-assisted laser desorption/ionization system connected to a high mass resolution mass spectrometer. These compounds contained mutual relationships of ± H2, ± CH2, ± H2O, and ± CH2O and showed highly similar distributions, indicating that they are the products of series reactions. The heterogeneity was caused by the micro-scale difference in the abundance of these compounds and the extent of the series reactions, indicating that these compounds formed on respective dust particles before asteroid accretion. The results of the present study provide evidence of heterogeneous volatile compositions and the extent of organic reactions among the dust particles that formed carbonaceous asteroids. The compositions of diverse small organic compounds associated with respective dust particles in meteorites are useful to understand different histories of volatile evolution in the early solar system.
Collapse
Affiliation(s)
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, X-star, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Potiszil C, Ota T, Yamanaka M, Sakaguchi C, Kobayashi K, Tanaka R, Kunihiro T, Kitagawa H, Abe M, Miyazaki A, Nakato A, Nakazawa S, Nishimura M, Okada T, Saiki T, Tanaka S, Terui F, Tsuda Y, Usui T, Watanabe SI, Yada T, Yogata K, Yoshikawa M, Nakamura E. Insights into the formation and evolution of extraterrestrial amino acids from the asteroid Ryugu. Nat Commun 2023; 14:1482. [PMID: 36932072 PMCID: PMC10023693 DOI: 10.1038/s41467-023-37107-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
All life on Earth contains amino acids and carbonaceous chondrite meteorites have been suggested as their source at the origin of life on Earth. While many meteoritic amino acids are considered indigenous, deciphering the extent of terrestrial contamination remains an issue. The Ryugu asteroid fragments (JAXA Hayabusa2 mission), represent the most uncontaminated primitive extraterrestrial material available. Here, the concentrations of amino acids from two particles from different touchdown sites (TD1 and TD2) are reported. The concentrations show that N,N-dimethylglycine (DMG) is the most abundant amino acid in the TD1 particle, but below detection limit in the other. The TD1 particle mineral components indicate it experienced more aqueous alteration. Furthermore, the relationships between the amino acids and the geochemistry suggest that DMG formed on the Ryugu progenitor body during aqueous alteration. The findings highlight the importance of aqueous chemistry for defining the ultimate concentrations of amino acids in primitive extraterrestrial samples.
Collapse
Affiliation(s)
- Christian Potiszil
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan.
| | - Tsutomu Ota
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| | - Masahiro Yamanaka
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| | - Chie Sakaguchi
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| | - Ryoji Tanaka
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| | - Hiroshi Kitagawa
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- University of Tokyo, Tokyo, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
- University of Tokyo, Kashiwa, Japan
| | - Fuyuto Terui
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Kanagawa Institute of Technology, Atsugi, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | | | - Toru Yada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Eizo Nakamura
- Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, 682-0193, Japan
| |
Collapse
|
11
|
Kebukawa Y, Asano S, Tani A, Yoda I, Kobayashi K. Gamma-Ray-Induced Amino Acid Formation in Aqueous Small Bodies in the Early Solar System. ACS CENTRAL SCIENCE 2022; 8:1664-1671. [PMID: 36589881 PMCID: PMC9801502 DOI: 10.1021/acscentsci.2c00588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/01/2023]
Abstract
Carbonaceous chondrites contain life's essential building blocks, including amino acids, and their delivery of organic compounds would have played a key role in life's emergence on Earth. Aqueous alteration of carbonaceous chondrites is a widespread process induced by the heat produced by radioactive decay of nuclides like 26Al. Simple ubiquitous molecules like formaldehyde and ammonia could produce various organic compounds, including amino acids and complex organic macromolecules. However, the effects of radiation on such organic chemistry are unknown. Hence, the effects of gamma rays from radioactive decays on the formation of amino acids in meteorite parent bodies are demonstrated here. We discovered that gamma-ray irradiation of aqueous formaldehyde and ammonia solutions afforded a variety of amino acids. The amino acid yields had a linear relationship with the total gamma-ray dose but were unaffected by the irradiation dose rates. Given the gamma-ray production rates in the meteorite parent bodies, we estimated that the production rates were reasonable compared to amino acid abundances in carbonaceous chondrites. Our findings indicate that gamma rays may contribute to amino acid formation in parent bodies during aqueous alteration. In this paper, we propose a new prebiotic amino acid formation pathway that contributes to life's origin.
Collapse
Affiliation(s)
- Yoko Kebukawa
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa240-8501, Japan
| | - Shinya Asano
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa240-8501, Japan
| | - Atsushi Tani
- Graduate
School of Human Development and Environment, Kobe University, 3-11
Tsurukabuto, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Isao Yoda
- Co60
irradiation facility, Laboratory for Zero-Carbon Energy, Institute
of Innovative Research, Tokyo Institute
of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kensei Kobayashi
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa240-8501, Japan
| |
Collapse
|
12
|
Li Y, Kitadai N, Sekine Y, Kurokawa H, Nakano Y, Johnson-Finn K. Geoelectrochemistry-driven alteration of amino acids to derivative organics in carbonaceous chondrite parent bodies. Nat Commun 2022; 13:4893. [PMID: 35986003 PMCID: PMC9391434 DOI: 10.1038/s41467-022-32596-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
A long-standing question regarding carbonaceous chondrites (CCs) is how the CCs' organics were sourced and converted before and after the accretion of their parent bodies. Growing evidence shows that amino acid abundances in CCs decrease with an elongated aqueous alteration. However, the underlying chemical processes are unclear. If CCs' parent bodies were water-rock differentiated, pH and redox gradients can drive electrochemical reactions by using H2 as an electron source. Here, we simulate such redox conditions and demonstrate that α-amino acids are electrochemically altered to monoamines and α-hydroxy acids on FeS and NiS catalysts at 25 °C. This conversion is consistent with their enrichment compared to amino acid analogs in heavily altered CCs. Our results thus suggest that H2 can be an important driver for organic evolution in water-rock differentiated CC parent bodies as well as the Solar System icy bodies that might possess similar pH and redox gradients.
Collapse
Affiliation(s)
- Yamei Li
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yasuhito Sekine
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
| | - Yuko Nakano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
| | - Kristin Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
13
|
Giese CC, ten Kate IL, van den Ende MPA, Wolthers M, Aponte JC, Camprubi E, Dworkin JP, Elsila JE, Hangx S, King HE, Mclain HL, Plümper O, Tielens AGG. Experimental and Theoretical Constraints on Amino Acid Formation from PAHs in Asteroidal Settings. ACS EARTH & SPACE CHEMISTRY 2022; 6:468-481. [PMID: 35330631 PMCID: PMC8935471 DOI: 10.1021/acsearthspacechem.1c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Amino acids and polycyclic aromatic hydrocarbons (PAHs) belong to the range of organic compounds detected in meteorites. In this study, we tested empirically and theoretically if PAHs are precursors for amino acids in carbonaceous chondrites, as previously suggested. We conducted experiments to synthesize amino acids from fluoranthene (PAH), with ammonium bicarbonate as a source for ammonia and carbon dioxide under mimicked asteroidal conditions. In our thermodynamic calculations, we extended our analysis to additional PAH-amino acid combinations. We explored 36 reactions involving the PAHs naphthalene, anthracene, fluoranthene, pyrene, triphenylene, and coronene and the amino acids glycine, alanine, valine, leucine, phenylalanine, and tyrosine. Our experiments do not show the formation of amino acids, whereas our theoretical results hint that PAHs could be precursors of amino acids in carbonaceous chondrites at low temperatures.
Collapse
Affiliation(s)
- Claudia-Corina Giese
- Leiden
Observatory, Faculty of Science, Leiden
University, 2300 RA Leiden, The Netherlands
- Department
of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Inge Loes ten Kate
- Department
of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | | | - Mariette Wolthers
- Department
of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - José C. Aponte
- Solar
System Exploration Division, NASA Goddard
Space Flight Center, Greenbelt, Maryland 20771, United States
- Department
of Physics, The Catholic University of America, Washington D. C. 20064, United States
- Center for
Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, Maryland 20771, United States
| | - Eloi Camprubi
- Department
of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Jason P. Dworkin
- Solar
System Exploration Division, NASA Goddard
Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Jamie E. Elsila
- Solar
System Exploration Division, NASA Goddard
Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Suzanne Hangx
- Department
of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Helen E. King
- Department
of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Hannah L. Mclain
- Solar
System Exploration Division, NASA Goddard
Space Flight Center, Greenbelt, Maryland 20771, United States
- Department
of Physics, The Catholic University of America, Washington D. C. 20064, United States
- Center for
Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, Maryland 20771, United States
| | - Oliver Plümper
- Department
of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Gerakines PA, Qasim D, Frail S, Hudson RL. Radiolytic Destruction of Uracil in Interstellar and Solar System Ices. ASTROBIOLOGY 2022; 22:233-241. [PMID: 34672795 DOI: 10.1089/ast.2021.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Uracil is one of the four RNA nucleobases and a component of meteoritic organics. If delivered to the early Earth, uracil could have been involved in the origins of the first RNA-based life, and so this molecule could be a biomarker on other worlds. Therefore, it is important to understand uracil's survival to ionizing radiation in extraterrestrial environments. Here we present a study of the radiolytic destruction kinetics of uracil and mixtures of uracil diluted in H2O or CO2 ice. All samples were irradiated by protons with an energy of 0.9 MeV, and experiments were performed at 20 and 150 K to determine destruction rate constants at temperatures relevant to interstellar and Solar System environments. We show that uracil is destroyed much faster when H2O ice or CO2 ice is present than when these two ices are absent. Moreover, destruction is faster for CO2-dominated ices than for H2O-dominated ones and, to a lesser extent, at 150 K compared with 20 K. Extrapolation of our laboratory results to astronomical timescales shows that uracil will be preserved in ices with half-lives of up to ∼107 years on cold planetary bodies such as comets or Pluto. An important implication of our results is that for extraterrestrial environments, the application of laboratory data measured for the radiation-induced destruction of pure (neat) uracil samples can greatly underestimate the molecule's rate of destruction and significantly overestimate its lifetime, which can lead to errors of over 1000%.
Collapse
Affiliation(s)
- Perry A Gerakines
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Danna Qasim
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington, District of Columbia, USA
- Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, Maryland, USA
| | - Sarah Frail
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Reggie L Hudson
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
15
|
NAKAMURA E, KOBAYASHI K, TANAKA R, KUNIHIRO T, KITAGAWA H, POTISZIL C, OTA T, SAKAGUCHI C, YAMANAKA M, RATNAYAKE DM, TRIPATHI H, KUMAR R, AVRAMESCU ML, TSUCHIDA H, YACHI Y, MIURA H, ABE M, FUKAI R, FURUYA S, HATAKEDA K, HAYASHI T, HITOMI Y, KUMAGAI K, MIYAZAKI A, NAKATO A, NISHIMURA M, OKADA T, SOEJIMA H, SUGITA S, SUZUKI A, USUI T, YADA T, YAMAMOTO D, YOGATA K, YOSHITAKE M, ARAKAWA M, FUJII A, HAYAKAWA M, HIRATA N, HIRATA N, HONDA R, HONDA C, HOSODA S, IIJIMA YI, IKEDA H, ISHIGURO M, ISHIHARA Y, IWATA T, KAWAHARA K, KIKUCHI S, KITAZATO K, MATSUMOTO K, MATSUOKA M, MICHIKAMI T, MIMASU Y, MIURA A, MOROTA T, NAKAZAWA S, NAMIKI N, NODA H, NOGUCHI R, OGAWA N, OGAWA K, OKAMOTO C, ONO G, OZAKI M, SAIKI T, SAKATANI N, SAWADA H, SENSHU H, SHIMAKI Y, SHIRAI K, TAKEI Y, TAKEUCHI H, TANAKA S, TATSUMI E, TERUI F, TSUKIZAKI R, WADA K, YAMADA M, YAMADA T, YAMAMOTO Y, YANO H, YOKOTA Y, YOSHIHARA K, YOSHIKAWA M, YOSHIKAWA K, FUJIMOTO M, WATANABE SI, TSUDA Y. On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:227-282. [PMID: 35691845 PMCID: PMC9246647 DOI: 10.2183/pjab.98.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 05/28/2023]
Abstract
Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.
Collapse
Affiliation(s)
- Eizo NAKAMURA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Katsura KOBAYASHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Ryoji TANAKA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Tak KUNIHIRO
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Hiroshi KITAGAWA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Christian POTISZIL
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Tsutomu OTA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Chie SAKAGUCHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Masahiro YAMANAKA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Dilan M. RATNAYAKE
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Havishk TRIPATHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Rahul KUMAR
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Maya-Liliana AVRAMESCU
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Hidehisa TSUCHIDA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Yusuke YACHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Hitoshi MIURA
- Department of Information and Basic Science, Nagoya City University, Nagoya, Aichi, Japan
| | - Masanao ABE
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Ryota FUKAI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Shizuho FURUYA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kentaro HATAKEDA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Tasuku HAYASHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yuya HITOMI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Kazuya KUMAGAI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Akiko MIYAZAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Aiko NAKATO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Masahiro NISHIMURA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Tatsuaki OKADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiromichi SOEJIMA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Seiji SUGITA
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Ayako SUZUKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Tomohiro USUI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Toru YADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Daiki YAMAMOTO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Kasumi YOGATA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Miwa YOSHITAKE
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | | | - Atsushi FUJII
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Masahiko HAYAKAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Naoyuki HIRATA
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Naru HIRATA
- Faculty of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
| | - Rie HONDA
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Chikatoshi HONDA
- Faculty of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
| | - Satoshi HOSODA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yu-ichi IIJIMA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hitoshi IKEDA
- Research and Development Directorate, JAXA, Sagamihara, Kanagawa, Japan
| | - Masateru ISHIGURO
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Yoshiaki ISHIHARA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Takahiro IWATA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Kosuke KAWAHARA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Shota KIKUCHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Kohei KITAZATO
- Faculty of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
| | - Koji MATSUMOTO
- National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan
| | - Moe MATSUOKA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Observatoire de Paris, Meudon, France
| | - Tatsuhiro MICHIKAMI
- Faculty of Engineering, Kindai University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuya MIMASU
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Akira MIURA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Tomokatsu MOROTA
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi, Japan
| | - Satoru NAKAZAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Noriyuki NAMIKI
- National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan
| | - Hirotomo NODA
- National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan
| | - Rina NOGUCHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Faculty of Science, Niigata University, Niigata, Japan
| | - Naoko OGAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Kazunori OGAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Chisato OKAMOTO
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Go ONO
- Research and Development Directorate, JAXA, Sagamihara, Kanagawa, Japan
| | - Masanobu OZAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Takanao SAIKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | | | - Hirotaka SAWADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hiroki SENSHU
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Yuri SHIMAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Kei SHIRAI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Yuto TAKEI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hiroshi TAKEUCHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Satoshi TANAKA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
- The University of Tokyo, Kashiwa, Chiba, Japan
| | - Eri TATSUMI
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Instituto de Astrofisica de Canarias, University of La Laguna, Tenerife, Spain
| | - Fuyuto TERUI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Faculty of Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Ryudo TSUKIZAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Koji WADA
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Manabu YAMADA
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Tetsuya YAMADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yukio YAMAMOTO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hajime YANO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yasuhiro YOKOTA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Keisuke YOSHIHARA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Makoto YOSHIKAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Kent YOSHIKAWA
- Research and Development Directorate, JAXA, Sagamihara, Kanagawa, Japan
| | - Masaki FUJIMOTO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Sei-ichiro WATANABE
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichi TSUDA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Yamagishi A, Yokobori SI, Kobayashi K, Mita H, Yabuta H, Tabata M, Higashide M, Yano H. Scientific Targets of Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments at the Japanese Experiment Module Exposed Facility of the International Space Station. ASTROBIOLOGY 2021; 21:1451-1460. [PMID: 34449275 DOI: 10.1089/ast.2020.2426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Tanpopo experiment was the first Japanese astrobiology mission on board the Japanese Experiment Module Exposed Facility on the International Space Station (ISS). The experiments were designed to address two important astrobiological topics, panspermia and the chemical evolution process toward the generation of life. These experiments also tested low-density aerogel and monitored the microdebris environment around low Earth orbit. The following six subthemes were identified to address these goals: (1) Capture of microbes in space: Estimation of the upper limit of microbe density in low Earth orbit; (2) Exposure of microbes in space: Estimation of the survival time course of microbes in the space environment; (3) Capture of cosmic dust on the ISS and analysis of organics: Detection of the possible presence of organic compounds in cosmic dust; (4) Alteration of organic compounds in space environments: Evaluation of decomposition time courses of organic compounds in space; (5) Space verification of the Tanpopo hyper-low-density aerogel: Durability and particle-capturing capability of aerogel; (6) Monitoring of the number of space debris: Time-dependent change in space debris environment. Subthemes 1 and 2 address the panspermia hypothesis, whereas 3 and 4 address the chemical evolution. The last two subthemes contribute to space technology development. Some of the results have been published previously or are included in this issue. This article summarizes the current status of the Tanpopo experiments.
Collapse
Affiliation(s)
- Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kensei Kobayashi
- Department of Chemistry, Yokohama National University, Hodogayaku, Yokohama, Japan
| | - Hajime Mita
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Fukuoka Institute of Technology, Higashiku, Fukuoka, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Systems Science, Hiroshima University, Hiroshima, Japan
| | - Makoto Tabata
- Department of Physics, Chiba University, Chiba, Japan
| | - Masumi Higashide
- Research and Development Directorate, Japan Aerospace Exploration Agency, Chofu, Tokyo, Japan
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| |
Collapse
|
17
|
Lymer EA, Konstantinidis M, Lalla EA, Daly MG, Tait KT. UV Time-Resolved Laser-Induced Fluorescence Spectroscopy of Amino Acids Found in Meteorites: Implications for Space Science and Exploration. ASTROBIOLOGY 2021; 21:1350-1362. [PMID: 34314603 DOI: 10.1089/ast.2021.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Laser-induced fluorescence spectroscopy is a useful laboratory and in situ technique for planetary exploration, with applications in biosignature detection and the search for life on Mars. However, little work has been completed on the utility of fluorescence spectroscopy techniques on asteroid relevant material. In preparation for asteroid sample return missions such as NASA's OSIRIS-REx and JAXA's Hayabusa2, we conducted UV time resolved laser-induced fluorescence spectroscopy (TR-LIF) analysis of 10 amino acids, all of which have been found in the carbonaceous meteorites Murchison and Allende. We present the calculation of decay rates of each amino acid (1.55-3.56 ns) and compare with those of relevant homogeneous minerals (15-70 ns). Moreover, we demonstrate a linear relationship between calculated lifetimes and elemental abundance of nitrogen and carbon (p < 0.025). The quantitative and qualitative fluorescence analyses presented in this work will lead to more reliable identification of organic material within meteorites and asteroids in a time-efficient, minimally destructive way.
Collapse
Affiliation(s)
- Elizabeth A Lymer
- Centre for Research in Earth and Space Science, York University, Toronto, Canada
| | - Menelaos Konstantinidis
- Centre for Research in Earth and Space Science, York University, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Emmanuel A Lalla
- Centre for Research in Earth and Space Science, York University, Toronto, Canada
| | - Michael G Daly
- Centre for Research in Earth and Space Science, York University, Toronto, Canada
| | - Kimberly T Tait
- Department of Natural History, Centre for Applied Planetary Mineralogy, Royal Ontario Museum, Toronto, Canada
| |
Collapse
|
18
|
Furukawa Y, Iwasa Y, Chikaraishi Y. Synthesis of 13C-enriched amino acids with 13C-depleted insoluble organic matter in a formose-type reaction in the early solar system. SCIENCE ADVANCES 2021; 7:7/18/eabd3575. [PMID: 33910902 PMCID: PMC8081361 DOI: 10.1126/sciadv.abd3575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/10/2021] [Indexed: 05/10/2023]
Abstract
Solvent-soluble organic matter (SOM) in meteorites, which includes life's building molecules, is suspected to originate from the cold region of the early solar system, on the basis of 13C enrichment in the molecules. Here, we demonstrate that the isotopic characteristics are reproducible in amino acid synthesis associated with a formose-type reaction in a heated aqueous solution. Both thermochemically driven formose-type reaction and photochemically driven formose-type reaction likely occurred in asteroids and ice-dust grains in the early solar system. Thus, the present results suggest that the formation of 13C-enriched SOM was not specific to the cold outer protosolar disk or the molecular cloud but occurred more widely in the early solar system.
Collapse
Affiliation(s)
- Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yoshinari Iwasa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshito Chikaraishi
- Institute of Low-temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
19
|
Classification of the Biogenicity of Complex Organic Mixtures for the Detection of Extraterrestrial Life. Life (Basel) 2021; 11:life11030234. [PMID: 33809046 PMCID: PMC8001260 DOI: 10.3390/life11030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Searching for life in the Universe depends on unambiguously distinguishing biological features from background signals, which could take the form of chemical, morphological, or spectral signatures. The discovery and direct measurement of organic compounds unambiguously indicative of extraterrestrial (ET) life is a major goal of Solar System exploration. Biology processes matter and energy differently from abiological systems, and materials produced by biological systems may become enriched in planetary environments where biology is operative. However, ET biology might be composed of different components than terrestrial life. As ET sample return is difficult, in situ methods for identifying biology will be useful. Mass spectrometry (MS) is a potentially versatile life detection technique, which will be used to analyze numerous Solar System environments in the near future. We show here that simple algorithmic analysis of MS data from abiotic synthesis (natural and synthetic), microbial cells, and thermally processed biological materials (lab-grown organisms and petroleum) easily identifies relational organic compound distributions that distinguish pristine and aged biological and abiological materials, which likely can be attributed to the types of compounds these processes produce, as well as how they are formed and decompose. To our knowledge this is the first comprehensive demonstration of the utility of this analytical technique for the detection of biology. This method is independent of the detection of particular masses or molecular species samples may contain. This suggests a general method to agnostically detect evidence of biology using MS given a sufficiently strong signal in which the majority of the material in a sample has either a biological or abiological origin. Such metrics are also likely to be useful for studies of possible emergent living phenomena, and paleobiological samples.
Collapse
|
20
|
Synthesis of Organic Matter in Aqueous Environments Simulating Small Bodies in the Solar System and the Effects of Minerals on Amino Acid Formation. Life (Basel) 2021; 11:life11010032. [PMID: 33419105 PMCID: PMC7825434 DOI: 10.3390/life11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022] Open
Abstract
The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and β-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.
Collapse
|
21
|
Extraterrestrial hexamethylenetetramine in meteorites-a precursor of prebiotic chemistry in the inner solar system. Nat Commun 2020; 11:6243. [PMID: 33288754 PMCID: PMC7721876 DOI: 10.1038/s41467-020-20038-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 11/08/2022] Open
Abstract
Despite extensive studies on the formation of organic molecules in various extraterrestrial environments, it still remains under debate when, where, and how such molecules were abiotically formed. A key molecule to solve the problem, hexamethylenetetramine (HMT) has not been confirmed in extraterrestrial materials despite extensive laboratory experimental evidence that it can be produced in interstellar or cometary environments. Here we report the first detection of HMT and functionalized HMT species in the carbonaceous chondrites Murchison, Murray, and Tagish Lake. While the part-per-billion level concentration of HMT in Murchison and Tagish Lake is comparable to other related soluble organic molecules like amino acids, these compounds may have eluded detection in previous studies due to the loss of HMT during the extraction processes. HMT, which can yield important molecules for prebiotic chemistry such as formaldehyde and ammonia upon degradation, is a likely precursor of meteoritic organic compounds of astrochemical and astrophysical interest. This manuscript tackles the origin of organic molecules in carbonaceous meteorites. Identifying hexamethylenetetramine in three carbonaceous meteorites, the authors propose formation from ammonia and formaldehyde by photochemical and thermal reactions in the interstellar medium, followed by the incorporation into planetary systems.
Collapse
|
22
|
Zellner NEB, McCaffrey VP, Butler JHE. Cometary Glycolaldehyde as a Source of pre-RNA Molecules. ASTROBIOLOGY 2020; 20:1377-1388. [PMID: 32985898 DOI: 10.1089/ast.2020.2216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over 200 molecules have been detected in multiple extraterrestrial environments, including glycolaldehyde (C2(H2O)2, GLA), a two-carbon sugar precursor that has been detected in regions of the interstellar medium. Its recent in situ detection on the nucleus of comet 67P/Churyumov-Gerasimenko and through remote observations in the comae of others provides tantalizing evidence that it is common on most (if not all) comets. Impact experiments conducted at the Experimental Impact Laboratory at NASA's Johnson Space Center have shown that samples of GLA and GLA mixed with montmorillonite clays can survive impact delivery in the pressure range of 4.5 to 25 GPa. Extrapolated to amounts of GLA observed on individual comets and assuming a monotonic impact rate in the first billion years of Solar System history, these experimental results show that up to 1023 kg of cometary GLA could have survived impact delivery, with substantial amounts of threose, erythrose, glycolic acid, and ethylene glycol also produced or delivered. Importantly, independent of the profile of the impact flux in the early Solar System, comet delivery of GLA would have provided (and may continue to provide) a reservoir of starting material for the formose reaction (to form ribose) and the Strecker reaction (to form amino acids). Thus, comets may have been important delivery vehicles for starting molecules necessary for life as we know it.
Collapse
Affiliation(s)
| | | | - Jayden H E Butler
- Department of Physics, Albion College, Albion, Michigan, USA
- Department of Physics, California State University - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
23
|
Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission. Life (Basel) 2020; 10:life10080126. [PMID: 32731390 PMCID: PMC7460487 DOI: 10.3390/life10080126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
The close encounters of the Pluto–Charon system and the Kuiper Belt object Arrokoth (formerly 2014 MU69) by NASA’s New Horizons spacecraft in 2015 and 2019, respectively, have given new perspectives on the most distant planetary bodies yet explored. These bodies are key indicators of the composition, chemistry, and dynamics of the outer regions of the Solar System’s nascent environment. Pluto and Charon reveal characteristics of the largest Kuiper Belt objects formed in the dynamically evolving solar nebula inward of ~30 AU, while the much smaller Arrokoth is a largely undisturbed relic of accretion at ~45 AU. The surfaces of Pluto and Charon are covered with volatile and refractory ices and organic components, and have been shaped by geological activity. On Pluto, N2, CO and CH4 are exchanged between the atmosphere and surface as gaseous and condensed phases on diurnal, seasonal and longer timescales, while Charon’s surface is primarily inert H2O ice with an ammoniated component and a polar region colored with a macromolecular organic deposit. Arrokoth is revealed as a fused binary body in a relatively benign space environment where it originated and has remained for the age of the Solar System. Its surface is a mix of CH3OH ice, a red-orange pigment of presumed complex organic material, and possibly other undetected components.
Collapse
|
24
|
Takeuchi Y, Furukawa Y, Kobayashi T, Sekine T, Terada N, Kakegawa T. Impact-induced amino acid formation on Hadean Earth and Noachian Mars. Sci Rep 2020; 10:9220. [PMID: 32513990 PMCID: PMC7280214 DOI: 10.1038/s41598-020-66112-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022] Open
Abstract
Abiotic synthesis of biomolecules is an essential step for the chemical origin of life. Many attempts have succeeded in synthesizing biomolecules, including amino acids and nucleobases (e.g., via spark discharge, impact shock, and hydrothermal heating), from reduced compounds that may have been limited in their availabilities on Hadean Earth and Noachian Mars. On the other hand, formation of amino-acids and nucleobases from CO2 and N2 (i.e., the most abundant C and N sources on Earth during the Hadean) has been limited via spark discharge. Here, we demonstrate the synthesis of amino acids by laboratory impact-induced reactions among simple inorganic mixtures: Fe, Ni, Mg2SiO4, H2O, CO2, and N2, by coupling the reduction of CO2, N2, and H2O with the oxidation of metallic Fe and Ni. These chemical processes simulated the possible reactions at impacts of Fe-bearing meteorites/asteroids on oceans with a CO2 and N2 atmosphere. The results indicate that hypervelocity impact was a source of amino acids on the Earth during the Hadean and potentially on Mars during the Noachian. Amino acids formed during such events could more readily polymerize in the next step of the chemical evolution, as impact events locally form amino acids at the impact sites.
Collapse
Affiliation(s)
- Yuto Takeuchi
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Takamichi Kobayashi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Toshimori Sekine
- Center for High Pressure Science & Technology Advanced Research, 1690 Cailun road, Shanghai, 201203, China
- Graduate School of Engineering, Osaka University, Osaka, Japan, 2-1 Yamada-Oka, Suita, 565-0871, Japan
| | - Naoki Terada
- Department of Geophysics, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
25
|
Alteration and Stability of Complex Macromolecular Amino Acid Precursors in Hydrothermal Environments. ORIGINS LIFE EVOL B 2020; 50:15-33. [PMID: 32314306 DOI: 10.1007/s11084-020-09593-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
The early Solar System comprised a broad area of abiotically created organic compounds, including interstellar organics which were integrated into planetesimals and parent bodies of meteorites, and eventually delivered to the early Earth. In this study, we simulated interstellar complex organic compounds synthesized by proton irradiation of a gas mixture of CO, NH3, and H2O, which are known to release amino acids after acid hydrolysis on the basis of Kobayashi et al. (1999) who reported that at the first stage of chemical evolution, the main compounds formed abiotically are complex organic compounds with high molecular weights. We examined their possible hydrothermal alteration and stabilities as amino acid precursors under high temperature and pressure conditions simulating parent bodies of meteorites by using an autoclave. We reported that all samples treated at 200-300 °C predominantly released glycine and alanine, followed by α-aminobutyric acid, and serine. After heating, amino acid concentrations decreased in general; however, the recovery ratios of γ-aminobutyric acid increased with temperature. The interstellar complex organic analog could maintain as amino acid precursors after being treated at high temperature (200-300 °C) and pressure (8-14 MPa). However, the molecular structures were altered during heating to form organic compounds that are more stable and can survive in elevated hydrothermal conditions.
Collapse
|
26
|
Cruikshank DP, Materese CK, Pendleton YJ, Boston PJ, Grundy WM, Schmitt B, Lisse CM, Runyon KD, Keane JT, Beyer RA, Summers ME, Scipioni F, Stern SA, Dalle Ore CM, Olkin CB, Young LA, Ennico K, Weaver HA, Bray VJ. Prebiotic Chemistry of Pluto. ASTROBIOLOGY 2019; 19:831-848. [PMID: 30907634 DOI: 10.1089/ast.2018.1927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the case for the presence of complex organic molecules, such as amino acids and nucleobases, formed by abiotic processes on the surface and in near-subsurface regions of Pluto. Pluto's surface is tinted with a range of non-ice substances with colors ranging from light yellow to red to dark brown; the colors match those of laboratory organic residues called tholins. Tholins are broadly characterized as complex, macromolecular organic solids consisting of a network of aromatic structures connected by aliphatic bridging units (e.g., Imanaka et al., 2004; Materese et al., 2014, 2015). The synthesis of tholins in planetary atmospheres and in surface ices has been explored in numerous laboratory experiments, and both gas- and solid-phase varieties are found on Pluto. A third variety of tholins, exposed at a site of tectonic surface fracturing called Virgil Fossae, appears to have come from a reservoir in the subsurface. Eruptions of tholin-laden liquid H2O from a subsurface aqueous repository appear to have covered portions of Virgil Fossae and its surroundings with a uniquely colored deposit (D.P. Cruikshank, personal communication) that is geographically correlated with an exposure of H2O ice that includes spectroscopically detected NH3 (C.M. Dalle Ore, personal communication). The subsurface organic material could have been derived from presolar or solar nebula processes, or might have formed in situ. Photolysis and radiolysis of a mixture of ices relevant to Pluto's surface composition (N2, CH4, CO) have produced strongly colored, complex organics with a significant aromatic content having a high degree of nitrogen substitution similar to the aromatic heterocycles pyrimidine and purine (Materese et al., 2014, 2015; Cruikshank et al., 2016). Experiments with pyrimidines and purines frozen in H2O-NH3 ice resulted in the formation of numerous nucleobases, including the biologically relevant guanine, cytosine, adenine, uracil, and thymine (Materese et al., 2017). The red material associated with the H2O ice may contain nucleobases resulting from energetic processing on Pluto's surface or in the interior. Some other Kuiper Belt objects also exhibit red colors similar to those found on Pluto and may therefore carry similar inventories of complex organic materials. The widespread and ubiquitous nature of similarly complex organic materials observed in a variety of astronomical settings drives the need for additional laboratory and modeling efforts to explain the origin and evolution of organic molecules. Pluto observations reveal complex organics on a small body that remains close to its place of origin in the outermost regions of the Solar System.
Collapse
Affiliation(s)
- D P Cruikshank
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - C K Materese
- 2Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Y J Pendleton
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - P J Boston
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - W M Grundy
- 3Lowell Observatory, Flagstaff, Arizona, USA
| | - B Schmitt
- 4Université Grenoble Alpes, CNRS, IPAG, Grenoble, France
| | - C M Lisse
- 5Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - K D Runyon
- 5Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - J T Keane
- 6California Institute of Technology, Pasadena, California, USA
| | - R A Beyer
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - M E Summers
- 7Department of Physics and Astronomy, George Mason University, Fairfax, Virginia, USA
| | - F Scipioni
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - S A Stern
- 8Southwest Research Institute, Boulder, Colorado, USA
| | - C M Dalle Ore
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - C B Olkin
- 8Southwest Research Institute, Boulder, Colorado, USA
| | - L A Young
- 8Southwest Research Institute, Boulder, Colorado, USA
| | - K Ennico
- 1NASA Ames Research Center, Moffett Field, California, USA
| | - H A Weaver
- 5Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - V J Bray
- 9Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Bekaert DV, Marrocchi Y, Meshik A, Remusat L, Marty B. Primordial heavy noble gases in the pristine Paris carbonaceous chondrite. METEORITICS & PLANETARY SCIENCE 2019; 54:395-414. [PMID: 30828243 PMCID: PMC6378587 DOI: 10.1111/maps.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al. 2018). Here, we aim to evaluate the contribution of outer solar system (cometary-like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high-precision Xe isotopic measurements within bulk CM 2.9 and CM 2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (IOM). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary-like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials. CM 2.7 fragments have lower Ar/Xe relative to more pristine CM 2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in CM 2.7 and CM 2.9 areas (Vinogradoff et al. 2017). Xenon contents in the IOM are larger than previously published data of Xe in chondritic IOM, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.
Collapse
Affiliation(s)
- David V. Bekaert
- Centre de Recherches Pétrographiques et GéochimiquesCRPG‐CNRSUniversité de LorraineUMR 735815 rue Notre Dame des Pauvres, BP 2054501Vandoeuvre‐lès‐NancyFrance
| | - Yves Marrocchi
- Centre de Recherches Pétrographiques et GéochimiquesCRPG‐CNRSUniversité de LorraineUMR 735815 rue Notre Dame des Pauvres, BP 2054501Vandoeuvre‐lès‐NancyFrance
| | - Alex Meshik
- Department of PhysicsWashington University1 Brookings DriveSaint LouisMissouri63130USA
| | - Laurent Remusat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)UMR CNRS 7590 ‐ SorbonneUniversités ‐ UPMC ‐ IRD ‐ Museum National d'Histoire Naturelle57 rue Cuvier, Case 5275231Paris Cedex 5France
| | - Bernard Marty
- Centre de Recherches Pétrographiques et GéochimiquesCRPG‐CNRSUniversité de LorraineUMR 735815 rue Notre Dame des Pauvres, BP 2054501Vandoeuvre‐lès‐NancyFrance
| |
Collapse
|
28
|
Simkus DN, Aponte JC, Hilts RW, Elsila JE, Herd CDK. Compound-Specific Carbon Isotope Compositions of Aldehydes and Ketones in the Murchison Meteorite. METEORITICS & PLANETARY SCIENCE 2019; 54:142-156. [PMID: 32440084 PMCID: PMC7241578 DOI: 10.1111/maps.13202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/23/2018] [Indexed: 05/25/2023]
Abstract
Compound-specific carbon isotope analysis (δ13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Strecker-cyanohydrin synthesis in the early solar system. Previous δ13C investigations have targeted α-amino acid and α-hydroxy acid Strecker products and reactant HCN; however, δ13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification and δ13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde and acetone, were detected in the sample. δ13C values, ranging from -10.0‰ to +66.4‰, were more 13C-depleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13C-depleted values suggest that chemical processes taking place in asteroid parent bodies (e.g. oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between δ13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alteration-driven chemical pathways.
Collapse
Affiliation(s)
- Danielle N. Simkus
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
- Current affiliation: NASA Postdoctoral Program at NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - José C. Aponte
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Catholic University of America, Washington, D.C., USA
| | - Robert W. Hilts
- Department of Physical Sciences, MacEwan University, Edmonton, AB, Canada
| | - Jamie E. Elsila
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Christopher D. K. Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Nakashima S, Kebukawa Y, Kitadai N, Igisu M, Matsuoka N. Geochemistry and the Origin of Life: From Extraterrestrial Processes, Chemical Evolution on Earth, Fossilized Life's Records, to Natures of the Extant Life. Life (Basel) 2018; 8:E39. [PMID: 30241342 PMCID: PMC6315873 DOI: 10.3390/life8040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
In 2001, the first author (S.N.) led the publication of a book entitled "Geochemistry and the origin of life" in collaboration with Dr. Andre Brack aiming to figure out geo- and astro-chemical processes essential for the emergence of life. Since then, a great number of research progress has been achieved in the relevant topics from our group and others, ranging from the extraterrestrial inputs of life's building blocks, the chemical evolution on Earth with the aid of mineral catalysts, to the fossilized records of ancient microorganisms. Here, in addition to summarizing these findings for the origin and early evolution of life, we propose a new hypothesis for the generation and co-evolution of photosynthesis with the redox and photochemical conditions on the Earth's surface. Besides these bottom-up approaches, we introduce an experimental study on the role of water molecules in the life's function, focusing on the transition from live, dormant, and dead states through dehydration/hydration. Further spectroscopic studies on the hydrogen bonding behaviors of water molecules in living cells will provide important clues to solve the complex nature of life.
Collapse
Affiliation(s)
- Satoru Nakashima
- Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
- Undergraduate School of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Yoko Kebukawa
- Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Motoko Igisu
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan.
| | - Natsuki Matsuoka
- Undergraduate School of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
30
|
Pietrucci F, Aponte JC, Starr R, Pérez-Villa A, Elsila JE, Dworkin JP, Saitta AM. Hydrothermal Decomposition of Amino Acids and Origins of Prebiotic Meteoritic Organic Compounds. ACS EARTH & SPACE CHEMISTRY 2018; 2:588-598. [PMID: 32637854 PMCID: PMC7340093 DOI: 10.1021/acsearthspacechem.8b00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The organic compounds found in carbonaceous chondrite meteorites provide insight into primordial solar system chemistry. Evaluating the formation and decomposition mechanisms of meteoritic amino acids may aid our understanding of the origins of life and homochirality on Earth. The amino acid glycine is widespread in meteorites and other extraterrestrial environments; other amino acids, such as isovaline, are found with enantiomeric excesses in some meteorites. The relationship between meteoritic amino acids and other compounds with similar molecular structures, such as aliphatic monoamines and monocarboxylic acids is unclear; experimental results evaluating the decomposition of amino acids have produced inconclusive results about the preferred pathways, reaction intermediates, and if the conditions applied may be compatible with those occurring inside meteoritic parent bodies. In this work, we performed extensive tandem metadynamics, umbrella sampling, and committor analysis to simulate the neutral mild hydrothermal decomposition mechanisms of glycine and isovaline and put them into context for the origins of meteoritic organic compounds. Our ab initio simulations aimed to determine free energy profiles and decomposition pathways for glycine and isovaline. We found that under our modeled conditions, methylammonium, glycolic acid, and sec-butylamine are the most likely decomposition products. These results suggest that meteoritic aliphatic monocarboxylic acids are not produced from decomposition of meteoritic amino acids. Our results also indicate that the decomposition of L-isovaline prefers an enantioselective pathway resulting in the production of (S)-sec-butylamine.
Collapse
Affiliation(s)
- Fabio Pietrucci
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France
| | - José C. Aponte
- The Goddard Center for Astrobiology and Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, United States of America
- Department of Chemistry, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC 20064, United States of America
- To whom correspondence may be addressed. (tel.: +1.301.614.6916) or (tel.: +33.01.4427.2244)
| | - Richard Starr
- The Goddard Center for Astrobiology and Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, United States of America
- Physics Department, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC 20064, United States of America
| | - Andrea Pérez-Villa
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France
| | - Jamie E. Elsila
- The Goddard Center for Astrobiology and Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, United States of America
| | - Jason P. Dworkin
- The Goddard Center for Astrobiology and Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, United States of America
| | - A. Marco Saitta
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France
- To whom correspondence may be addressed. (tel.: +1.301.614.6916) or (tel.: +33.01.4427.2244)
| |
Collapse
|
31
|
Chan QHS, Zolensky ME, Kebukawa Y, Fries M, Ito M, Steele A, Rahman Z, Nakato A, Kilcoyne ALD, Suga H, Takahashi Y, Takeichi Y, Mase K. Organic matter in extraterrestrial water-bearing salt crystals. SCIENCE ADVANCES 2018; 4:eaao3521. [PMID: 29349297 PMCID: PMC5770164 DOI: 10.1126/sciadv.aao3521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/08/2017] [Indexed: 05/31/2023]
Abstract
Direct evidence of complex prebiotic chemistry from a water-rich world in the outer solar system is provided by the 4.5-billion-year-old halite crystals hosted in the Zag and Monahans (1998) meteorites. This study offers the first comprehensive organic analysis of the soluble and insoluble organic compounds found in the millimeter-sized halite crystals containing brine inclusions and sheds light on the nature and activity of aqueous fluids on a primitive parent body. Associated with these trapped brines are organic compounds exhibiting wide chemical variations representing organic precursors, intermediates, and reaction products that make up life's precursor molecules such as amino acids. The organic compounds also contain a mixture of C-, O-, and N-bearing macromolecular carbon materials exhibiting a wide range of structural order, as well as aromatic, ketone, imine, and/or imidazole compounds. The enrichment in 15N is comparable to the organic matter in pristine Renazzo-type carbonaceous chondrites, which reflects the sources of interstellar 15N, such as ammonia and amino acids. The amino acid content of the Zag halite deviates from the meteorite matrix, supporting an exogenic origin of the halite, and therefore, the Zag meteorite contains organics synthesized on two distinct parent bodies. Our study suggests that the asteroidal parent body where the halite precipitated, potentially asteroid 1 Ceres, shows evidence for a complex combination of biologically and prebiologically relevant molecules.
Collapse
Affiliation(s)
- Queenie H. S. Chan
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Michael E. Zolensky
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Yoko Kebukawa
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan
| | - Marc Fries
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 200 Monobe Otsu, Nankoku, Kochi 783-8502, Japan
| | - Andrew Steele
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, DC 20015, USA
| | - Zia Rahman
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Aiko Nakato
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - A. L. David Kilcoyne
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hiroki Suga
- Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuo Takeichi
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801, Japan
| | - Kazuhiko Mase
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801, Japan
| |
Collapse
|
32
|
Alonso ER, Kolesniková L, Alonso JL. Laser ablated hydantoin: A high resolution rotational study. J Chem Phys 2017; 147:124312. [PMID: 28964016 DOI: 10.1063/1.4994799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.
Collapse
Affiliation(s)
- Elena R Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Lucie Kolesniková
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - José L Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|