1
|
Ireland D, Rabeler C, Rao S, Richardson RJ, Collins EMS. Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians. PLoS One 2025; 20:e0315394. [PMID: 39883642 PMCID: PMC11781733 DOI: 10.1371/journal.pone.0315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mental illnesses put a tremendous burden on afflicted individuals and society. Identification of novel drugs to treat such conditions is intrinsically challenging due to the complexity of neuropsychiatric diseases and the need for a systems-level understanding that goes beyond single molecule-target interactions. Thus far, drug discovery approaches focused on target-based in silico or in vitro high-throughput screening (HTS) have had limited success because they cannot capture pathway interactions or predict how a compound will affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mammalian studies are too time-consuming and cost-prohibitive for the early stages of drug discovery. Behavioral medium-throughput screening (MTS) in small organisms promises to address this need and complement in silico and in vitro HTS to improve the discovery of novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater planarian Dugesia japonica-an invertebrate system used for neurotoxicant testing-to evaluate the extent to which complementary insight could be gained from the two data streams. In this pilot study, our goal was to classify 19 neuroactive compounds into their functional categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was performed with the same computational methods, using either physicochemical descriptors or planarian behavioral profiling. As it was not obvious a priori which classification method was most suited to this task, we compared the performance of four classification approaches. We used principal coordinate analysis or uniform manifold approximation and projection, each coupled with linear discriminant analysis, and two types of machine learning models-artificial neural net ensembles and support vector machines. Classification based on physicochemical properties had comparable accuracy to classification based on planarian profiling, especially with the machine learning models that all had accuracies of 90-100%. Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus yielding additional information compared to cheminformatics. Given that planarian behavioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing and requires zero a priori knowledge about a chemical, it is a promising experimental system to complement in silico cheminformatics to identify new drug candidates.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Sagar Rao
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Saad LO, Cooke TF, Atabay KD, Reddien PW, Brown FD. Reduced adult stem cell fate specification led to eye reduction in cave planarians. Nat Commun 2025; 16:304. [PMID: 39746937 PMCID: PMC11696554 DOI: 10.1038/s41467-024-54478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025] Open
Abstract
Eye loss occurs convergently in numerous animal phyla as an adaptation to dark environments. We investigate the cave planarian Girardia multidiverticulata (Gm), a representative species of the Spiralian clade, to study mechanisms of eye loss. We found that Gm, which was previously described as an eyeless species, retains rudimentary and functional eyes. Eyes are maintained in homeostasis and regenerated in adult planarians by stem cells, called neoblasts, through their fate specification to eye progenitors. The reduced number of eye cells in cave planarians is associated with a decreased rate of stem cell fate specification to eye progenitors during homeostasis and regeneration. Conversely, the homeostatic formation of new cells from stem cell-derived progenitors for other tissues, including for neurons, pharynx, and epidermis, is comparable between cave and surface species. These findings reveal a mode of evolutionary trait loss, with change in rate of fate specification in adult stem cells leading to tissue size reduction.
Collapse
Affiliation(s)
- Luiza O Saad
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas F Cooke
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kutay D Atabay
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Wyss LS, Bray SR, Wang B. Neuropeptide-mediated temporal sensory filtering in a primordial nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628859. [PMID: 39764011 PMCID: PMC11702643 DOI: 10.1101/2024.12.17.628859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Sensory filtering - prioritizing relevant stimuli while ignoring irrelevant ones - is crucial for animals to adapt and survive in complex environments. While this phenomenon has been primarily studied in organisms with complex nervous systems, it remains unclear whether simpler organisms also possess such capabilities. Here, we studied temporal information processing in Schmidtea mediterranea, a freshwater planarian flatworm with a primitive nervous system. Using long-term behavioral imaging and oscillatory ultraviolet (UV) light stimulations with rhythms matching the timescale of the animal's short-term memory (~minutes), we observed that planarians initially ignored rhythmic oscillations in UV intensity but eventually began tracking them after several cycles, demonstrating sensory filtering. We identified two neuropeptides, knockdown of which eliminated the initial ignoring phase and led to immediate stimulus-tracking, suggesting that these neuropeptides mediate an active sensory gating mechanism preventing response to transient fluctuations in stimuli. Notably, when UV stimulation was coupled with synchronous visible light oscillations, the planarians tracked the combined signals immediately, indicating that coherence across sensory modalities can override the initial gating. Our findings demonstrate that even simple nervous systems can filter temporal information and that this mechanism is mediated by neuropeptides. Unlike classical fast-acting small-molecule neurotransmitters, neuropeptides provide a slower, sustained, and global form of modulation that allows for more sophisticated control of sensory processing. Significance statement We show that simple nervous systems can use specific neuropeptides to achieve sensory filtering, a behavior previously thought to require complex brain architecture. This neuropeptide-mediated sensory gating mechanism reveals a fundamental role for neuropeptides in temporal information processing, offering insights into the mechanistic and evolutionary origins of attention-like behaviors.
Collapse
Affiliation(s)
| | | | - Bo Wang
- Department of Bioengineering, Stanford University
| |
Collapse
|
4
|
Mukundan N, Hariharan N, Sasidharan V, Lakshmanan V, Palakodeti D, Jamora C. Poly (A) binding protein 2 is critical for stem cell differentiation during regeneration in the planarian Schmidtea mediterranea. Front Cell Dev Biol 2024; 12:1433142. [PMID: 39376632 PMCID: PMC11456742 DOI: 10.3389/fcell.2024.1433142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
Post-transcriptional regulation has emerged as a key mechanism for regulating stem cell renewal and differentiation, which is essential for understanding tissue regeneration and homeostasis. Poly(A)-binding proteins are a family of RNA-binding proteins that play a vital role in post-transcriptional regulation by controlling mRNA stability and protein synthesis. The involvement of poly(A) binding proteins in a wide range of cellular functions is increasingly being investigated. In this study, we used the regenerative model planarian organism Schmidtea mediterranea to demonstrate the critical role of poly(A)-binding protein 2 (PABP2) in regulating neoblast maintenance and differentiation. A deficit in PABP2 blocks the transition of neoblasts toward immediate early progenitors, leading to an enhanced pool of non-committed neoblasts and a decreased progenitor population. This is reflected in variations in the transcriptome profile, providing evidence of downregulation in multiple lineages. Thus, an insufficiency of PABP2 resulted in defective formation and organization of tissue, leading to abnormal regeneration. Our study reveals the essential role of PABP2 in regulating genes that mediate stem cell commitment to early progenitors during tissue regeneration.
Collapse
Affiliation(s)
- Namita Mukundan
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nivedita Hariharan
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | - Vairavan Lakshmanan
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Colin Jamora
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- Department of Life Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Bray SR, Wyss LS, Chai C, Lozada ME, Wang B. Adaptive robustness through incoherent signaling mechanisms in a regenerative brain. Cell Rep 2024; 43:114580. [PMID: 39133614 DOI: 10.1016/j.celrep.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Animal behavior emerges from collective dynamics of neurons, making it vulnerable to damage. Paradoxically, many organisms exhibit a remarkable ability to maintain significant behavior even after large-scale neural injury. Molecular underpinnings of this extreme robustness remain largely unknown. Here, we develop a quantitative pipeline to measure long-lasting latent states in planarian flatworm behaviors during whole-brain regeneration. By combining >20,000 animal trials with neural network modeling, we show that long-range volumetric peptidergic signals allow the planarian to rapidly restore coarse behavior output after large perturbations to the nervous system, while slow restoration of small-molecule neuromodulator functions refines precision. This relies on the different time and length scales of neuropeptide and small-molecule transmission to generate incoherent patterns of neural activity that competitively regulate behavior. Controlling behavior through opposing communication mechanisms creates a more robust system than either alone and may serve as a generalizable approach for constructing robust neural networks.
Collapse
Affiliation(s)
- Samuel R Bray
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Livia S Wyss
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Maria E Lozada
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33124, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Benita O, Nesher N, Shomrat T. Neurophysiological measurements of planarian brain activity: a unique model for neuroscience research. Biol Open 2024; 13:bio060480. [PMID: 38979914 PMCID: PMC11391828 DOI: 10.1242/bio.060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Planarians are well-known model organisms for regeneration and developmental biology research due to their remarkable regenerative capacity. Here, we aim to advocate for the use of planaria as a valuable model for neurobiology, as well. Planarians have most of the major qualities of more developed organisms, including a primal brain. These traits combined with their exceptional regeneration capabilities, allow neurobiological experiments not possible in any other model organism, as we demonstrate by electrophysiological recording from planaria with two heads that control a shared body. To facilitate planarian neuroscience research, we developed an extracellular multi-unit recording procedure for the planarians fragile brain (Dugesia japonica). We created a semi-intact preparation restrained with fine dissection pins, enabling hours of reliable recording, via a suction electrode. Here, we demonstrate the feasibility and potential of planarian neurophysiological research by characterizing the neuronal activity during simple learning processes and responses to various stimuli. In addition, we examined the use of linalool as anesthetic agent to allows recordings from an intact, large worm and for fine electrophysiological approaches such as intracellular recording. The demonstrated ability for neurophysiological measurements, along with the inherent advantages of planarians, promotes this exceptional model organism for neuroscience research.
Collapse
Affiliation(s)
- Orel Benita
- Department of Neurobiology, Hebrew University, Jerusalem 9190401, Israel
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 4029700, Israel
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 4029700, Israel
| |
Collapse
|
7
|
Lee JR, Boothe T, Mauksch C, Thommen A, Rink JC. Epidermal turnover in the planarian Schmidtea mediterranea involves basal cell extrusion and intestinal digestion. Cell Rep 2024; 43:114305. [PMID: 38906148 DOI: 10.1016/j.celrep.2024.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 06/23/2024] Open
Abstract
Planarian flatworms undergo continuous internal turnover, wherein old cells are replaced by the division progeny of adult pluripotent stem cells (neoblasts). How cell turnover is carried out at the organismal level remains an intriguing question in planarians and other systems. While previous studies have predominantly focused on neoblast proliferation, little is known about the processes that mediate cell loss during tissue homeostasis. Here, we use the planarian epidermis as a model to study the mechanisms of cell removal. We established a covalent dye-labeling assay and image analysis pipeline to quantify the cell turnover rate in the planarian epidermis. Our findings indicate that the ventral epidermis is highly dynamic and epidermal cells undergo internalization via basal extrusion, followed by a relocation toward the intestine and ultimately digestion by intestinal phagocytes. Overall, our study reveals a complex homeostatic process of cell clearance that may generally allow planarians to catabolize their own cells.
Collapse
Affiliation(s)
- Jun-Ru Lee
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Tobias Boothe
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Clemens Mauksch
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Albert Thommen
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
8
|
Omond SET, Lesku JA. Why study sleep in flatworms? J Comp Physiol B 2024; 194:233-239. [PMID: 36899149 PMCID: PMC11233290 DOI: 10.1007/s00360-023-01480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, Australia.
| | - John A Lesku
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, Australia.
| |
Collapse
|
9
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Qian R, Yan Y, Pei Y, Zhang Y, Chi Y, Chen Y, Hao K, Xu Z, Yang G, Shao Z, Wang Y, Li X, Lu C, Zhang X, Chen K, Zhang W, Wang B, Ying Z, Huang K. Spatial localization ability of planarians identified through a light maze paradigm. PLoS One 2023; 18:e0288118. [PMID: 37467232 DOI: 10.1371/journal.pone.0288118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Spatial localization ability is crucial for free-living animals to fit the environment. As shown by previous studies, planarians can be conditioned to discriminate directions. However, due to their simplicity and primitiveness, they had never been considered to have true spatial localization ability to retrieve locations of objects and places in the environment. Here, we introduce a light maze training paradigm to demonstrate that a planarian worm can navigate to a former recognized place from the start point, even if the worm is transferred into a newly produced maze. This finding identifies the spatial localization ability of planarians for the first time, which provides clues for the evolution of spatial learning. Since the planarians have a primitive brain with simple structures, this paradigm can also provide a simplified model for a detailed investigation of spatial learning.
Collapse
Affiliation(s)
- Renzhi Qian
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuan Yan
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yu Pei
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yixuan Zhang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuanwei Chi
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuxuan Chen
- College of Biological Science, China Agricultural University, Beijing, China
| | - Kun Hao
- College of Biological Science, China Agricultural University, Beijing, China
| | - Zhen Xu
- College of Biological Science, China Agricultural University, Beijing, China
| | - Guang Yang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Zilun Shao
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuhao Wang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Xinran Li
- College of Biological Science, China Agricultural University, Beijing, China
| | - Chenxu Lu
- College of Biological Science, China Agricultural University, Beijing, China
| | - Xuan Zhang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Beijing, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Baoqing Wang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Zhengxin Ying
- College of Biological Science, China Agricultural University, Beijing, China
| | - Kaiyuan Huang
- College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Halkjær Wiisbye S, Garm A. Unique horizontal gaze control in the box jellyfish, Tripedalia cystophora. Vision Res 2023; 203:108159. [PMID: 36516604 DOI: 10.1016/j.visres.2022.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
All known cubozoans, box jellyfish, have a similar visual system. They possess four sensory structures called rhopalia, which carry-six eyes each. Two of these six eyes are true image-forming camera type eyes in several ways similar to vertebrate eyes. The rhopalia hang by a thin flexible stalk and in the distal end, there is a high-density crystal. In an earlier study of the Caribbean species Tripedalia cystophora, we showed that the crystals act as weights ensuring that the rhopalia are always upright no matter the orientation of the medusa and the vertical part of the visual field of the eyes thus kept relatively constant. Here we have examined the horizontal part of the visual field under different experimental conditions including different visual environments. We find that the horizontal gaze direction is largely controlled by the anatomy of the rhopalium and rhopalial stalk, similar to what has previously been shown for the vertical gaze direction. In a vertically oriented medusa, the rhopalia are kept with a 90° angle between them with the lower lens eyes (LLE) pointing inwards. This 90° shift is kept in horizontally swimming medusa, resulting in the left LLE gazing right, the right gazing left, the bottom gazing orally (backwards compared to swimming direction), and the top LLE gazing aborally (forwards compared to swimming direction). The light environment was manipulated to test if the visual input influences this seemingly strict horizontal gaze direction but even in complete darkness there is tight mechanistic control.
Collapse
Affiliation(s)
| | - Anders Garm
- Marine Biological Section, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Bray SR, Wyss LS, Chai C, Lozada ME, Wang B. Adaptive robustness through incoherent signaling mechanisms in a regenerative brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.523817. [PMID: 36711454 PMCID: PMC9882340 DOI: 10.1101/2023.01.20.523817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Animal behavior emerges from collective dynamics of interconnected neurons, making it vulnerable to connectome damage. Paradoxically, many organisms maintain significant behavioral output after large-scale neural injury. Molecular underpinnings of this extreme robustness remain largely unknown. Here, we develop a quantitative behavioral analysis pipeline to measure previously uncharacterized long-lasting latent memory states in planarian flatworms during whole-brain regeneration. By combining >20,000 animal trials with neural population dynamic modeling, we show that long-range volumetric peptidergic signals allow the planarian to rapidly reestablish latent states and restore coarse behavior after large structural perturbations to the nervous system, while small-molecule neuromodulators gradually refine the precision. The different time and length scales of neuropeptide and small-molecule transmission generate incoherent patterns of neural activity which competitively regulate behavior and memory. Controlling behavior through opposing communication mechanisms creates a more robust system than either alone and may serve as a generic approach to construct robust neural networks.
Collapse
Affiliation(s)
- Samuel R. Bray
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Livia S. Wyss
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Maria E. Lozada
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Morales-Curiel LF, Gonzalez AC, Castro-Olvera G, Lin LCL, El-Quessny M, Porta-de-la-Riva M, Severino J, Morera LB, Venturini V, Ruprecht V, Ramallo D, Loza-Alvarez P, Krieg M. Volumetric imaging of fast cellular dynamics with deep learning enhanced bioluminescence microscopy. Commun Biol 2022; 5:1330. [PMID: 36463346 PMCID: PMC9719505 DOI: 10.1038/s42003-022-04292-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because it does not depend on external illumination, and consequently does neither produce spurious background autofluorescence, nor perturb intrinsically photosensitive processes in living cells and animals. The low photon emission of known luciferases, however, demands long exposure times that are prohibitive for imaging fast biological dynamics. To increase the versatility of bioluminescence microscopy, we present an improved low-light microscope in combination with deep learning methods to image extremely photon-starved samples enabling subsecond exposures for timelapse and volumetric imaging. We apply our method to image subcellular dynamics in mouse embryonic stem cells, epithelial morphology during zebrafish development, and DAF-16 FoxO transcription factor shuttling from the cytoplasm to the nucleus under external stress. Finally, we concatenate neural networks for denoising and light-field deconvolution to resolve intracellular calcium dynamics in three dimensions of freely moving Caenorhabditis elegans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacqueline Severino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura Battle Morera
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valeria Venturini
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Verena Ruprecht
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Diego Ramallo
- ICFO, Institut de Ciencies Fotòniques, Castelldefels, Spain
| | | | - Michael Krieg
- ICFO, Institut de Ciencies Fotòniques, Castelldefels, Spain.
| |
Collapse
|
14
|
Ireland D, Zhang S, Bochenek V, Hsieh JH, Rabeler C, Meyer Z, Collins EMS. Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians. FRONTIERS IN TOXICOLOGY 2022; 4:948455. [PMID: 36267428 PMCID: PMC9578561 DOI: 10.3389/ftox.2022.948455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022] Open
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two "mechanistic control compounds" known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Siqi Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Veronica Bochenek
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Zane Meyer
- Department of Engineering, Swarthmore College, Swarthmore, PA, United States
- Department of Computer Science, Swarthmore College, Swarthmore, PA, United States
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Sabry Z, Wang R, Jahromi A, Rabeler C, Kristan WB, Collins EMS. Head removal enhances planarian electrotaxis. J Exp Biol 2022; 225:276204. [PMID: 35924486 PMCID: PMC9482365 DOI: 10.1242/jeb.243972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Certain animal species utilize electric fields for communication, hunting and spatial orientation. Freshwater planarians move toward the cathode in a static electric field (cathodic electrotaxis). This planarian behavior was first described by Raymond Pearl more than a century ago. However, planarian electrotaxis has received little attention since, and the underlying mechanisms and evolutionary significance remain unknown. To close this knowledge gap, we developed an apparatus and scoring metrics for automated quantitative and mechanistic studies of planarian behavior upon exposure to a static electric field. Using this automated setup, we characterized electrotaxis in the planarian Dugesia japonica and found that this species responds to voltage instead of current, in contrast to results from previous studies using other planarian species. Surprisingly, we found differences in electrotaxis ability between small (shorter) and large (longer) planarians. To determine the cause of these differences, we took advantage of the regenerative abilities of planarians and compared electrotaxis in head, tail and trunk fragments of various lengths. We found that tail and trunk fragments electrotaxed, whereas head fragments did not, regardless of size. Based on these data, we hypothesized that signals from the head may interfere with electrotaxis when the head area/body area reached a critical threshold. In support of this hypothesis, we found that (1) smaller intact planarians that cannot electrotax have a relatively larger head-to-body-ratio than large planarians that can electrotax, and (2) the electrotaxis behavior of cut head fragments was negatively correlated with the head-to-body ratio of the fragments. Moreover, we could restore cathodic electrotaxis in head fragments via decapitation, directly demonstrating inhibition of electrotaxis by the head. Summary: A new method for quantitative studies of planarian electrotaxis shows that Dugesia japonica move toward the cathode. This behavior is enhanced by removal of the head.
Collapse
Affiliation(s)
- Ziad Sabry
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Rui Wang
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA.,Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Aryo Jahromi
- Department of Mechanical Engineering, University of California San Diego, La Jolla, California, USA
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - William B Kristan
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA.,Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania, USA.,Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Sarkar SR, Dubey VK, Jahagirdar A, Lakshmanan V, Haroon MM, Sowndarya S, Sowdhamini R, Palakodeti D. DDX24 is required for muscle fiber organization and the suppression of wound-induced Wnt activity necessary for pole re-establishment during planarian regeneration. Dev Biol 2022; 488:11-29. [PMID: 35523320 DOI: 10.1016/j.ydbio.2022.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.
Collapse
Affiliation(s)
- Souradeep R Sarkar
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India; Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vinay Kumar Dubey
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anusha Jahagirdar
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vairavan Lakshmanan
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Mohamed Mohamed Haroon
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; SASTRA University, Thanjavur, 613401, India
| | - Sai Sowndarya
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India.
| |
Collapse
|
17
|
Yaguchi S, Taniguchi Y, Suzuki H, Kamata M, Yaguchi J. Planktonic sea urchin larvae change their swimming direction in response to strong photoirradiation. PLoS Genet 2022; 18:e1010033. [PMID: 35143488 PMCID: PMC8830728 DOI: 10.1371/journal.pgen.1010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/12/2022] [Indexed: 01/19/2023] Open
Abstract
To survive, organisms need to precisely respond to various environmental factors, such as light and gravity. Among these, light is so important for most life on Earth that light-response systems have become extraordinarily developed during evolution, especially in multicellular animals. A combination of photoreceptors, nervous system components, and effectors allows these animals to respond to light stimuli. In most macroscopic animals, muscles function as effectors responding to light, and in some microscopic aquatic animals, cilia play a role. It is likely that the cilia-based response was the first to develop and that it has been substituted by the muscle-based response along with increases in body size. However, although the function of muscle appears prominent, it is poorly understood whether ciliary responses to light are present and/or functional, especially in deuterostomes, because it is possible that these responses are too subtle to be observed, unlike muscle responses. Here, we show that planktonic sea urchin larvae reverse their swimming direction due to the inhibitory effect of light on the cholinergic neuron signaling>forward swimming pathway. We found that strong photoirradiation of larvae that stay on the surface of seawater immediately drives the larvae away from the surface due to backward swimming. When Opsin2, which is expressed in mesenchymal cells in larval arms, is knocked down, the larvae do not show backward swimming under photoirradiation. Although Opsin2-expressing cells are not neuronal cells, immunohistochemical analysis revealed that they directly attach to cholinergic neurons, which are thought to regulate forward swimming. These data indicate that light, through Opsin2, inhibits the activity of cholinergic signaling, which normally promotes larval forward swimming, and that the light-dependent ciliary response is present in deuterostomes. These findings shed light on how light-responsive tissues/organelles have been conserved and diversified during evolution. The importance of light for organisms on Earth has led to the extraordinary development of sophisticated light-response systems during evolution. It is likely that light-dependent ciliary responses were initially acquired in unicellular and small multicellular organisms, but the pathway is poorly understood in deuterostomes, whose behavior mostly depends on responses involving muscle. Therefore, it is unclear whether ciliary responses to light are present and/or functional in deuterostomes since these responses may be too subtle for observation, unlike muscle responses. This raises the questions of how light-response systems were established and how they diversified during deuterostome evolution. Here, we provide clear evidence that planktonic larvae of sea urchin species, which belong to the deuterostome group, display backward swimming when light inhibits cholinergic signal-dependent forward swimming.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
- PRESTO, JST, Kawaguchi, Japan
- * E-mail:
| | - Yuri Taniguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Haruka Suzuki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Mai Kamata
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| |
Collapse
|
18
|
Almazan EMP, Ryan JF, Rouhana L. Regeneration of Planarian Auricles and Reestablishment of Chemotactic Ability. Front Cell Dev Biol 2021; 9:777951. [PMID: 34901022 PMCID: PMC8662385 DOI: 10.3389/fcell.2021.777951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of chemical stimuli is crucial for living systems and also contributes to quality of life in humans. Since loss of olfaction becomes more prevalent with aging, longer life expectancies have fueled interest in understanding the molecular mechanisms behind the development and maintenance of chemical sensing. Planarian flatworms possess an unsurpassed ability for stem cell-driven regeneration that allows them to restore any damaged or removed part of their bodies. This includes anteriorly-positioned lateral flaps known as auricles, which have long been thought to play a central role in chemotaxis. The contribution of auricles to the detection of positive chemical stimuli was tested in this study using Girardia dorotocephala, a North American planarian species known for its morphologically prominent auricles. Behavioral experiments staged under laboratory conditions revealed that removal of auricles by amputation leads to a significant decrease in the ability of planarians to find food. However, full chemotactic capacity is observed as early as 2 days post-amputation, which is days prior from restoration of auricle morphology, but correlative with accumulation of ciliated cells in the position of auricle regeneration. Planarians subjected to x-ray irradiation prior to auricle amputation were unable to restore auricle morphology, but were still able to restore chemotactic capacity. These results indicate that although regeneration of auricle morphology requires stem cells, some restoration of chemotactic ability can still be achieved in the absence of normal auricle morphology, corroborating with the initial observation that chemotactic success is reestablished 2-days post-amputation in our assays. Transcriptome profiles of excised auricles were obtained to facilitate molecular characterization of these structures, as well as the identification of genes that contribute to chemotaxis and auricle development. A significant overlap was found between genes with preferential expression in auricles of G. dorotocephala and genes with reduced expression upon SoxB1 knockdown in Schmidtea mediterranea, suggesting that SoxB1 has a conserved role in regulating auricle development and function. Models that distinguish between possible contributions to chemotactic behavior obtained from cellular composition, as compared to anatomical morphology of the auricles, are discussed.
Collapse
Affiliation(s)
| | - Joseph F. Ryan
- Whitney Laboratory of Marine Biosciences, University of Florida, St. Augustine, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, Dayton, OH, United States
| |
Collapse
|
19
|
Brodrick E, Jékely G. Flatworm behaviour: Pieces behaving like wholes. Curr Biol 2021; 31:R1472-R1474. [PMID: 34813750 DOI: 10.1016/j.cub.2021.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Planarians can regenerate from severed body parts. A new study shows that very soon after amputation and before regeneration can happen each piece behaves as a whole organism with distinct responses between head, middle, and tail regions.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
20
|
Le D, Sabry Z, Chandra A, Kristan WB, Collins EMS, Kristan WB. Planarian fragments behave as whole animals. Curr Biol 2021; 31:5111-5117.e4. [PMID: 34624209 DOI: 10.1016/j.cub.2021.09.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Behavioral responses of freshwater planarians have been studied for over a century.1 In recent decades, behavior has been used as a readout to study planarian development and regeneration,2-6 wound healing,7,8 molecular evolution,4,9,10 neurotoxicology,11-13 and learning and memory.14-17The planarian nervous system is among the simplest of the bilaterally symmetric animals,18 with an anterior brain attached to two ventral nerve cords interconnected by multiple commissures. We found that, in response to mechanical and near-UV stimulation, head stimulation produces turning, tail stimulation produces contraction, and trunk stimulation produces midbody elongation in the planarian Dugesia japonica. When cut into two or three pieces, the anterior end of each headless piece switched its behavior to turning instead of elongation; i.e., it responded as though it were the head. In addition, posterior ends of the head and midbody pieces sometimes produced contraction instead of elongation. Thus, each severed piece acts like an intact animal, with each midbody region having nearly complete behavioral capabilities. These observations show that each midbody region reads the global state of the organism and adapts its response to incoming signals from the remaining tissue. Selective lateral incisions showed that the changes in behavior are not due to nonselective pain responses and that the ventral nerve cords and cross-connectives are responsible for coordinating local behaviors. Our findings highlight a fast functional reorganization of the planarian nervous system that complements the slower repairs provided by regeneration. This reorganization provides needed behavioral responses for survival as regeneration proceeds.
Collapse
Affiliation(s)
- Dylan Le
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ziad Sabry
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Aarav Chandra
- The Bishop's School, 7607 La Jolla Boulevard, La Jolla, CA 92037, USA
| | - William B Kristan
- Department of Biological Sciences, California State University San Marcos, 333 South Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Physics and Astronomy, 500 College Avenue, Swarthmore College, Swarthmore, PA 19081, USA; Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA, USA.
| | - William B Kristan
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Discovery of a body-wide photosensory array that matures in an adult-like animal and mediates eye-brain-independent movement and arousal. Proc Natl Acad Sci U S A 2021; 118:2021426118. [PMID: 33941643 DOI: 10.1073/pnas.2021426118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye-brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin-expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in "adult-like animals." Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.
Collapse
|
22
|
Martinez O, Sire S, Saunier A, Malgouyres JM, Fournier A, Vignet C. Behavioral responses of three freshwater planaria species to light, visual and olfactory stimuli: Setting the stage for further ecotoxicological studies. Behav Processes 2020; 183:104295. [PMID: 33383124 DOI: 10.1016/j.beproc.2020.104295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
Planarians are freshwater flatworms commonly used as environmental bioindicator due to their sensitivity of response and their ease of culturing in lab. Nevertheless, to date, very few studies describing their behavior have been led. This work aims to fill the literature gap by providing preliminary results through six behavioral challenges (locomotion, exploration, light stress, planarian light/dark test, shoaling and foraging) conducted with three different species Dugesia tigrina, Schmidtea mediterranea and Schmidtea polychroa. The behavioral responses of every species in each of these six assays were recorded and differences between species were highlighted, depending on the assays and conditions. Schmidtea polychroa is less active than the two others and had the highest light aversion. Reactions observed in response to diverse and realistic stimuli helped us to select the most suitable tests and choose the species that seem the most appropriate for future ecotoxicological and neurophysiological tests. Four tests - out of the six tested- seem reliable in order to standardize planarian behavioral tests.
Collapse
Affiliation(s)
- Odile Martinez
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Sacha Sire
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Saunier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Fournier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France.
| |
Collapse
|
23
|
Mori M, Narahashi M, Hayashi T, Ishida M, Kumagai N, Sato Y, Bagherzadeh R, Agata K, Inoue T. Calcium ions in the aquatic environment drive planarians to food. ZOOLOGICAL LETTERS 2019; 5:31. [PMID: 31720007 PMCID: PMC6836377 DOI: 10.1186/s40851-019-0147-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Even subtle changes in environmental factors can exert behavioral effects on creatures, which may alter interspecific interactions and eventually affect the ecosystem. However, how changes in environmental factors impact complex behaviors regulated by neural processes is largely unknown. The freshwater planarian Dugesia japonica, a free-living flatworm, displays distinct behavioral traits mediated by sensitive perception of environmental cues. Planarians are thus useful organisms for examining interactions between environmental changes and specific behaviors of animals. RESULTS Here we found that feeding behavior was suppressed when the concentration of ions in the breeding water was low, while other behaviors were unaffected, resulting in differences in population size. Notably, the decline in feeding behavior was reversed in an ion-concentration-dependent manner soon after the planarians were moved to ion-containing water, which suggests that ions in environmental water rapidly promote feeding behavior in planarians. Moreover, the concentration of ions in the environmental water affected the feeding behavior by modulating the sensitivity of the response to foods. Finally, we found that calcium ions in the aquatic environment were required for the feeding behavior, and exposure to higher levels of calcium ions enhanced the feeding behavior, showing that there was a good correlation between the concentration of calcium ions and the responsiveness of planarians to foods. CONCLUSIONS Environmental calcium ions are indispensable for and potentiate the activity level of the feeding behavior of planarians. Our findings suggest that the ions in the aquatic environment profoundly impact the growth and survival of aquatic animals via modulating their neural activities and behaviors.
Collapse
Affiliation(s)
- Masato Mori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Maria Narahashi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - Miyuki Ishida
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Nobuyoshi Kumagai
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Yuki Sato
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Reza Bagherzadeh
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Banihashem, Tehran, Iran
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
- National Institute for Basic Biology, National Institutes of Natural Science, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| |
Collapse
|
24
|
Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S, Rocha-Martins M, Segovia-Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J, Tomancak P, Royer L, Jug F, Myers EW. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 2018; 15:1090-1097. [PMID: 30478326 DOI: 10.1038/s41592-018-0216-7] [Citation(s) in RCA: 543] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.
Collapse
Affiliation(s)
- Martin Weigert
- Center for Systems Biology Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Uwe Schmidt
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tobias Boothe
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Alexandr Dibrov
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Akanksha Jain
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benjamin Wilhelm
- Center for Systems Biology Dresden, Dresden, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Coleman Broaddus
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Siân Culley
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Mauricio Rocha-Martins
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michele Solimena
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jochen Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Loic Royer
- Center for Systems Biology Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- CZ Biohub, San Francisco, CA, USA.
| | - Florian Jug
- Center for Systems Biology Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Eugene W Myers
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Computer Science, Technical University Dresden, Dresden, Germany
| |
Collapse
|
25
|
Effects of ethanol on negative phototaxis and motility in brown planarians (Dugesia tigrina). Neurosci Lett 2018; 685:102-108. [PMID: 30145368 DOI: 10.1016/j.neulet.2018.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 11/20/2022]
Abstract
The behavioral effects of ethanol in brown planarians were studied in four experiments. In the first two experiments, acute administrations of ethanol increased travel time in a dose-dependent fashion in individual planarians moving away from a light source. Orderly results were obtained using both within-subject and between-group designs. In a third experiment, ethanol dose was arranged by time rather than concentration. Ethanol increased travel time overall, but variability between subjects was considerable. In a final experiment, ethanol administration reduced motility and altered movement patterns in planarians in an open-field test. These experiments demonstrated that negative phototaxis by planarians may exhibit sufficient stability to allow for experimental determinations of dose-response curves utilizing both within-subject and between-subject designs.
Collapse
|
26
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|