1
|
Jacobs Z, Zavala EI, Li B, O'Gorman K, Shunkov MV, Kozlikin MB, Derevianko AP, Uliyanov VA, Goldberg P, Agadjanian AK, Vasiliev SK, Brink F, Peyrégne S, Slon V, Pääbo S, Kelso J, Meyer M, Roberts RG. Pleistocene chronology and history of hominins and fauna at Denisova Cave. Nat Commun 2025; 16:4738. [PMID: 40399313 PMCID: PMC12095498 DOI: 10.1038/s41467-025-60140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
Denisova Cave in southern Siberia is the only site known to have been occupied by Denisovans, Neanderthals and modern humans. The cave consists of three chambers (Main, East and South), with the archaeological assemblages and remains of hominins, fauna and flora recovered from Main and East Chambers being the most thoroughly investigated to date. Here we report the results of analyses of the Palaeolithic artefacts, faunal remains and hominin and mammalian mitochondrial (mt) DNA recovered from renewed excavations in South Chamber. We construct a calendar-year time scale for the stratified Pleistocene deposits from optical dating of the sediments. The timing of hominin occupation and major turnovers in the mtDNA of Denisovans and large mammals largely accords with the patterns detected in Main and East Chambers. Time gaps in those sequences are partly filled by the South Chamber data and the sediment DNA record of Denisovans after 80,000 years ago is more than doubled in size. We combine the sediment dating and DNA records for all three chambers to reveal the whole-of-cave history of this unique site and the climatic conditions experienced by hominins and fauna over the past 300,000 years, including potential changes in habitat suitability for Denisovans and Neanderthals.
Collapse
Affiliation(s)
- Zenobia Jacobs
- Centre for Archaeological Science, School of Science, University of Wollongong, Wollongong, NSW, Australia.
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia.
| | - Elena I Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Bo Li
- Centre for Archaeological Science, School of Science, University of Wollongong, Wollongong, NSW, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
| | - Kieran O'Gorman
- Centre for Archaeological Science, School of Science, University of Wollongong, Wollongong, NSW, Australia
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | | | - Paul Goldberg
- Centre for Archaeological Science, School of Science, University of Wollongong, Wollongong, NSW, Australia
- Institut für Naturwissenschaftliche Archäologie, Universität Tübingen, Tübingen, Germany
| | | | - Sergei K Vasiliev
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Frank Brink
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - Stéphane Peyrégne
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Viviane Slon
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, The Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, The Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Richard G Roberts
- Centre for Archaeological Science, School of Science, University of Wollongong, Wollongong, NSW, Australia.
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
2
|
Slimak L, Vimala T, Seguin-Orlando A, Metz L, Zanolli C, Joannes-Boyau R, Frouin M, Arnold LJ, Demuro M, Devièse T, Comeskey D, Buckley M, Camus H, Muth X, Lewis JE, Bocherens H, Yvorra P, Tenailleau C, Duployer B, Coqueugniot H, Dutour O, Higham T, Sikora M. Long genetic and social isolation in Neanderthals before their extinction. CELL GENOMICS 2024; 4:100593. [PMID: 39265525 PMCID: PMC11480857 DOI: 10.1016/j.xgen.2024.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/23/2023] [Accepted: 06/05/2024] [Indexed: 09/14/2024]
Abstract
Neanderthal genomes have been recovered from sites across Eurasia, painting an increasingly complex picture of their populations' structure that mostly indicates that late European Neanderthals belonged to a single metapopulation with no significant evidence of population structure. Here, we report the discovery of a late Neanderthal individual, nicknamed "Thorin," from Grotte Mandrin in Mediterranean France, and his genome. These dentognathic fossils, including a rare example of distomolars, are associated with a rich archeological record of Neanderthal final technological traditions in this region ∼50-42 thousand years ago. Thorin's genome reveals a relatively early divergence of ∼105 ka with other late Neanderthals. Thorin belonged to a population with a small group size that showed no genetic introgression with other known late European Neanderthals, revealing some 50 ka of genetic isolation of his lineage despite them living in neighboring regions. These results have important implications for resolving competing hypotheses about causes of the disappearance of the Neanderthals.
Collapse
Affiliation(s)
- Ludovic Slimak
- Centre d'Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Faculté de Santé, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France.
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Faculté de Santé, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France; Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Laure Metz
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l'Homme, BP 647, 5 rue du Château de l'Horloge, 13094 Aix-en-Provence Cedex 2, France; University of Connecticut, College of Liberal Arts and Sciences, 215 Glenbrook Road, U-4098, Storrs, CT 06269-4098, USA
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France
| | - Renaud Joannes-Boyau
- Geoarchaeology & Archaeometry Research Group (GARG), Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| | - Marine Frouin
- Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794-2100, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Lee J Arnold
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Martina Demuro
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Thibaut Devièse
- CEREGE, Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Technopôle de l'Arbois, Aix-en-Provence, France
| | - Daniel Comeskey
- Syft Technologies Ltd., 3 Craft Place, Middleton, PO Box 28 149, Christchurch 8242, New Zealand
| | - Michael Buckley
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Hubert Camus
- PROTEE-EXPERT, 4 rue des Aspholdèles, 34750 Villeneuve-lès-Maguelone, France
| | - Xavier Muth
- Get in Situ, 1091 Bourg-en-Lavaux, Switzerland
| | - Jason E Lewis
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA; Chronicle Heritage, 319 E Palm Lane, Phoenix, AZ 85004, USA
| | - Hervé Bocherens
- Fachbereich Geowissenschaften Forschungsbereich Paläobiologie - Biogeologie Senckenberg, Centre for Human Evolution and Palaeoenvironment (SHEP), Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Pascale Yvorra
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l'Homme, BP 647, 5 rue du Château de l'Horloge, 13094 Aix-en-Provence Cedex 2, France
| | - Christophe Tenailleau
- Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Benjamin Duployer
- Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Hélène Coqueugniot
- École Pratique des Hautes Études - Paris Sciences et Lettres University, 4-14 rue Ferrus, 75014 Paris, France; University of Bordeaux-Montaigne, CNRS, EPHE, Archéosciences, UMR 6034, 33607 Pessac, France
| | - Olivier Dutour
- École Pratique des Hautes Études - Paris Sciences et Lettres University, 4-14 rue Ferrus, 75014 Paris, France; University of Bordeaux-Montaigne, CNRS, EPHE, Archéosciences, UMR 6034, 33607 Pessac, France
| | - Thomas Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna 1090, Austria
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark.
| |
Collapse
|
3
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
4
|
Abrams G, Devièse T, Pirson S, De Groote I, Flas D, Jungels C, Jadin I, Cattelain P, Bonjean D, Mathys A, Semal P, Higham T, Di Modica K. Investigating the co-occurrence of Neanderthals and modern humans in Belgium through direct radiocarbon dating of bone implements. J Hum Evol 2024; 186:103471. [PMID: 38043357 DOI: 10.1016/j.jhevol.2023.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Affiliation(s)
- Grégory Abrams
- Department of Archaeology, Ghent University, B-9000, Gent, Belgium; Scientific Department, Espace Muséal d'Andenne, B-5300, Andenne, Belgium; Faculty of Archaeology, Archaeological Sciences, Bio-Archaeology, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Thibaut Devièse
- Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Aix-Marseille Université, CNRS, IRD, INRAE, BP80-13545, Aix-en-Provence, cedex 4, France.
| | - Stéphane Pirson
- Direction scientifique et technique, Agence wallonne du Patrimoine, B-5100, Namur, Belgium
| | - Isabelle De Groote
- Department of Archaeology, Ghent University, B-9000, Gent, Belgium; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Damien Flas
- Laboratoire Méditerranéen de Préhistoire Europe Afrique, Aix-Marseille University, CNRS, 13097, Aix-en-Provence, cedex 2, France; Department of Prehistory, University of Liège, B-4000, Liège, Belgium
| | - Cécile Jungels
- Scientific Department, Préhistomuseum, B-4400, Flémalle, Belgium; Les Chercheurs de la Wallonie, B-4400, Flémalle, Belgium
| | - Ivan Jadin
- Operational Direction Earth and History of Life, Quaternary Environments & Humans, Anthropology & Prehistory, Royal Belgium Institute of Natural Sciences, B-1000, Brussels, Belgium
| | - Pierre Cattelain
- Department of Prehistory, University of Liège, B-4000, Liège, Belgium; Cedarc-Musée du Malgré-Tout, B-5670, Belgium; Centre de Recherches en Archéologie et Patrimoine, Université Libre de Bruxelles, B-1150, Brussels, Belgium
| | - Dominique Bonjean
- Scientific Department, Espace Muséal d'Andenne, B-5300, Andenne, Belgium
| | - Aurore Mathys
- Biological Collection and Data Management, Royal Museum for Central Africa, B-3080, Tervuren, Belgium; Scientific Heritage Service, Royal Belgian Institute of Natural Sciences, B-1000, Brussels, Belgium; Art, Archaeology and Heritage Unit, University of Liège, B-4000, Liège, Belgium
| | - Patrick Semal
- Scientific Heritage Service, Royal Belgian Institute of Natural Sciences, B-1000, Brussels, Belgium
| | - Thomas Higham
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, A-1030, Vienna, Austria
| | - Kévin Di Modica
- Scientific Department, Espace Muséal d'Andenne, B-5300, Andenne, Belgium
| |
Collapse
|
5
|
Bacon AM, Bourgon N, Dufour E, Demeter F, Zanolli C, Westaway KE, Joannes-Boyau R, Duringer P, Ponche JL, Morley MW, Suzzoni E, Frangeul S, Boesch Q, Antoine PO, Boualaphane S, Sichanthongtip P, Sihanam D, Huong NTM, Tuan NA, Fiorillo D, Tombret O, Patole-Edoumba E, Zachwieja A, Luangkhoth T, Souksavatdy V, Dunn TE, Shackelford L, Hublin JJ. Palaeoenvironments and hominin evolutionary dynamics in southeast Asia. Sci Rep 2023; 13:16165. [PMID: 37758744 PMCID: PMC10533506 DOI: 10.1038/s41598-023-43011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Secure environmental contexts are crucial for hominin interpretation and comparison. The discovery of a Denisovan individual and associated fauna at Tam Ngu Hao 2 (Cobra) Cave, Laos, dating back to 164-131 ka, allows for environmental comparisons between this (sub)tropical site and the Palearctic Denisovan sites of Denisova Cave (Russia) and Baishiya Karst Cave (China). Denisovans from northern latitudes foraged in a mix of forested and open landscapes, including tundra and steppe. Using stable isotope values from the Cobra Cave assemblage, we demonstrate that, despite the presence of nearby canopy forests, the Denisovan individual from Cobra Cave primarily consumed plants and/or animals from open forests and savannah. Using faunal evidence and proxy indicators of climates, results herein highlight a local expansion of rainforest at ~ 130 ka, raising questions about how Denisovans responded to this local climate change. Comparing the diet and habitat of the archaic hominin from Cobra Cave with those of early Homo sapiens from Tam Pà Ling Cave (46-43 ka), Laos, it appears that only our species was able to exploit rainforest resources.
Collapse
Affiliation(s)
- Anne-Marie Bacon
- Université Paris Cité, CNRS, BABEL UMR 8045, 75012, Paris, France.
| | - Nicolas Bourgon
- IsoTROPIC Research Group, Max Planck Institute for Geoanthropology, 07745, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, 04103, Leipzig, Germany
| | - Elise Dufour
- UMR 7209 Archéozoologie, Archéobotanique, Sociétés, Pratiques, Environnements, MNHN, CNRS, Paris, France
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Eco-anthropologie (EA), MNHN, CNRS, Université Paris Cité, Musée de l'Homme, 75016, Paris, France
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600, Pessac, France
| | - Kira E Westaway
- 'Traps' Luminescence Dating Facility, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Lismore, NSW, Australia
| | - Philippe Duringer
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- Laboratoire Image, Ville Environnement, UMR 7362 UdS CNRS, Université de Strasbourg, Strasbourg, France
| | - Mike W Morley
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, 5042, Australia
| | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Quentin Boesch
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | - Pierre-Olivier Antoine
- Institut des Sciences de l'Évolution de Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | | | | - Daovee Sihanam
- Ministry of Information, Culture and Tourism, Vientiane, Lao PDR
| | | | | | - Denis Fiorillo
- UMR 7209 Archéozoologie, Archéobotanique, Sociétés, Pratiques, Environnements, MNHN, CNRS, Paris, France
| | - Olivier Tombret
- UMR 7209 Archéozoologie, Archéobotanique, Sociétés, Pratiques, Environnements, MNHN, CNRS, Paris, France
| | - Elise Patole-Edoumba
- Muséum d'histoire naturelle de La Rochelle, UMRU 24140 Dynamiques, interactions, interculturalité asiatiques (UBM, LRUniv), La Rochelle, France
| | - Alexandra Zachwieja
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, USA
| | | | | | - Tyler E Dunn
- Anatomical Sciences Education Center, Oregon Health & Sciences University, Portland, OR, USA
| | - Laura Shackelford
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, 04103, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| |
Collapse
|
6
|
Ruan J, Timmermann A, Raia P, Yun KS, Zeller E, Mondanaro A, Di Febbraro M, Lemmon D, Castiglione S, Melchionna M. Climate shifts orchestrated hominin interbreeding events across Eurasia. Science 2023; 381:699-704. [PMID: 37561879 DOI: 10.1126/science.add4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/19/2023] [Indexed: 08/12/2023]
Abstract
When, where, and how often hominin interbreeding happened is largely unknown. We study the potential for Neanderthal-Denisovan admixture using species distribution models that integrate extensive fossil, archaeological, and genetic data with transient coupled general circulation model simulations of global climate and biomes. Our Pleistocene hindcast of past hominins' habitat suitability reveals pronounced climate-driven zonal shifts in the main overlap region of Denisovans and Neanderthals in central Eurasia. These shifts, which influenced the timing and intensity of potential interbreeding events, can be attributed to the response of climate and vegetation to past variations in atmospheric carbon dioxide and Northern Hemisphere ice-sheet volume. Therefore, glacial-interglacial climate swings likely played an important role in favoring gene flow between archaic humans.
Collapse
Affiliation(s)
- Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Pasquale Raia
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Elke Zeller
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Department of Climate System, Pusan National University, Busan, South Korea
| | | | - Mirko Di Febbraro
- Department of Biosciences and Territory, University of Molise, C. da Fonte Lappone, Pesche, Italy
| | - Danielle Lemmon
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Silvia Castiglione
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Marina Melchionna
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
7
|
Antón SC, Middleton ER. Making meaning from fragmentary fossils: Early Homo in the Early to early Middle Pleistocene. J Hum Evol 2023; 179:103307. [PMID: 37030994 DOI: 10.1016/j.jhevol.2022.103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 04/10/2023]
Abstract
In celebration of the 50th anniversary of the Journal of Human Evolution, we re-evaluate the fossil record for early Homo (principally Homo erectus, Homo habilis, and Homo rudolfensis) from early diversification and dispersal in the Early Pleistocene to the ultimate demise of H. erectus in the early Middle Pleistocene. The mid-1990s marked an important historical turning point in our understanding of early Homo with the redating of key H. erectus localities, the discovery of small H. erectus in Asia, and the recovery of an even earlier presence of early Homo in Africa. As such, we compare our understanding of early Homo before and after this time and discuss how the order of fossil discovery and a focus on anchor specimens has shaped, and in many ways biased, our interpretations of early Homo species and the fossils allocated to them. Fragmentary specimens may counter conventional wisdom but are often overlooked in broad narratives. We recognize at least three different cranial and two or three pelvic morphotypes of early Homo. Just one postcranial morph aligns with any certainty to a cranial species, highlighting the importance of explicitly identifying how we link specimens together and to species; we offer two ways of visualizing these connections. Chronologically and morphologically H. erectus is a member of early Homo, not a temporally more recent species necessarily evolved from either H. habilis or H. rudolfensis. Nonetheless, an ancestral-descendant notion of their evolution influences expectations around the anatomy of missing elements, especially the foot. Weak support for long-held notions of postcranial modernity in H. erectus raises the possibility of alternative drivers of dispersal. New observations suggest that the dearth of faces in later H. erectus may mask taxonomic diversity in Asia and suggest various later mid-Pleistocene populations could derive from either Asia or Africa. Future advances will rest on the development of nuanced ways to affiliate fossils, greater transparency of implicit assumptions, and attention to detailed life history information for comparative collections; all critical pursuits for future research given the great potential they have to enrich our evolutionary reconstructions for the next fifty years and beyond.
Collapse
Affiliation(s)
- Susan C Antón
- Center for the Study of Human Origins, Department of Anthropology, New York University, NY, NY 10003, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
8
|
Zhang X, Kim B, Singh A, Sankararaman S, Durvasula A, Lohmueller KE. MaLAdapt Reveals Novel Targets of Adaptive Introgression From Neanderthals and Denisovans in Worldwide Human Populations. Mol Biol Evol 2023; 40:msad001. [PMID: 36617238 PMCID: PMC9887621 DOI: 10.1093/molbev/msad001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Adaptive introgression (AI) facilitates local adaptation in a wide range of species. Many state-of-the-art methods detect AI with ad-hoc approaches that identify summary statistic outliers or intersect scans for positive selection with scans for introgressed genomic regions. Although widely used, approaches intersecting outliers are vulnerable to a high false-negative rate as the power of different methods varies, especially for complex introgression events. Moreover, population genetic processes unrelated to AI, such as background selection or heterosis, may create similar genomic signals to AI, compromising the reliability of methods that rely on neutral null distributions. In recent years, machine learning (ML) methods have been increasingly applied to population genetic questions. Here, we present a ML-based method called MaLAdapt for identifying AI loci from genome-wide sequencing data. Using an Extra-Trees Classifier algorithm, our method combines information from a large number of biologically meaningful summary statistics to capture a powerful composite signature of AI across the genome. In contrast to existing methods, MaLAdapt is especially well-powered to detect AI with mild beneficial effects, including selection on standing archaic variation, and is robust to non-AI selective sweeps, heterosis from deleterious mutations, and demographic misspecification. Furthermore, MaLAdapt outperforms existing methods for detecting AI based on the analysis of simulated data and the validation of empirical signals through visual inspection of haplotype patterns. We apply MaLAdapt to the 1000 Genomes Project human genomic data and discover novel AI candidate regions in non-African populations, including genes that are enriched in functionally important biological pathways regulating metabolism and immune responses.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA
| | - Armaan Singh
- Department of Computer Science, UCLA, Los Angeles, CA
| | - Sriram Sankararaman
- Department of Computer Science, UCLA, Los Angeles, CA
- Department of Computational Medicine, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Arun Durvasula
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
9
|
Sterner E. Analyses of the 2022 Nobel Prize in Physiology or Medicine: Paleogenomics. SCIENCE & TECHNOLOGY LIBRARIES 2023; 42:19-30. [DOI: 10.1080/0194262x.2022.2163451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Affiliation(s)
- Elizabeth Sterner
- Founders Memorial Library, Northern Illinois University, University Libraries, DeKalb, Illinois, USA
| |
Collapse
|
10
|
Skov L, Peyrégne S, Popli D, Iasi LNM, Devièse T, Slon V, Zavala EI, Hajdinjak M, Sümer AP, Grote S, Bossoms Mesa A, López Herráez D, Nickel B, Nagel S, Richter J, Essel E, Gansauge M, Schmidt A, Korlević P, Comeskey D, Derevianko AP, Kharevich A, Markin SV, Talamo S, Douka K, Krajcarz MT, Roberts RG, Higham T, Viola B, Krivoshapkin AI, Kolobova KA, Kelso J, Meyer M, Pääbo S, Peter BM. Genetic insights into the social organization of Neanderthals. Nature 2022; 610:519-525. [PMID: 36261548 PMCID: PMC9581778 DOI: 10.1038/s41586-022-05283-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Abstract
Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.
Collapse
Affiliation(s)
- Laurits Skov
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Divyaratan Popli
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leonardo N M Iasi
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Thibaut Devièse
- European Centre for Research and Education in Environmental Geosciences (CEREGE), Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Aix-en-Provence, France
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology Sackler, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena I Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Arev P Sümer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Steffi Grote
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - David López Herráez
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marie Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Petra Korlević
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Wellcome Sanger Institute, Hinxton, UK
| | - Daniel Comeskey
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Aliona Kharevich
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V Markin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Katerina Douka
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna, Austria
| | - Maciej T Krajcarz
- Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland
| | - Richard G Roberts
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Thomas Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna, Austria
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Andrey I Krivoshapkin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Kseniya A Kolobova
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
11
|
A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. Nat Commun 2022; 13:2557. [PMID: 35581187 PMCID: PMC9114389 DOI: 10.1038/s41467-022-29923-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The Pleistocene presence of the genus Homo in continental Southeast Asia is primarily evidenced by a sparse stone tool record and rare human remains. Here we report a Middle Pleistocene hominin specimen from Laos, with the discovery of a molar from the Tam Ngu Hao 2 (Cobra Cave) limestone cave in the Annamite Mountains. The age of the fossil-bearing breccia ranges between 164–131 kyr, based on the Bayesian modelling of luminescence dating of the sedimentary matrix from which it was recovered, U-series dating of an overlying flowstone, and U-series–ESR dating of associated faunal teeth. Analyses of the internal structure of the molar in tandem with palaeoproteomic analyses of the enamel indicate that the tooth derives from a young, likely female, Homo individual. The close morphological affinities with the Xiahe specimen from China indicate that they belong to the same taxon and that Tam Ngu Hao 2 most likely represents a Denisovan. Evidence for the presence of Homo during the Middle Pleistocene is limited in continental Southeast Asia. Here, the authors report a hominin molar from Tam Ngu Hao 2 (Cobra Cave), dated to 164–131 kyr. They use morphological and paleoproteomic analysis to show that it likely belonged to a female Denisovan.
Collapse
|
12
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Brown S, Massilani D, Kozlikin MB, Shunkov MV, Derevianko AP, Stoessel A, Jope-Street B, Meyer M, Kelso J, Pääbo S, Higham T, Douka K. The earliest Denisovans and their cultural adaptation. Nat Ecol Evol 2022; 6:28-35. [PMID: 34824388 PMCID: PMC7612221 DOI: 10.1038/s41559-021-01581-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
Since the initial identification of the Denisovans a decade ago, only a handful of their physical remains have been discovered. Here we analysed ~3,800 non-diagnostic bone fragments using collagen peptide mass fingerprinting to locate new hominin remains from Denisova Cave (Siberia, Russia). We identified five new hominin bones, four of which contained sufficient DNA for mitochondrial analysis. Three carry mitochondrial DNA of the Denisovan type and one was found to carry mtDNA of the Neanderthal type. The former come from the same archaeological layer near the base of the cave's sequence and are the oldest securely dated evidence of Denisovans at 200 ka (thousand years ago) (205-192 ka at 68.2% or 217-187 ka at 95% probability). The stratigraphic context in which they were located contains a wealth of archaeological material in the form of lithics and faunal remains, allowing us to determine the material culture associated with these early hominins and explore their behavioural and environmental adaptations. The combination of bone collagen fingerprinting and genetic analyses has so far more-than-doubled the number of hominin bones at Denisova Cave and has expanded our understanding of Denisovan and Neanderthal interactions, as well as their archaeological signatures.
Collapse
Affiliation(s)
- Samantha Brown
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Institute for Scientific Archaeology, University of Tübingen, Tübingen, Germany.
| | - Diyendo Massilani
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Maxim B. Kozlikin
- Institute of Archeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Michael V. Shunkov
- Institute of Archeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoly P. Derevianko
- Institute of Archeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Stoessel
- Max Planck Institute for the Science of Human History, Jena, Germany,Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany,Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - Blair Jope-Street
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Thomas Higham
- Oxford Radiocarbon Accelerator Unit, RLAHA, University of Oxford, Oxford, UK,Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Austria
| | - Katerina Douka
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Zavala EI, Jacobs Z, Vernot B, Shunkov MV, Kozlikin MB, Derevianko AP, Essel E, de Fillipo C, Nagel S, Richter J, Romagné F, Schmidt A, Li B, O'Gorman K, Slon V, Kelso J, Pääbo S, Roberts RG, Meyer M. Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave. Nature 2021; 595:399-403. [PMID: 34163072 PMCID: PMC8277575 DOI: 10.1038/s41586-021-03675-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals1–4. The dozen hominin remains recovered from the deposits also include Neanderthals5,6 and the child of a Neanderthal and a Denisovan7, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages5,8–11. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly—possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments. Ancient mitochondrial DNA from sediments reveals the sequence of Denisovan, Neanderthal and faunal occupation of Denisova Cave, and evidence for the appearance of modern humans at least 45,000 years ago.
Collapse
Affiliation(s)
- Elena I Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Zenobia Jacobs
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia. .,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Benjamin Vernot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Fillipo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Frédéric Romagné
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Bo Li
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia.,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kieran O'Gorman
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Viviane Slon
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Shmunis Family Anthropology Institute, The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard G Roberts
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia. .,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
16
|
Greer C, Bhakta H, Ghanem L, Refai F, Linn E, Avella M. Deleterious variants in genes regulating mammalian reproduction in Neanderthals, Denisovans and extant humans. Hum Reprod 2021; 36:734-755. [PMID: 33417716 DOI: 10.1093/humrep/deaa347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Were Neanderthals and Denisovans (referred here also as extinct hominidae) carrying deleterious variants in genes regulating reproduction? SUMMARY ANSWER The majority of extinct hominidae analyzed here, presented a considerable number of deleterious variants per individual in proteins regulating different aspects of reproduction, including gonad and uterine function, and gametogenesis. WHAT IS KNOWN ALREADY Neanderthals, Denisovans and extant humans were interfertile and hybridized while occupying geographically overlapping areas in Europe and Asia. This is evidenced by the small archaic genome component (average ∼2%) present in non-African extant humans. STUDY DESIGN, SIZE, DURATION The genome of eight extinct hominidae, together with five human genome databases, plus 44 mothers and 48 fathers (fertile controls), were screened to look for deleterious variants in 1734 protein-coding genes regulating reproduction. PARTICIPANTS/MATERIALS, SETTING, METHODS Ancient DNA from six Neanderthals and two Denisovans dated between ∼82 000 and 43 000 calibrated years was retrieved from the public European Nucleotide Archive. The hominins analyzed include Altai, Vindija 33.15, 33.19, 33.25 and 33.26, El Sidron 1253, Denisova 3 and 11. Their DNA was analyzed using the CLC Genomics Workbench 12, by mapping overlapping paired-end reads (Illumina, FASTQ files) to the human genome assembly GRCh37 (hg19) (Vindija 33.19, 33.25, 33.26, Denisova 3 and Denisova 11) or by analyzing BAM files (Altai, El Sidron 1253 and Vindija 33.15) (human genome reference, GRCh37 (hg19)). Non-synonymous reproductive variants were classified as deleterious or tolerated (PolyPhen-2 and SIFT analyses) and were compared to deleterious variants obtained from extant human genome databases (Genome Aggregation Database (GnomAD), 1000 Genomes, the Haplotype Map (HapMap), Single Nucleotide Polymorphism Database (dbSNPs)) across different populations. A genetic intersection between extant or extinct DNA variants and other genetic disorders was evaluated by annotating the obtained variants with the Clinical Variant (ClinVar) database. MAIN RESULTS AND THE ROLE OF CHANCE Among the eight extinct hominidae analyzed, a total of 9650 non-synonymous variants (only coverage ≥20 reads included; frameshift mutations were excluded) in 1734 reproductive protein-coding genes were found, 24% of which were classified as deleterious. The majority (73%) of the deleterious alleles present in extant humans that are shared between extant humans and extinct hominidae were found to be rare (<1%) in extant human populations. A set of 8044 variants were found uniquely in extinct hominidae. At the single-gene level, no extinct individual was found to be homozygous for deleterious variants in genes necessary for gamete recognition and fusion, and no higher chance of embryo-lethality (calculated by Mendelian Genetics) was found upon simulated mating between extant human and extinct hominidae compared to extant human-extant human. However, three of the eight extinct hominidae were found to be homozygous for 48-69 deleterious variants in 55 genes controlling ovarian and uterine functions, or oogenesis (AKAP1, BUB1B, CCDC141, CDC73, DUSP6, ESR1, ESR2, PATL2, PSMC3IP, SEMA3A, WT1 and WNT4). Moreover, we report the distribution of nine Neanderthal variants in genes associated with a human fertility phenotype found in extant human populations, one of which has been associated with polycystic ovarian syndrome and primary congenital glaucoma. LIMITATIONS, REASONS FOR CAUTION While analyzing archaic DNA, stringent filtering criteria were adopted to screen for deleterious variants in Neanderthals and Denisovans, which could result in missing a number of variants. Such restraints preserve the potential for detection of additional deleterious variants in reproductive proteins in extinct hominidae. WIDER IMPLICATIONS OF THE FINDINGS This study provides a comprehensive overview of putatively deleterious variants in extant human populations and extinct individuals occurring in 1734 protein-coding genes controlling reproduction and provides the fundaments for future functional studies of extinct variants in human reproduction. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Department of Biological Science and by the Office of Research and Sponsored Programs at the University of Tulsa (Faculty Research Grant and Faculty Research Summer Fellowship) to M.A. and the University of Tulsa, Tulsa Undergraduate Research Challenge (TURC) program to E.L.; no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Cory Greer
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Hanisha Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Lillian Ghanem
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Fares Refai
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Emma Linn
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Matteo Avella
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
17
|
Abstract
Recent studies suggest that admixture with archaic hominins played an important role in facilitating biological adaptations to new environments. For example, interbreeding with Denisovans facilitated the adaptation to high-altitude environments on the Tibetan Plateau. Specifically, the EPAS1 gene, a transcription factor that regulates the response to hypoxia, exhibits strong signatures of both positive selection and introgression from Denisovans in Tibetan individuals. Interestingly, despite being geographically closer to the Denisova Cave, East Asian populations do not harbor as much Denisovan ancestry as populations from Melanesia. Recently, two studies have suggested two independent waves of Denisovan admixture into East Asians, one of which is shared with South Asians and Oceanians. Here, we leverage data from EPAS1 in 78 Tibetan individuals to interrogate which of these two introgression events introduced the EPAS1 beneficial sequence into the ancestral population of Tibetans, and we use the distribution of introgressed segment lengths at this locus to infer the timing of the introgression and selection event. We find that the introgression event unique to East Asians most likely introduced the beneficial haplotype into the ancestral population of Tibetans around 48,700 (16,000-59,500) y ago, and selection started around 9,000 (2,500-42,000) y ago. Our estimates suggest that one of the most convincing examples of adaptive introgression is in fact selection acting on standing archaic variation.
Collapse
|
18
|
Gopalan S, Atkinson EG, Buck LT, Weaver TD, Henn BM. Inferring archaic introgression from hominin genetic data. Evol Anthropol 2021; 30:199-220. [PMID: 33951239 PMCID: PMC8360192 DOI: 10.1002/evan.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Elizabeth G Atkinson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts, USA
| | - Laura T Buck
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, California, USA
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, University of California, Davis, California, USA.,UC Davis Genome Center, University of California, Davis, California, USA
| |
Collapse
|
19
|
Reevaluating the timing of Neanderthal disappearance in Northwest Europe. Proc Natl Acad Sci U S A 2021; 118:2022466118. [PMID: 33798098 DOI: 10.1073/pnas.2022466118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elucidating when Neanderthal populations disappeared from Eurasia is a key question in paleoanthropology, and Belgium is one of the key regions for studying the Middle to Upper Paleolithic transition. Previous radiocarbon dating placed the Spy Neanderthals among the latest surviving Neanderthals in Northwest Europe with reported dates as young as 23,880 ± 240 B.P. (OxA-8912). Questions were raised, however, regarding the reliability of these dates. Soil contamination and carbon-based conservation products are known to cause problems during the radiocarbon dating of bulk collagen samples. Employing a compound-specific approach that is today the most efficient in removing contamination and ancient genomic analysis, we demonstrate here that previous dates produced on Neanderthal specimens from Spy were inaccurately young by up to 10,000 y due to the presence of unremoved contamination. Our compound-specific radiocarbon dates on the Neanderthals from Spy and those from Engis and Fonds-de-Forêt demonstrate that they disappeared from Northwest Europe at 44,200 to 40,600 cal B.P. (at 95.4% probability), much earlier than previously suggested. Our data contribute significantly to refining models for Neanderthal disappearance in Europe and, more broadly, show that chronometric models regarding the appearance or disappearance of animal or hominin groups should be based only on radiocarbon dates obtained using robust pretreatment methods.
Collapse
|
20
|
Petr M, Hajdinjak M, Fu Q, Essel E, Rougier H, Crevecoeur I, Semal P, Golovanova LV, Doronichev VB, Lalueza-Fox C, de la Rasilla M, Rosas A, Shunkov MV, Kozlikin MB, Derevianko AP, Vernot B, Meyer M, Kelso J. The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science 2020; 369:1653-1656. [PMID: 32973032 DOI: 10.1126/science.abb6460] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
Ancient DNA has provided new insights into many aspects of human history. However, we lack comprehensive studies of the Y chromosomes of Denisovans and Neanderthals because the majority of specimens that have been sequenced to sufficient coverage are female. Sequencing Y chromosomes from two Denisovans and three Neanderthals shows that the Y chromosomes of Denisovans split around 700 thousand years ago from a lineage shared by Neanderthals and modern human Y chromosomes, which diverged from each other around 370 thousand years ago. The phylogenetic relationships of archaic and modern human Y chromosomes differ from the population relationships inferred from the autosomal genomes and mirror mitochondrial DNA phylogenies, indicating replacement of both the mitochondrial and Y chromosomal gene pools in late Neanderthals. This replacement is plausible if the low effective population size of Neanderthals resulted in an increased genetic load in Neanderthals relative to modern humans.
Collapse
Affiliation(s)
- Martin Petr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.,The Francis Crick Institute, NW1 1AT London, UK
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Hélène Rougier
- Department of Anthropology, California State University, Northridge, Northridge, CA 91330-8244, USA
| | | | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | | | | | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marco de la Rasilla
- Área de Prehistoria, Departamento de Historia, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Antonio Rosas
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoli P Derevianko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| |
Collapse
|
21
|
Zhang D, Xia H, Chen F, Li B, Slon V, Cheng T, Yang R, Jacobs Z, Dai Q, Massilani D, Shen X, Wang J, Feng X, Cao P, Yang MA, Yao J, Yang J, Madsen DB, Han Y, Ping W, Liu F, Perreault C, Chen X, Meyer M, Kelso J, Pääbo S, Fu Q. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science 2020; 370:584-587. [DOI: 10.1126/science.abb6320] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Dongju Zhang
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Alpine Ecology (LAE), CAS Center for Excellence in Tibetan Plateau Earth Sciences and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Frontier Center for Eco-environment and Climate Change in Pan-third Pole Regions, Lanzhou University, Lanzhou 730000, China
| | - Huan Xia
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fahu Chen
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Alpine Ecology (LAE), CAS Center for Excellence in Tibetan Plateau Earth Sciences and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Bo Li
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Ting Cheng
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Zenobia Jacobs
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Diyendo Massilani
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Xuke Shen
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Wang
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Melinda A. Yang
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Juanting Yao
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jishuai Yang
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - David B. Madsen
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Anthropology, University of Nevada–Reno, Reno, NV 89557, USA
| | - Yuanyuan Han
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wanjing Ping
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Feng Liu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Charles Perreault
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ 85281, USA
| | - Xiaoshan Chen
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| |
Collapse
|
22
|
Romandini M, Oxilia G, Bortolini E, Peyrégne S, Delpiano D, Nava A, Panetta D, Di Domenico G, Martini P, Arrighi S, Badino F, Figus C, Lugli F, Marciani G, Silvestrini S, Menghi Sartorio JC, Terlato G, Hublin JJ, Meyer M, Bondioli L, Higham T, Slon V, Peresani M, Benazzi S. A late Neanderthal tooth from northeastern Italy. J Hum Evol 2020; 147:102867. [DOI: 10.1016/j.jhevol.2020.102867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
|
23
|
Peyrégne S, Peter BM. AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biol 2020; 21:246. [PMID: 32933569 PMCID: PMC7490890 DOI: 10.1186/s13059-020-02123-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Contamination from present-day DNA is a fundamental issue when studying ancient DNA from historical or archaeological material, and quantifying the amount of contamination is essential for downstream analyses. We present AuthentiCT, a command-line tool to estimate the proportion of present-day DNA contamination in ancient DNA datasets generated from single-stranded DNA libraries. The prediction is based solely on the patterns of post-mortem damage observed on ancient DNA sequences. The method has the power to quantify contamination from as few as 10,000 mapped sequences, making it particularly useful for analysing specimens that are poorly preserved or for which little data is available.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| |
Collapse
|
24
|
Lodewijk GA, Fernandes DP, Vretzakis I, Savage JE, Jacobs FMJ. Evolution of Human Brain Size-Associated NOTCH2NL Genes Proceeds toward Reduced Protein Levels. Mol Biol Evol 2020; 37:2531-2548. [PMID: 32330268 PMCID: PMC7475042 DOI: 10.1093/molbev/msaa104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the availability of genomes from Neanderthals, Denisovans, and ancient humans, the field of evolutionary genomics has been searching for protein-coding variants that may hold clues to how our species evolved over the last ∼600,000 years. In this study, we identify such variants in the human-specific NOTCH2NL gene family, which were recently identified as possible contributors to the evolutionary expansion of the human brain. We find evidence for the existence of unique protein-coding NOTCH2NL variants in Neanderthals and Denisovans which could affect their ability to activate Notch signaling. Furthermore, in the Neanderthal and Denisovan genomes, we find unusual NOTCH2NL configurations, not found in any of the modern human genomes analyzed. Finally, genetic analysis of archaic and modern humans reveals ongoing adaptive evolution of modern human NOTCH2NL genes, identifying three structural variants acting complementary to drive our genome to produce a lower dosage of NOTCH2NL protein. Because copy-number variations of the 1q21.1 locus, encompassing NOTCH2NL genes, are associated with severe neurological disorders, this seemingly contradicting drive toward low levels of NOTCH2NL protein indicates that the optimal dosage of NOTCH2NL may have not yet been settled in the human population.
Collapse
Affiliation(s)
- Gerrald A Lodewijk
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana P Fernandes
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Iraklis Vretzakis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics
| | - Frank M J Jacobs
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics
| |
Collapse
|
25
|
Peyrégne S, Prüfer K. Present-Day DNA Contamination in Ancient DNA Datasets. Bioessays 2020; 42:e2000081. [PMID: 32648350 DOI: 10.1002/bies.202000081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Indexed: 01/06/2023]
Abstract
Present-day contamination can lead to false conclusions in ancient DNA studies. A number of methods are available to estimate contamination, which use a variety of signals and are appropriate for different types of data. Here an overview of currently available methods highlighting their strengths and weaknesses is provided, and a classification based on the signals used to estimate contamination is proposed. This overview aims at enabling researchers to choose the most appropriate methods for their dataset. Based on this classification, potential avenues for the further development of methods are discussed.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, 07745, Germany
| |
Collapse
|
26
|
Schroeder L. Revolutionary Fossils, Ancient Biomolecules, and Reflections in Ethics and Decolonization: Paleoanthropology in 2019. AMERICAN ANTHROPOLOGIST 2020. [DOI: 10.1111/aman.13410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology University of Toronto Mississauga Mississauga ON Canada
- Human Evolution Research Institute University of Cape Town Rondebosch Western Cape South Africa
| |
Collapse
|
27
|
Reconstructing Denisovan Anatomy Using DNA Methylation Maps. Cell 2020; 179:180-192.e10. [PMID: 31539495 DOI: 10.1016/j.cell.2019.08.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Denisovans are an extinct group of humans whose morphology remains unknown. Here, we present a method for reconstructing skeletal morphology using DNA methylation patterns. Our method is based on linking unidirectional methylation changes to loss-of-function phenotypes. We tested performance by reconstructing Neanderthal and chimpanzee skeletal morphologies and obtained >85% precision in identifying divergent traits. We then applied this method to the Denisovan and offer a putative morphological profile. We suggest that Denisovans likely shared with Neanderthals traits such as an elongated face and a wide pelvis. We also identify Denisovan-derived changes, such as an increased dental arch and lateral cranial expansion. Our predictions match the only morphologically informative Denisovan bone to date, as well as the Xuchang skull, which was suggested by some to be a Denisovan. We conclude that DNA methylation can be used to reconstruct anatomical features, including some that do not survive in the fossil record.
Collapse
|
28
|
Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 2020; 581:299-302. [DOI: 10.1038/s41586-020-2259-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
|
29
|
Mata X, Renaud G, Mollereau C. The repertoire of family A-peptide GPCRs in archaic hominins. Peptides 2019; 122:170154. [PMID: 31560950 DOI: 10.1016/j.peptides.2019.170154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
Given the importance of G-protein coupled receptors in the regulation of many physiological functions, deciphering the relationships between genotype and phenotype in past and present hominin GPCRs is of main interest to understand the evolutionary process that contributed to the present-day variability in human traits and health. Here, we carefully examined the publicly available genomic and protein sequence databases of the archaic hominins (Neanderthal and Denisova) to draw up the catalog of coding variations in GPCRs for peptide ligands, in comparison with living humans. We then searched in the literature the functional changes, phenotypes and risk of disease possibly associated with the detected variants. Our survey suggests that Neanderthal and Denisovan hominins were likely prone to lower risk of obesity, to enhanced platelet aggregation in response to thrombin, to better response to infection, to less anxiety and aggressiveness and to favorable sociability. While some archaic variants were likely advantageous in the past, they might be responsible for maladaptive disorders today in the context of modern life and/or specific regional distribution. For example, an archaic haplotype in the neuromedin receptor 2 is susceptible to confer risk of diabetic nephropathy in type 1 diabetes in present-day Europeans. Paying attention to the pharmacological properties of some of the archaic variants described in this study may be helpful to understand the variability of therapeutic efficacy between individuals or ethnic groups.
Collapse
Affiliation(s)
- Xavier Mata
- Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gabriel Renaud
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Catherine Mollereau
- Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
30
|
Morley MW, Goldberg P, Uliyanov VA, Kozlikin MB, Shunkov MV, Derevianko AP, Jacobs Z, Roberts RG. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia). Sci Rep 2019; 9:13785. [PMID: 31558742 PMCID: PMC6763451 DOI: 10.1038/s41598-019-49930-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022] Open
Abstract
Denisova Cave in southern Siberia uniquely contains evidence of occupation by a recently discovered group of archaic hominins, the Denisovans, starting from the middle of the Middle Pleistocene. Artefacts, ancient DNA and a range of animal and plant remains have been recovered from the sedimentary deposits, along with a few fragmentary fossils of Denisovans, Neanderthals and a first-generation Neanderthal–Denisovan offspring. The deposits also contain microscopic traces of hominin and animal activities that can provide insights into the use of the cave over the last 300,000 years. Here we report the results of a micromorphological study of intact sediment blocks collected from the Pleistocene deposits in the Main and East Chambers of Denisova Cave. The presence of charcoal attests to the use of fire by hominins, but other evidence of their activities preserved in the microstratigraphic record are few. The ubiquitous occurrence of coprolites, which we attribute primarily to hyenas, indicates that the site was visited for much of its depositional history by cave-dwelling carnivores. Microscopic traces of post-depositional diagenesis, bioturbation and incipient cryoturbation are observed in only a few regions of the deposit examined here. Micromorphology can help identify areas of sedimentary deposit that are most conducive to ancient DNA preservation and could be usefully integrated with DNA analyses of sediments at archaeological sites to illuminate features of their human and environmental history that are invisible to the naked eye.
Collapse
Affiliation(s)
- Mike W Morley
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia. .,Archaeology, College of Humanities and Social Sciences, Flinders University, Adelaide, South Australia, 5042, Australia.
| | - Paul Goldberg
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.,Institut für Naturwissenschaftliche Archäologie, Eberhard-Karls-Universität Tübingen, Rümelinstrasse 23, Tübingen, 72070, Germany
| | - Vladimir A Uliyanov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia.,Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Zenobia Jacobs
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.,Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Richard G Roberts
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.,Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
31
|
Bennett EA, Crevecoeur I, Viola B, Derevianko AP, Shunkov MV, Grange T, Maureille B, Geigl EM. Morphology of the Denisovan phalanx closer to modern humans than to Neanderthals. SCIENCE ADVANCES 2019; 5:eaaw3950. [PMID: 31517046 PMCID: PMC6726440 DOI: 10.1126/sciadv.aaw3950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
A fully sequenced high-quality genome has revealed in 2010 the existence of a human population in Asia, the Denisovans, related to and contemporaneous with Neanderthals. Only five skeletal remains are known from Denisovans, mostly molars; the proximal fragment of a fifth finger phalanx used to generate the genome, however, was too incomplete to yield useful morphological information. Here, we demonstrate through ancient DNA analysis that a distal fragment of a fifth finger phalanx from the Denisova Cave is the larger, missing part of this phalanx. Our morphometric analysis shows that its dimensions and shape are within the variability of Homo sapiens and distinct from the Neanderthal fifth finger phalanges. Thus, unlike Denisovan molars, which display archaic characteristics not found in modern humans, the only morphologically informative Denisovan postcranial bone identified to date is suggested here to be plesiomorphic and shared between Denisovans and modern humans.
Collapse
Affiliation(s)
- E. Andrew Bennett
- Institut Jacques Monod, CNRS, University Paris Diderot, 75013 Paris, France
| | | | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk RU-630090, Russia
| | - Anatoly P. Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk RU-630090, Russia
- Altai State University, Barnaul RU-656049, Russia
| | - Michael V. Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk RU-630090, Russia
- Novosibirsk National Research State University, Novosibirsk RU-630090, Russia
| | - Thierry Grange
- Institut Jacques Monod, CNRS, University Paris Diderot, 75013 Paris, France
| | - Bruno Maureille
- UMR 5199 PACEA, Université de Bordeaux, 33615 Pessac, France
| | - Eva-Maria Geigl
- Institut Jacques Monod, CNRS, University Paris Diderot, 75013 Paris, France
| |
Collapse
|
32
|
The Northern Route for Human dispersal in Central and Northeast Asia: New evidence from the site of Tolbor-16, Mongolia. Sci Rep 2019; 9:11759. [PMID: 31409814 PMCID: PMC6692324 DOI: 10.1038/s41598-019-47972-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
The fossil record suggests that at least two major human dispersals occurred across the Eurasian steppe during the Late Pleistocene. Neanderthals and Modern Humans moved eastward into Central Asia, a region intermittently occupied by the enigmatic Denisovans. Genetic data indicates that the Denisovans interbred with Neanderthals near the Altai Mountains (South Siberia) but where and when they met H. sapiens is yet to be determined. Here we present archaeological evidence that document the timing and environmental context of a third long-distance population movement in Central Asia, during a temperate climatic event around 45,000 years ago. The early occurrence of the Initial Upper Palaeolithic, a techno-complex whose sudden appearance coincides with the first occurrence of H. sapiens in the Eurasian steppes, establishes an essential archaeological link between the Siberian Altai and Northwestern China . Such connection between regions provides empirical ground to discuss contacts between local and exogenous populations in Central and Northeast Asia during the Late Pleistocene.
Collapse
|
33
|
Abstract
The dispersal of anatomically modern human populations out of Africa and across much of the rest of the world around 55 to 50 thousand years before present (ka) is recorded genetically by the multiple hominin groups they met and interbred with along the way, including the Neandertals and Denisovans. The signatures of these introgression events remain preserved in the genomes of modern-day populations, and provide a powerful record of the sequence and timing of these early migrations, with Asia proving a particularly complex area. At least 3 different hominin groups appear to have been involved in Asia, of which only the Denisovans are currently known. Several interbreeding events are inferred to have taken place east of Wallace's Line, consistent with archaeological evidence of widespread and early hominin presence in the area. However, archaeological and fossil evidence indicates archaic hominins had not spread as far as the Sahul continent (New Guinea, Australia, and Tasmania), where recent genetic evidence remains enigmatic.
Collapse
|
34
|
Peyrégne S, Slon V, Mafessoni F, de Filippo C, Hajdinjak M, Nagel S, Nickel B, Essel E, Le Cabec A, Wehrberger K, Conard NJ, Kind CJ, Posth C, Krause J, Abrams G, Bonjean D, Di Modica K, Toussaint M, Kelso J, Meyer M, Pääbo S, Prüfer K. Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. SCIENCE ADVANCES 2019; 5:eaaw5873. [PMID: 31249872 PMCID: PMC6594762 DOI: 10.1126/sciadv.aaw5873] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Little is known about the population history of Neandertals over the hundreds of thousands of years of their existence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all later Neandertals trace at least part of their ancestry back to these early European Neandertals.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Adeline Le Cabec
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | | | - Nicholas J. Conard
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, Tübingen72070, Germany
| | - Claus Joachim Kind
- State Office for Cultural Heritage Baden-Württemberg Berliner Strasse 12, Esslingen 73728 Germany
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, Jena07745, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, Jena07745, Germany
| | | | | | | | | | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, Jena07745, Germany
| |
Collapse
|
35
|
Durvasula A, Sankararaman S. A statistical model for reference-free inference of archaic local ancestry. PLoS Genet 2019; 15:e1008175. [PMID: 31136573 PMCID: PMC6555542 DOI: 10.1371/journal.pgen.1008175] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/07/2019] [Accepted: 05/03/2019] [Indexed: 01/01/2023] Open
Abstract
Statistical analyses of genomic data from diverse human populations have demonstrated that archaic hominins, such as Neanderthals and Denisovans, interbred or admixed with the ancestors of present-day humans. Central to these analyses are methods for inferring archaic ancestry along the genomes of present-day individuals (archaic local ancestry). Methods for archaic local ancestry inference rely on the availability of reference genomes from the ancestral archaic populations for accurate inference. However, several instances of archaic admixture lack reference archaic genomes, making it difficult to characterize these events. We present a statistical method that combines diverse population genetic summary statistics to infer archaic local ancestry without access to an archaic reference genome. We validate the accuracy and robustness of our method in simulations. When applied to genomes of European individuals, our method recovers segments that are substantially enriched for Neanderthal ancestry, even though our method did not have access to any Neanderthal reference genomes.
Collapse
Affiliation(s)
- Arun Durvasula
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sriram Sankararaman
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
36
|
A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 2019; 569:409-412. [DOI: 10.1038/s41586-019-1139-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
|
37
|
|
38
|
Jacobs Z, Li B, Shunkov MV, Kozlikin MB, Bolikhovskaya NS, Agadjanian AK, Uliyanov VA, Vasiliev SK, O’Gorman K, Derevianko AP, Roberts RG. Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature 2019; 565:594-599. [DOI: 10.1038/s41586-018-0843-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022]
|
39
|
Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature 2019; 565:640-644. [DOI: 10.1038/s41586-018-0870-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023]
|
40
|
Intragenus (Homo) variation in a chemokine receptor gene (CCR5). PLoS One 2018; 13:e0204989. [PMID: 30278065 PMCID: PMC6168169 DOI: 10.1371/journal.pone.0204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have a comparatively higher rate of more polymorphisms in regulatory regions of the primate CCR5 gene, an immune system gene with both general and specific functions. This has been interpreted as allowing flexibility and diversity of gene expression in response to varying disease loads. A broad expression repertoire is useful to humans-the only globally distributed primate-due to our unique adaptive pattern that increased pathogen exposure and disease loads (e.g., sedentism, subsistence practices). The main objective of the study was to determine if the previously observed human pattern of increased variation extended to other members of our genus, Homo. The data for this study are mined from the published genomes of extinct hominins (four Neandertals and two Denisovans), an ancient human (Ust'-Ishim), and modern humans (1000 Genomes). An average of 15 polymorphisms per individual were found in human populations (with a total of 262 polymorphisms). There were 94 polymorphisms identified across extinct Homo (an average of 13 per individual) with 41 previously observed in modern humans and 53 novel polymorphisms (32 in Denisova and 21 in Neandertal). Neither the frequency nor distribution of polymorphisms across gene regions exhibit significant differences within the genus Homo. Thus, humans are not unique with regards to the increased frequency of regulatory polymorphisms and the evolution of variation patterns across CCR5 gene appears to have originated within the genus. A broader evolutionary perspective on regulatory flexibility may be that it provided an advantage during the transition to confrontational foraging (and later hunting) that altered human-environment interaction as well as during migration to Eurasia and encounters with novel pathogens.
Collapse
|
41
|
Abstract
The first decade of ancient genomics has revolutionized the study of human prehistory and evolution. We review new insights based on prehistoric modern human genomes, including greatly increased resolution of the timing and structure of the out-of-Africa expansion, the diversification of present-day non-African populations, and the earliest expansions of those populations into Eurasia and America. Prehistoric genomes now document population transformations on every inhabited continent—in particular the effect of agricultural expansions in Africa, Europe, and Oceania—and record a history of natural selection that shapes present-day phenotypic diversity. Despite these advances, much remains unknown, in particular about the genomic histories of Asia (the most populous continent) and Africa (the continent that contains the most genetic diversity). Ancient genomes from these and other regions, integrated with a growing understanding of the genomic basis of human phenotypic diversity, will be in focus during the next decade of research in the field.
Collapse
Affiliation(s)
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19103, USA
| |
Collapse
|
42
|
Slon V, Mafessoni F, Vernot B, de Filippo C, Grote S, Viola B, Hajdinjak M, Peyrégne S, Nagel S, Brown S, Douka K, Higham T, Kozlikin MB, Shunkov MV, Derevianko AP, Kelso J, Meyer M, Prüfer K, Pääbo S. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 2018; 561:113-116. [PMID: 30135579 PMCID: PMC6130845 DOI: 10.1038/s41586-018-0455-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022]
Abstract
Neandertals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of “Denisova 11”, a bone fragment from Denisova Cave (Russia)3, and show that it comes from an individual who had a Neandertal mother and a Denisovan father. The father, whose genome bears traces of Neandertal ancestry, came from a population related to a later Denisovan found in the cave4–6. The mother came from a population more closely related to Neandertals who lived later in Europe2,7 than to an older Neandertal found in Denisova Cave8, suggesting that migrations of Neandertals between eastern and western Eurasia occurred sometime after ~120,000 years ago. The finding of a first-generation Neandertal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.
Collapse
Affiliation(s)
- Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Steffi Grote
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada.,Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Samantha Brown
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Katerina Douka
- Max Planck Institute for the Science of Human History, Jena, Germany.,Oxford Radiocarbon Accelerator Unit, RLAHA, University of Oxford, Oxford, UK
| | - Tom Higham
- Oxford Radiocarbon Accelerator Unit, RLAHA, University of Oxford, Oxford, UK
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
43
|
Abstract
Current protocols for ancient DNA and radiocarbon analysis of ancient bones and teeth call for multiple destructive samplings of a given specimen, thereby increasing the extent of undesirable damage to precious archaeological material. Here we present a method that makes it possible to obtain both ancient DNA sequences and radiocarbon dates from the same sample material. This is achieved by releasing DNA from the bone matrix through incubation with either EDTA or phosphate buffer prior to complete demineralization and collagen extraction utilizing the acid-base-acid-gelatinization and ultrafiltration procedure established in most radiocarbon dating laboratories. Using a set of 12 bones of different ages and preservation conditions we demonstrate that on average 89% of the DNA can be released from sample powder with minimal, or 38% without any, detectable collagen loss. We also detect no skews in radiocarbon dates compared to untreated samples. Given the different material demands for radiocarbon dating (500 mg of bone/dentine) and DNA analysis (10-100 mg), combined DNA and collagen extraction not only streamlines the sampling process but also drastically increases the amount of DNA that can be recovered from limited sample material.
Collapse
|
44
|
Bae CJ, Douka K, Petraglia MD. On the origin of modern humans: Asian perspectives. Science 2017; 358:358/6368/eaai9067. [DOI: 10.1126/science.aai9067] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Abstract
The role of teeth as lifestyle indicators of the past and present, and as key elements of evolutionary and forensic studies is explored. The wisdom of entrenched information in the structure of enamel, dentine and the DNA of dental pulp cells is being extracted by new technologies.
Collapse
Affiliation(s)
- G H Sperber
- School of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 1C9, Canada
| |
Collapse
|
46
|
Marciniak S, Perry GH. Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 2017; 18:659-674. [PMID: 28890534 DOI: 10.1038/nrg.2017.65] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past several years have witnessed an explosion of successful ancient human genome-sequencing projects, with genomic-scale ancient DNA data sets now available for more than 1,100 ancient human and archaic hominin (for example, Neandertal) individuals. Recent 'evolution in action' analyses have started using these data sets to identify and track the spatiotemporal trajectories of genetic variants associated with human adaptations to novel and changing environments, agricultural lifestyles, and introduced or co-evolving pathogens. Together with evidence of adaptive introgression of genetic variants from archaic hominins to humans and emerging ancient genome data sets for domesticated animals and plants, these studies provide novel insights into human evolution and the evolutionary consequences of human behaviour that go well beyond those that can be obtained from modern genomic data or the fossil and archaeological records alone.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
47
|
|