1
|
Noda S, Akanuma G, Keyamura K, Hishida T. RecN spatially and temporally controls RecA-mediated repair of DNA double-strand breaks. J Biol Chem 2023; 299:105466. [PMID: 37979912 PMCID: PMC10714372 DOI: 10.1016/j.jbc.2023.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
RecN, a bacterial structural maintenance of chromosomes-like protein, plays an important role in maintaining genomic integrity by facilitating the repair of DNA double-strand breaks (DSBs). However, how RecN-dependent chromosome dynamics are integrated with DSB repair remains unclear. Here, we investigated the dynamics of RecN in response to DNA damage by inducing RecN from the PBAD promoter at different time points. We found that mitomycin C (MMC)-treated ΔrecN cells exhibited nucleoid fragmentation and reduced cell survival; however, when RecN was induced with arabinose in MMC-exposed ΔrecN cells, it increased a level of cell viability to similar extent as WT cells. Furthermore, in MMC-treated ΔrecN cells, arabinose-induced RecN colocalized with RecA in nucleoid gaps between fragmented nucleoids and restored normal nucleoid structures. These results suggest that the aberrant nucleoid structures observed in MMC-treated ΔrecN cells do not represent catastrophic chromosome disruption but rather an interruption of the RecA-mediated process. Thus, RecN can resume DSB repair by stimulating RecA-mediated homologous recombination, even when chromosome integrity is compromised. Our data demonstrate that RecA-mediated presynapsis and synapsis are spatiotemporally separable, wherein RecN is involved in facilitating both processes presumably by orchestrating the dynamics of both RecA and chromosomes, highlighting the essential role of RecN in the repair of DSBs.
Collapse
Affiliation(s)
- Shunsuke Noda
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Genki Akanuma
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kenji Keyamura
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Hishida
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan.
| |
Collapse
|
2
|
Kiran K, Patil KN. Characterization of Staphylococcus aureus RecX protein: Molecular insights into negative regulation of RecA protein and implications in HR processes. J Biochem 2023; 174:227-237. [PMID: 37115499 DOI: 10.1093/jb/mvad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Knadler C, Graham V W, Rolfsmeier M, Haseltine CA. Divalent metal cofactors differentially modulate RadA-mediated strand invasion and exchange in Saccharolobus solfataricus. Biosci Rep 2023; 43:BSR20221807. [PMID: 36601994 PMCID: PMC9950535 DOI: 10.1042/bsr20221807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Central to the universal process of recombination, RecA family proteins form nucleoprotein filaments to catalyze production of heteroduplex DNA between substrate ssDNAs and template dsDNAs. ATP binding assists the filament in assuming the necessary conformation for forming heteroduplex DNA, but hydrolysis is not required. ATP hydrolysis has two identified roles which are not universally conserved: promotion of filament dissociation and enhancing flexibility of the filament. In this work, we examine ATP utilization of the RecA family recombinase SsoRadA from Saccharolobus solfataricus to determine its function in recombinase-mediated heteroduplex DNA formation. Wild-type SsoRadA protein and two ATPase mutant proteins were evaluated for the effects of three divalent metal cofactors. We found that unlike other archaeal RadA proteins, SsoRadA-mediated strand exchange is not enhanced by Ca2+. Instead, the S. solfataricus recombinase can utilize Mn2+ to stimulate strand invasion and reduce ADP-binding stability. Additionally, reduction of SsoRadA ATPase activity by Walker Box mutation or cofactor alteration resulted in a loss of large, complete strand exchange products. Depletion of ADP was found to improve initial strand invasion but also led to a similar loss of large strand exchange events. Our results indicate that overall, SsoRadA is distinct in its use of divalent cofactors but its activity with Mn2+ shows similarity to human RAD51 protein with Ca2+.
Collapse
Affiliation(s)
- Corey J. Knadler
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| | - William J. Graham V
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| | - Michael L. Rolfsmeier
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| | - Cynthia A. Haseltine
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| |
Collapse
|
4
|
Alekseev A, Pobegalov G, Morozova N, Vedyaykin A, Cherevatenko G, Yakimov A, Baitin D, Khodorkovskii M. A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. eLife 2022; 11:78409. [PMID: 35730924 PMCID: PMC9252578 DOI: 10.7554/elife.78409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
RecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on ssDNA in an ATP-dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of (Escherichia coli) RecA-ssDNA filaments by RecX (E. coli) within the framework of distinct conformational states of RecA-ssDNA filament. Our findings revealed that RecX effectively binds the inactive conformation of RecA-ssDNA filaments and slows down the transition to the active state. Results of this work provide new mechanistic insights into the RecX-RecA interactions and highlight the importance of conformational transitions of RecA filaments as an additional level of regulation of its biological activity.
Collapse
Affiliation(s)
- Aleksandr Alekseev
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Natalia Morozova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexey Vedyaykin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Galina Cherevatenko
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexander Yakimov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Dmitry Baitin
- Kurchatov Institute, St. Petersburg, Russian Federation
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| |
Collapse
|
5
|
Reitz D, Chan YL, Bishop DK. How strand exchange protein function benefits from ATP hydrolysis. Curr Opin Genet Dev 2021; 71:120-128. [PMID: 34343922 PMCID: PMC8671154 DOI: 10.1016/j.gde.2021.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Members of the RecA family of strand exchange proteins carry out the central reaction in homologous recombination. These proteins are DNA-dependent ATPases, although their ATPase activity is not required for the key functions of homology search and strand exchange. We review the literature on the role of the intrinsic ATPase activity of strand exchange proteins. We also discuss the role of ATP-hydrolysis-dependent motor proteins that serve as strand exchange accessory factors, with an emphasis on the eukaryotic Rad54 family of double strand DNA-specific translocases. The energy from ATP allows recombination events to progress from the strand exchange stage to subsequent stages. ATP hydrolysis also functions to corrects DNA binding errors, including particularly detrimental binding to double strand DNA.
Collapse
Affiliation(s)
- Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Yuen-Ling Chan
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, IL, USA.
| |
Collapse
|
6
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
7
|
Santos RMD, da Cunha WF, de Sousa Junior RT, Giozza WF, Ribeiro Junior LA. Tuning magnetic properties of penta-graphene bilayers through doping with boron, nitrogen, and oxygen. Sci Rep 2020; 10:16748. [PMID: 33028927 PMCID: PMC7542179 DOI: 10.1038/s41598-020-73901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022] Open
Abstract
Penta-graphene (PG) is a carbon allotrope that has recently attracted the attention of the materials science community due to its interesting properties for renewable energy applications. Although unstable in its pure form, it has been shown that functionalization may stabilize its structure. A question that arises is whether its outstanding electronic properties could also be further improved using such a procedure. As PG bilayers present both sp[Formula: see text] and sp[Formula: see text] carbon planes, it consists of a flexible candidate for functionalization tuning of electromagnetic properties. In this work, we perform density functional theory calculations to investigate how the electronic and structural properties of PG bilayers can be tuned as a result of substitutional doping. Specifically, we observed the emergence of different magnetic properties when boron and nitrogen were used as dopant species. On the other hand, in the case of doping with oxygen, the rupture of bonds in the sp[Formula: see text] planes has not induced a magnetic moment in the material.
Collapse
|
8
|
Alekseev A, Serdakov M, Pobegalov G, Yakimov A, Bakhlanova I, Baitin D, Khodorkovskii M. Single-molecule analysis reveals two distinct states of the compressed RecA filament on single-stranded DNA. FEBS Lett 2020; 594:3464-3476. [PMID: 32880917 DOI: 10.1002/1873-3468.13922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
The RecA protein plays a key role in bacterial homologous recombination (HR) and acts through assembly of long helical filaments around single-stranded DNA in the presence of ATP. Large-scale conformational changes induced by ATP hydrolysis result in transitions between stretched and compressed forms of the filament. Here, using a single-molecule approach, we show that compressed RecA nucleoprotein filaments can exist in two distinct interconvertible states depending on the presence of ADP in the monomer-monomer interface. Binding of ADP promotes cooperative conformational transitions and directly affects mechanical properties of the filament. Our findings reveal that RecA nucleoprotein filaments are able to continuously cycle between three mechanically distinct states that might have important implications for RecA-mediated processes of HR.
Collapse
Affiliation(s)
| | - Maksim Serdakov
- Peter the Great St Petersburg Polytechnic University, Russia
| | | | - Alexandr Yakimov
- Peter the Great St Petersburg Polytechnic University, Russia
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Irina Bakhlanova
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Dmitry Baitin
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St Petersburg Polytechnic University, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
9
|
Prasad D, Muniyappa K. The extended N-terminus of Mycobacterium smegmatis RecX potentiates its ability to antagonize RecA functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140468. [PMID: 32526474 DOI: 10.1016/j.bbapap.2020.140468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023]
Abstract
The members of the RecX family of proteins have a unique capacity to regulate the catalytic activities of RecA/Rad51 proteins in both prokaryotic and eukaryotic organisms. However, our understanding of the functional roles of RecX in pathogenic and non-pathogenic mycobacteria has been limited by insufficient knowledge of the molecular mechanisms of its activity and regulation. Moreover, the significance of a unique 14 amino acid N-terminal extension in Mycobacterium smegmatis RecX (MsRecX) to its function remains unknown. Here, we advance our understanding of the antagonistic roles of mycobacterial RecX proteins and the functional significance of the extended N-terminus of MsRecX. The full-length MsRecX acts as an antagonist of RecA, negatively regulating RecA promoted functions, including DNA strand exchange, LexA cleavage and ATP hydrolysis, but not binding of ATP. The N-terminally truncated MsRecX variants retain the RecA inhibitory activity, albeit with lower efficiencies compared to the full-length protein. Perhaps most importantly, direct visualization of RecA nucleoprotein filaments, which had been incubated with RecX proteins, showed that they promote disassembly of nucleoprotein filaments primarily within the filaments. In addition, interaction of RecX proteins with the RecA nucleoprotein filaments results in the formation of stiff and irregularly shaped nucleoprotein filaments. Thus, these findings add an additional mechanism by which RecX disassembles RecA nucleoprotein filaments. Overall, this study provides strong evidence for the notion that the N-terminal 14 amino acid region of MsRecX plays an important role in the negative regulation of RecA functions and new insights into the molecular mechanism underlying RecX function.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
10
|
RecA and DNA recombination: a review of molecular mechanisms. Biochem Soc Trans 2020; 47:1511-1531. [PMID: 31654073 DOI: 10.1042/bst20190558] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 11/17/2022]
Abstract
Recombinases are responsible for homologous recombination and maintenance of genome integrity. In Escherichia coli, the recombinase RecA forms a nucleoprotein filament with the ssDNA present at a DNA break and searches for a homologous dsDNA to use as a template for break repair. During the first step of this process, the ssDNA is bound to RecA and stretched into a Watson-Crick base-paired triplet conformation. The RecA nucleoprotein filament also contains ATP and Mg2+, two cofactors required for RecA activity. Then, the complex starts a homology search by interacting with and stretching dsDNA. Thanks to supercoiling, intersegment sampling and RecA clustering, a genome-wide homology search takes place at a relevant metabolic timescale. When a region of homology 8-20 base pairs in length is found and stabilized, DNA strand exchange proceeds, forming a heteroduplex complex that is resolved through a combination of DNA synthesis, ligation and resolution. RecA activities can take place without ATP hydrolysis, but this latter activity is necessary to improve and accelerate the process. Protein flexibility and monomer-monomer interactions are fundamental for RecA activity, which functions cooperatively. A structure/function relationship analysis suggests that the recombinogenic activity can be improved and that recombinases have an inherently large recombination potential. Understanding this relationship is essential for designing RecA derivatives with enhanced activity for biotechnology applications. For example, this protein is a major actor in the recombinase polymerase isothermal amplification (RPA) used in point-of-care diagnostics.
Collapse
|
11
|
Boyer B, Danilowicz C, Prentiss M, Prévost C. Weaving DNA strands: structural insight on ATP hydrolysis in RecA-induced homologous recombination. Nucleic Acids Res 2019; 47:7798-7808. [PMID: 31372639 PMCID: PMC6735932 DOI: 10.1093/nar/gkz667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
Homologous recombination is a fundamental process in all living organisms that allows the faithful repair of DNA double strand breaks, through the exchange of DNA strands between homologous regions of the genome. Results of three decades of investigation and recent fruitful observations have unveiled key elements of the reaction mechanism, which proceeds along nucleofilaments of recombinase proteins of the RecA family. Yet, one essential aspect of homologous recombination has largely been overlooked when deciphering the mechanism: while ATP is hydrolyzed in large quantity during the process, how exactly hydrolysis influences the DNA strand exchange reaction at the structural level remains to be elucidated. In this study, we build on a previous geometrical approach that studied the RecA filament variability without bound DNA to examine the putative implication of ATP hydrolysis on the structure, position, and interactions of up to three DNA strands within the RecA nucleofilament. Simulation results on modeled intermediates in the ATP cycle bring important clues about how local distortions in the DNA strand geometries resulting from ATP hydrolysis can aid sequence recognition by promoting local melting of already formed DNA heteroduplex and transient reverse strand exchange in a weaving type of mechanism.
Collapse
Affiliation(s)
- Benjamin Boyer
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Presently in Laboratoire Génomique Bioinformatique et Applications, EA4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
12
|
Wang K, Zhao QW, Liu YF, Sun CF, Chen XA, Burchmore R, Burgess K, Li YQ, Mao XM. Multi-Layer Controls of Cas9 Activity Coupled With ATP Synthase Over-Expression for Efficient Genome Editing in Streptomyces. Front Bioeng Biotechnol 2019; 7:304. [PMID: 31737622 PMCID: PMC6839703 DOI: 10.3389/fbioe.2019.00304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022] Open
Abstract
Efficient genome editing is a prerequisite of genetic engineering in synthetic biology, which has been recently achieved by the powerful CRISPR/Cas9 system. However, the toxicity of Cas9, due to its abundant intracellular expression, has impeded its extensive applications. Here we constructed a genetic cassette with triple controls of Cas9 activities at transcriptional, translational and protein levels, together with over-expression of the ATP synthase β-subunit AtpD, for the efficient genome editing in Streptomyces. By deletion of actII-ORF4 in Streptomyces coelicolor as a model, we found that constitutive expression of cas9 had about 90% editing efficiency but dramatically reduced transformation efficiency by 900-fold. However, triple controls of Cas9 under non-induction conditions to reduce its activity increased transformation efficiency over 250-fold, and had about 10% editing efficiency if combined with atpD overexpression. Overall, our strategy accounts for about 30-fold increased possibility for successful genome editing under the non-induction condition. In addition, about 80% editing efficiency was observed at the actII-ORF4 locus after simultaneous induction with thiostrepton, theophylline and blue light for Cas9 activity reconstitution. This improved straightforward efficient genome editing was also confirmed in another locus redD. Thus, we developed a new strategy for efficient genome editing, and it could be readily and widely adaptable to other Streptomyces species to improve genetic manipulation for rapid strain engineering in Streptomyces synthetic biology, due to the highly conserved genetic cassettes in this genus.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Wei Zhao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, China
| | - Yi-Fan Liu
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Chen-Fan Sun
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Richard Burchmore
- Wolfson Wohl Cancer Research Centre, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Karl Burgess
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
13
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
14
|
Gataulin DV, Carey JN, Li J, Shah P, Grubb JT, Bishop DK. The ATPase activity of E. coli RecA prevents accumulation of toxic complexes formed by erroneous binding to undamaged double stranded DNA. Nucleic Acids Res 2018; 46:9510-9523. [PMID: 30137528 PMCID: PMC6182174 DOI: 10.1093/nar/gky748] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
The Escherichia coli RecA protein catalyzes the central step of homologous recombination using its homology search and strand exchange activity. RecA is a DNA-dependent ATPase, but its homology search and strand exchange activities are largely independent of its ATPase activity. ATP hydrolysis converts a high affinity DNA binding form, RecA-ATP, to a low affinity form RecA-ADP, thereby supporting an ATP hydrolysis-dependent dynamic cycle of DNA binding and dissociation. We provide evidence for a novel function of RecA's dynamic behavior; RecA's ATPase activity prevents accumulation of toxic complexes caused by direct binding of RecA to undamaged regions of dsDNA. We show that a mutant form of RecA, RecA-K250N, previously shown to be toxic to E. coli, is a loss-of-function ATPase-defective mutant. We use a new method for detecting RecA complexes involving nucleoid surface spreading and immunostaining. The method allows detection of damage-induced RecA foci; STED microscopy revealed these to typically be between 50 and 200 nm in length. RecA-K250N, and other toxic variants of RecA, form spontaneous DNA-bound complexes that are independent of replication and of accessory proteins required to load RecA onto tracts of ssDNA in vivo, supporting the hypothesis that RecA's expenditure of ATP serves an error correction function.
Collapse
Affiliation(s)
- Daniil V Gataulin
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Jeffrey N Carey
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Junya Li
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Parisha Shah
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Jennifer T Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| |
Collapse
|
15
|
Abstract
Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.
Collapse
Affiliation(s)
- Viktorija Globyte
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
| | - Sung Hyun Kim
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
| |
Collapse
|
16
|
TIRF-Based Single-Molecule Detection of the RecA Presynaptic Filament Dynamics. Methods Enzymol 2018; 600:233-253. [PMID: 29458760 DOI: 10.1016/bs.mie.2017.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RecA is a key protein in homologous DNA repair process. On a single-stranded (ss) DNA, which appears as an intermediate structure at a double-strand break site, RecA forms a kilobase-long presynaptic filament that mediates homology search and strand exchange reaction. RecA requires adenosine triphosphate as a cofactor that confers dynamic features to the filament such as nucleation, end-dependent growth and disassembly, scaffold shift along the ssDNA, and conformational change. Due to the complexity of the dynamics, detailed molecular mechanisms of functioning presynaptic filament have been characterized only recently after the advent of single-molecule techniques that allowed real-time observation of each kinetic process. In this chapter, single-molecule fluorescence resonance energy transfer assays, which revealed detailed molecular pictures of the presynaptic filament dynamics, will be discussed.
Collapse
|