1
|
Bakalis E, Efthymiopoulos P, Lugli F, Mitropoulos AC, Kyzas GZ, Zerbetto F. Nanobubbles in Ultrapure Water Can Self-Propel. Chemphyschem 2024; 25:e202400508. [PMID: 39230445 DOI: 10.1002/cphc.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
Nanobubbles are sub- micron-sized gas entities that find applications in a wide range of scientific fields. Typically, they are thought to diffuse according to Brownian motion. We report the existence of self-propelled motion of oxygen bulk nanobubbles in ultrapure water at body temperature. Their motion, to a large extent, is self-affine; there are different scaling exponents along the x- and y-axes as well as for the lateral displacement. We use fractal analysis, and we calculate the structure function, the normalised velocity autocorrelation function, the skewness, and the kurtosis. All descriptors attest the existence of a quasi-Gaussian stochastic process, which is classified as fractional Brownian motion. More than 50 % of the trajectories along the x-axis follow superdiffusion, while this amount drops to 30 % for motion along the y-axis as a result of the asymmetry of the field of view.
Collapse
Affiliation(s)
- Evangelos Bakalis
- Dipartimento di Chimica "G.Ciamician", Universita di Bologna, V. F. Selmi 2, 40126, Bologna, Italy
| | - Pavlos Efthymiopoulos
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, 65404, Kavala, Greece
| | - Francesca Lugli
- Dipartimento di Chimica "G.Ciamician", Universita di Bologna, V. F. Selmi 2, 40126, Bologna, Italy
| | - Athanasios C Mitropoulos
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, 65404, Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, 65404, Kavala, Greece
| | - Francesco Zerbetto
- Dipartimento di Chimica "G.Ciamician", Universita di Bologna, V. F. Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
2
|
Wang F, Hu Z, Zeng B, Xia C, Dong L, Wang H, Yang L, Wang Y. Submegahertz Nucleation of Plasmonic Vapor Microbubbles near a Solid Vertical Boundary. PHYSICAL REVIEW LETTERS 2024; 133:064001. [PMID: 39178449 DOI: 10.1103/physrevlett.133.064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2024] [Indexed: 08/25/2024]
Abstract
Laser triggered and photothermally induced vapor bubbles have emerged as promising approaches to facilitate optomechanical energy conversion for numerous applications in microfluidics and nanofluidics. Here, we report an observation of spontaneously triggered periodic nucleation of plasmonic vapor bubbles near a rigid sidewall with readily tuned nucleation frequency from 0.8 kHz to over 200 kHz. The detailed collapsing process of the vapor bubbles was experimentally and numerically investigated. We find that the lateral migration of residual bubbles toward the sidewall refreshes the laser spot area, terminates the subsequent steady bubble growth, and leads to the repeatable bubble nucleation. A mathematic model regarding the Kelvin impulses was derived. It shows that the competition between the rigid boundary induced Bjerknes force and laser irradiation caused thermal Marangoni force on collapsing bubbles governs the process. The model also leads to a criterion of γζ<0.34 for repeatable bubble nucleation, where γ is the normalized distance and ζ thermal Marangoni coefficient. This study demonstrates nucleation of violent vapor bubbles at extreme high frequencies, providing an approach to remotely realize strong localized flows in microfluidics and nanofluidics.
Collapse
Affiliation(s)
| | - Zhibin Hu
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | - Lihua Dong
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
3
|
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chem Commun (Camb) 2023; 59:12830-12846. [PMID: 37807847 DOI: 10.1039/d3cc03723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) has enabled unprecedented direct real time imaging of physicochemical processes during solution phase synthesis of metallic nanoparticles. LPTEM primarily provides images of nanometer scale, and sometimes atomic scale, metal nanoparticle crystallization processes, but provides little chemical information about organic surface ligands, metal-ligand complexes and reaction intermediates, and redox reactions. Likewise, complex electron beam-solvent interactions during LPTEM make it challenging to pinpoint the chemical processes, some involving exotic highly reactive radicals, impacting nanoparticle formation. Pairing LPTEM with correlative solution synthesis, ex situ chemical analysis, and theoretical modeling represents a powerful approach to gain a holistic understanding of the chemical processes involved in nanoparticle synthesis. In this feature article, we review recent work by our lab and others that has focused on elucidating chemical processes during nanoparticle synthesis using LPTEM and correlative chemical characterization and modeling, including mass and optical spectrometry, fluorescence microscopy, solution chemistry, and reaction kinetic modeling. In particular, we show how these approaches enable investigating redox chemistry during LPTEM, polymeric and organic capping ligands, metal deposition mechanisms on plasmonic nanoparticles, metal clusters and complexes, and multimetallic nanoparticle formation. Future avenues of research are discussed, including moving beyond electron beam induced nanoparticle formation by using light and thermal stimuli during LPTEM. We discuss prospects for real time LPTEM imaging and online chemical analysis of reaction intermediates using microfluidic flow reactors.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, College Park, MD 20742, USA
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
5
|
Fang H, Geng Z, Guan N, Zhou L, Zhang L, Hu J. Controllable generation of interfacial gas structures on the graphite surface by substrate hydrophobicity and gas oversaturation in water. SOFT MATTER 2022; 18:8251-8261. [PMID: 36278324 DOI: 10.1039/d2sm00849a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spherical nanobubbles and flat micropancakes are two typical states of gas aggregation on solid-liquid surfaces. Micropancakes, which are quasi-two-dimensional gaseous structures, are often produced accompanied by surface nanobubbles. Compared with surface nanobubbles, the intrinsic properties of micropancakes are barely understood due to the challenge of the highly efficient preparation and characterization of such structures. The hydrophobicity of the substrate and gas saturation of solvents are two crucial factors for the nucleation and stability of interfacial gas domains. Herein, we investigated the synergistic effect of the surface hydrophobicity and gas saturation on the generation of interfacial gas structures. Different surface hydrophobicities were achieved by the aging process of highly oriented pyrolytic graphite (HOPG). The results indicated that higher surface hydrophobicity and gas oversaturation could create surface nanobubbles and micropancakes with higher efficiency. Strong surface hydrophobicity could promote nanobubble nucleation and higher gas saturation would induce bigger nanobubbles. Degassed experiments could remove most of these structures and prove that they are actually gaseous domains. Finally, we draw a region diagram to describe the formation conditions of nanobubbles, micropancakes based on observations. These results would be very helpful for further understanding the formation of interfacial gas structures on the hydrophobic surface under different gas saturation.
Collapse
Affiliation(s)
- Hengxin Fang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Guan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
6
|
Fu X, Sun Z, Ji S, Liu F, Feng M, Yoo BK, Zhu Y. Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy. NANO LETTERS 2022; 22:2009-2015. [PMID: 35226510 DOI: 10.1021/acs.nanolett.1c04774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface plasmons on silver nanostructures have a broad range of tunable resonance properties in visible and near-infrared regimes, which possess wide applications in nanophotonics and optoelectronics. Here we use a femtosecond laser to excite surface plasmons on a silver film and trace the subsequent transient dynamics via photon-induced near-field electron microscopy (PINEM). A polarization experiment of PINEM demonstrates a conspicuous polarization dependence of the transient surface plasmon field on the silver film; however, unlike silver nanowires and nanorods, there is no polarization dependence for the PINEM intensity. This compelling finding suggests a thin film platform can be more easily used to identify the temporal and spatial overlaps between the pump laser and probe electron pulses in 4D ultrafast electron microscopy (UEM). Our work illustrates the femtosecond excitation and transient behavior of the surface plasmons on silver film and paves a universal, simple way for identifying the time zero in 4D UEM.
Collapse
Affiliation(s)
- Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Zepeng Sun
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Shaozheng Ji
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Fang Liu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Min Feng
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Byung-Kuk Yoo
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
7
|
Liu M, Chen L, Zhao Z, Liu M, Zhao T, Ma Y, Zhou Q, Ibrahim YS, Elzatahry AA, Li X, Zhao D. Enzyme-Based Mesoporous Nanomotors with Near-Infrared Optical Brakes. J Am Chem Soc 2022; 144:3892-3901. [PMID: 35191672 DOI: 10.1021/jacs.1c11749] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As one of the most important parameters of the nanomotors' motion, precise speed control of enzyme-based nanomotors is highly desirable in many bioapplications. However, owing to the stable physiological environment, it is still very difficult to in situ manipulate the motion of the enzyme-based nanomotors. Herein, inspired by the brakes on vehicles, the near-infrared (NIR) "optical brakes" are introduced in the glucose-driven enzyme-based mesoporous nanomotors to realize remote speed regulation for the first time. The novel nanomotors are rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of the SiO2@Au core@shell nanospheres and the enzymes-modified periodic mesoporous organosilicas (PMOs). The nanomotor can be driven by the biofuel of glucose under the catalysis of enzymes (glucose oxidase/catalase) on the PMO domain. Meanwhile, the Au nanoshell at the SiO2@Au domain enables the generation of the local thermal gradient under the NIR light irradiation, driving the nanomotor by thermophoresis. Taking advantage of the unique Janus nanostructure, the directions of the driving force induced by enzyme catalysis and the thermophoretic force induced by NIR photothermal effect are opposite. Therefore, with the NIR optical speed regulators, the glucose-driven nanomotors can achieve remote speed manipulation from 3.46 to 6.49 μm/s (9.9-18.5 body-length/s) at the fixed glucose concentration, even after covering with a biological tissue. As a proof of concept, the cellar uptake of the such mesoporous nanomotors can be remotely regulated (57.5-109 μg/mg), which offers great potential for designing smart active drug delivery systems based on the mesoporous frameworks of this novel nanomotor.
Collapse
Affiliation(s)
- Mengli Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zaiwang Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Minchao Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yuzhu Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiaoyu Zhou
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yasseen S Ibrahim
- Material Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ahmed A Elzatahry
- Material Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
8
|
Egan GC, Lau EY, Schwegler E. Multiframe Imaging of Micron and Nanoscale Bubble Dynamics. NANO LETTERS 2022; 22:1053-1058. [PMID: 35044188 DOI: 10.1021/acs.nanolett.1c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report on the direct sequential imaging of laser-induced cavitation of micron and nanoscale bubbles using Movie-Mode Dynamic Transmission Electron Microscopy (MM-DTEM). A 532 nm laser pulse (∼12 ns) was used to excite gold nanoparticles inside a ∼1.2 μm layer of water, and the resulting bubbles were observed with a series of nine electron pulses (∼10 ns) separated by as little as 40 ns peak to peak. Isolated nanobubbles were observed to collapse in less than 50 ns, while larger (∼2-3 μm) bubbles were observed to grow and collapse in less than 200 ns. Temporal profiles were generally asymmetric, possibly indicating faster growth than collapse dynamics, and the collapse time scale was found to be consistent with modeling and literature data from other techniques. More complex behavior was also observed for bubbles within proximity to each other, with interaction leading to longer lifetimes and more likely rebounding after collapse.
Collapse
Affiliation(s)
- Garth C Egan
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Edmond Y Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Eric Schwegler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
9
|
Liu Z, Cao Z, He J, Zhang H, Ge Y, Chen B. Versatile Printing of Substantial Liquid Cells for Efficiently Imaging In Situ Liquid-Phase Dynamics. NANO LETTERS 2021; 21:6882-6890. [PMID: 34387492 DOI: 10.1021/acs.nanolett.1c01901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Through its ability to image liquid-phase dynamics at nano/atomic-scale resolution, liquid-cell electron microscopy is essential for a wide range of applications, including wet-chemical synthesis, catalysis, and nanoparticle tracking, for which involved structural features are critical. However, statistical investigations by usual techniques remain challenging because of the difficulty in fabricating substantial liquid cells with appreciable efficiency. Here, we report a general approach for efficiently printing huge numbers of ready-to-use liquid cells (∼9000) within 30 s by electrospinning, with the unique feature of statistical liquid-phase studies requiring only one experimental time slot. Our solution efficiently resolves a complete transition picture of bubble evolution and also the induced nanoparticle motion. We statistically quantify the effect of the electron dose rate on the bubble variation and conclude that the bubble-driven nanoparticle motion is a ballistic-like behavior insignificant to morphological asymmetries. The versatile approach here is critical for statistical research, offering great opportunities in liquid-phase-associated dynamic studies.
Collapse
Affiliation(s)
- Zhiwen Liu
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zetan Cao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jia He
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haoran Zhang
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yujun Ge
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
10
|
Liang S, Zhang W, Xiang F. The effect of laser irradiation on reducing the noise of solid-state nanopore. NANOTECHNOLOGY 2021; 32:345301. [PMID: 33979783 DOI: 10.1088/1361-6528/ac007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The performance of solid-state nanopore is affected by the noise level. This study aimed to investigate the effect of laser irradiation on the noise performance of solid-state nanoporein situ. Laser irradiation is applied to fresh and contaminated nanopores. The measurement results show that the noise of fresh and contaminated nanopores decreases with the laser power and there is a threshold of laser power in reducing the noise of contaminated nanopores. The possible reasons for reducing noise in the laser irradiation process are discussed. The laser treatment is proven to provide a convenient method for reducing the noise of solid-state nanopore.
Collapse
Affiliation(s)
- Shengfa Liang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenchang Zhang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Feibin Xiang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
- School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Fu X, Liu S, Chen B, Tang J, Zhu Y. Observation and Control of Unidirectional Ballistic Dynamics of Nanoparticles at a Liquid-Gas Interface by 4D Electron Microscopy. ACS NANO 2021; 15:6801-6810. [PMID: 33733750 DOI: 10.1021/acsnano.0c10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding and controlling the dynamics of active Brownian objects far from equilibrium are fundamentally important for emerging technologies such as artificial micro/nanomotors for drug deliveries and noninvasive microsurgery. However, direct observation and control of unidirectional propulsion of individual nanoscale objects are technically challenging due to the required spatiotemporal resolution. Here, we report in situ visualization and manipulation of unidirectional superfast ballistic dynamics of a single-photon-activated gold nanoparticle (NP) along the liquid-gas interface by four-dimensional electron microscopy (4D EM) at nanometer and nanosecond scales. We observed that, upon repetitive femtosecond laser excitation, the NP at the liquid-gas interface exhibits a continuously superfast unidirectional translation with a linear dependence of its root mean squared velocity (νrms) on either the laser fluence or repetition rate. Under a single femtosecond pulse excitation, the NP exhibits a superfast ballistic translation at the nanosecond time scale. Combined experiment and physical modeling reveals that the superfast unidirectional, ballistic translation is driven by unidirectional random impulsive forces arising from the nanobubbles (NBs) induced by enhanced laser heating as a result of plasmonic excitation, which is controllable by tuning the laser characteristics. This directional plasmonic NB-propulsion mechanism sheds light on the design of light-controllable artificially intelligent micro/nanomotor systems.
Collapse
Affiliation(s)
- Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Siyu Liu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jau Tang
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yimei Zhu
- Condensed Matter Physics and Material Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
12
|
Huang D, Schiffbauer J, Lee E, Luo T. Ballistic Brownian motion of supercavitating nanoparticles. Phys Rev E 2021; 103:042104. [PMID: 34005868 DOI: 10.1103/physreve.103.042104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/09/2021] [Indexed: 11/07/2022]
Abstract
We show that the Brownian motion of a nanoparticle (NP) can reach a ballistic limit when intensely heated to form supercavitation. As the NP temperature increases, its Brownian motion displays a sharp transition from normal to ballistic diffusion upon the formation of a vapor bubble to encapsulate the NP. Intense heating allows the NP to instantaneously extend the bubble boundary via evaporation, so the NP moves in a low-friction gaseous environment. We find the dynamics of the supercavitating NP is largely determined by the near field effect, i.e., highly localized vapor phase property in the vicinity of the NP.
Collapse
Affiliation(s)
- Dezhao Huang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jarrod Schiffbauer
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, Colorado 81503, USA
| | - Eungkyu Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
13
|
Chemical and Laser Ablation Synthesis of Monometallic and Bimetallic Ni-Based Nanoparticles. Catalysts 2020. [DOI: 10.3390/catal10121453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The catalytic properties of nanoparticles depend on their size, shape and surface/defect structure, with the entire catalyst performance being governed by the corresponding distributions. Herein, we present two routes of mono- and bimetallic nanoparticle synthesis that enable control of the structural parameters, i.e., wet-chemical synthesis and laser ablation in liquid-phase. The latter is particularly suited to create defect-rich nanoparticles. Impregnation routes were applied to prepare Ni and NiCu nanoparticles, whereas nano- and femtosecond laser ablation in liquid-phase were employed to prepare Ni and NiAu nanoparticles. The effects of the Ni:Cu ratio in impregnation and of laser fluence and liquid-medium on laser ablation are discussed. The atomic structure and (surface) composition of the nanoparticles were characterized by electron microscopic (BF-TEM, DF-TEM, HRTEM) and spectroscopic/diffraction techniques (EDX, SAED, XPS, IR), complemented by theory (DFT). The chemically synthesized bimetallic NiCu nanoparticles initially had Cu-rich surfaces, which changed to Ni-rich upon reaction. For laser ablation, depending on conditions (fluence, type of liquid), highly defective, ordered, or core/shell-like nanoparticles were produced. The case studies highlight the specific benefits of each preparation method for catalyst synthesis and discuss the potential of nanoparticles produced by pulsed laser ablation for catalytic applications.
Collapse
|
14
|
Nanoscale-femtosecond dielectric response of Mott insulators captured by two-color near-field ultrafast electron microscopy. Nat Commun 2020; 11:5770. [PMID: 33188192 PMCID: PMC7666229 DOI: 10.1038/s41467-020-19636-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Characterizing and controlling the out-of-equilibrium state of nanostructured Mott insulators hold great promises for emerging quantum technologies while providing an exciting playground for investigating fundamental physics of strongly-correlated systems. Here, we use two-color near-field ultrafast electron microscopy to photo-induce the insulator-to-metal transition in a single VO2 nanowire and probe the ensuing electronic dynamics with combined nanometer-femtosecond resolution (10−21 m ∙ s). We take advantage of a femtosecond temporal gating of the electron pulse mediated by an infrared laser pulse, and exploit the sensitivity of inelastic electron-light scattering to changes in the material dielectric function. By spatially mapping the near-field dynamics of an individual nanowire of VO2, we observe that ultrafast photo-doping drives the system into a metallic state on a timescale of ~150 fs without yet perturbing the crystalline lattice. Due to the high versatility and sensitivity of the electron probe, our method would allow capturing the electronic dynamics of a wide range of nanoscale materials with ultimate spatiotemporal resolution. The fs control of an insulator-to-metal transition down to a few nanometers and its real-time/real space observation remain a challenge. Here, the authors demonstrate a method based on ultrafast electron microscopy to provide a nm/fs resolved view of the electronic dynamics in a single VO2 nanowire.
Collapse
|
15
|
Yesibolati MN, Mortensen KI, Sun H, Brostrøm A, Tidemand-Lichtenberg S, Mølhave K. Unhindered Brownian Motion of Individual Nanoparticles in Liquid-Phase Scanning Transmission Electron Microscopy. NANO LETTERS 2020; 20:7108-7115. [PMID: 32678608 DOI: 10.1021/acs.nanolett.0c02352] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) offers label-free imaging of nanoparticle (NP) processes in liquid with sub-nanometer spatial and millisecond temporal resolution. However, LPTEM studies have reported only on NPs moving orders of magnitude slower than expected from bulk aqueous liquid conditions, likely due to strong interactions with the LPTEM liquid-enclosing membranes. We demonstrate how scanning transmission electron microscope (STEM) imaging can be used to measure the motion of individual NPs and agglomerates, which are not hindered by such interactions. Only at low electron flux do we find that individual NPs exhibit Brownian motion consistent with optical control experiments and theoretical predictions for unhindered passive diffusive motion in bulk liquids. For increasing electron flux, we find increasingly faster than passive motion that still appears effectively Brownian. We discuss the possible origins of this beam-sample interaction. This establishes conditions for the use of STEM as a reliable tool for imaging nanoscale hydrodynamics in situ TEM.
Collapse
Affiliation(s)
- Murat Nulati Yesibolati
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kim I Mortensen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Hongyu Sun
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Anders Brostrøm
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sofie Tidemand-Lichtenberg
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kristian Mølhave
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Chen HB, Jiang D, Zhou XL, Qian C, Yang Y, Liu XW. Tracking Interfacial Dynamics of a Single Nanoparticle Using Plasmonic Scattering Interferometry. Anal Chem 2020; 92:13327-13335. [PMID: 32794762 DOI: 10.1021/acs.analchem.0c02624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to track interfacial dynamics of a single nanoparticle at the solution-solid interface is crucial for understanding physical, chemical, and biological processes, but it remains a challenge. Here, we demonstrated a plasmonic imaging technique that can track unlabeled nanoparticles at the solution-solid interface with high spatial and temporal resolutions. This technique is based on particle-induced interferometric scattering of a surface plasmonic wave, which results in a high vertical sensitivity. Using this ability, we tracked the trajectories of a single nanoparticle interacting with a surface, measured the hydrodynamically hindered diffusion of nanoparticles, and revealed the surface chemistry-dependent behavior of nanoparticles at the interface. The application for tracking formation of membranes from a lipid vesicle was demonstrated, indicating the potential for investigating a broad range of nano-objects at interfaces in a complex environment.
Collapse
Affiliation(s)
- Hai-Bo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Di Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Xiao-Li Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
18
|
Lee E, Huang D, Luo T. Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces. Nat Commun 2020; 11:2404. [PMID: 32415076 PMCID: PMC7228977 DOI: 10.1038/s41467-020-16267-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
Directed high-speed motion of nanoscale objects in fluids can have a wide range of applications like molecular machinery, nano robotics, and material assembly. Here, we report ballistic plasmonic Au nanoparticle (NP) swimmers with unprecedented speeds (~336,000 μm s−1) realized by not only optical pushing but also pulling forces from a single Gaussian laser beam. Both the optical pulling and high speeds are made possible by a unique NP-laser interaction. The Au NP excited by the laser at the surface plasmon resonance peak can generate a nanoscale bubble, which can encapsulate the NP (i.e., supercavitation) to create a virtually frictionless environment for it to move, like the Leidenfrost effect. Certain NP-in-bubble configurations can lead to the optical pulling of NP against the photon stream. The demonstrated ultra-fast, light-driven NP movement may benefit a wide range of nano- and bio-applications and provide new insights to the field of optical pulling force. Control of small particles in fluid can have a range of applications. The authors explore a phenomenon that allows an extremely low friction environment around a nanoparticle, demonstrating high-speed nanoparticles driven by optical forces in both directions of an optical beam.
Collapse
Affiliation(s)
- Eungkyu Lee
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Dezhao Huang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Center for Sustainable Energy of Notre Dame (ND Energy), University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
19
|
Jin J, Wang R, Tang J, Yang L, Feng Z, Xu C, Yang F, Gu N. Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Šípová-Jungová H, Andrén D, Jones S, Käll M. Nanoscale Inorganic Motors Driven by Light: Principles, Realizations, and Opportunities. Chem Rev 2019; 120:269-287. [DOI: 10.1021/acs.chemrev.9b00401] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hana Šípová-Jungová
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Daniel Andrén
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Steven Jones
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| |
Collapse
|
21
|
Abstract
T cells can be controllably stimulated through antigen-specific or nonspecific protocols. Accompanying functional hallmarks of T cell activation can include cytoskeletal reorganization, cell size increase, and cytokine secretion. Photon-induced near-field electron microscopy (PINEM) is used to image and quantify evanescent electric fields at the surface of T cells as a function of various stimulation conditions. While PINEM signal strength scales with multiple of the biophysical changes associated with T cell functional activation, it mostly strongly correlates with antigen-engagement of the T cell receptors, even under conditions that do not lead to functional T cell activation. PINEM image analysis suggests that a stimulation-induced reorganization of T cell surface structure, especially over length scales of a few hundred nanometers, is the dominant contributor to these PINEM signal changes. These experiments reveal that PINEM can provide a sensitive label-free probe of nanoscale cellular surface structures.
Collapse
|
22
|
Chen B, Fu X, Lysevych M, Tan HH, Jagadish C. Four-Dimensional Probing of Phase-Reaction Dynamics in Au/GaAs Nanowires. NANO LETTERS 2019; 19:781-786. [PMID: 30677299 DOI: 10.1021/acs.nanolett.8b03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoeutectic phase reaction covers the fundamental study of a chemical and physical reaction of multiple phases at the nanoscale. Here, we report the direct visualization of phase-reaction dynamics in Au/GaAs nanowires (NWs) using four-dimensional (4D) electron microscopy. The NW phase reactions were initiated with a pump laser pulse, while the following dynamics in the Au/GaAs NW was probed by a precisely time-delayed electron pulse. Single-pulse imaging reveals that the cubic zinc-blende NW presents a transient length increase within the time duration of ∼150 ns, giving the appearance of intermediate phase reactions at an early stage. A final length reduction of the NW is observed after the phase reactions have fully ended. In contrast, only length reduction is seen throughout the entire process in GaAs/AlGaAs core-shell and hexagonal wurtzite GaAs NWs. The reasons for the above intriguing phenomena are discussed. The eutectic-related phenomena in both zinc-blende and wurtzite materials offer a comprehensive understanding of phase-reaction dynamics in polytypic structures commonly available in compound semiconductors.
Collapse
Affiliation(s)
- Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xuewen Fu
- Condensed Matter Physics & Materials Science Department , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | | | | | | |
Collapse
|
23
|
Fu X, Chen B, Li C, Li H, Liao ZM, Yu D, Zewail AH. Direct Visualization of Photomorphic Reaction Dynamics of Plasmonic Nanoparticles in Liquid by Four-Dimensional Electron Microscopy. J Phys Chem Lett 2018; 9:4045-4052. [PMID: 29976067 DOI: 10.1021/acs.jpclett.8b01360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liquid-cell electron microscopy (LC-EM) provides a unique approach for in situ imaging of morphology changes of nanocrystals in liquids under electron beam irradiation. However, nanoscale real-time imaging of chemical and physical reaction processes in liquids under optical stimulus is still challenging. Here, we report direct observation of photomorphic reaction dynamics of gold nanoparticles (AuNPs) in water by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. The photoinduced agglomeration, coalescence, and fusion dynamics of AuNPs at different temperatures are studied. At low laser fluences, the AuNPs show a continuous aggregation in several seconds, and the aggregate size decreases with increasing fluence. At higher fluences close to the melting threshold of AuNPs, the aggregates further coalesced into nanoplates. While at fluences far above the melting threshold, the aggregates fully fuse into bigger NPs, which is completed within tens of nanoseconds. This liquid-cell 4D-EM would also permit study of other numerical physical and chemical reaction processes in their native environments.
Collapse
Affiliation(s)
- Xuewen Fu
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Bin Chen
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Caizhen Li
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , China
| | - Heng Li
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , China
| | - Dapeng Yu
- Institute for Quantum Science and Technology and Department of Physics , South University of Science and Technology of China (SUSTech) , Shenzhen 518055 , China
| | - Ahmed H Zewail
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
24
|
Fu X, Pollard SD, Chen B, Yoo BK, Yang H, Zhu Y. Optical manipulation of magnetic vortices visualized in situ by Lorentz electron microscopy. SCIENCE ADVANCES 2018; 4:eaat3077. [PMID: 30035226 PMCID: PMC6054509 DOI: 10.1126/sciadv.aat3077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 05/03/2023]
Abstract
Understanding the fundamental dynamics of topological vortex and antivortex naturally formed in microscale/nanoscale ferromagnetic building blocks under external perturbations is crucial to magnetic vortex-based information processing and spintronic devices. All previous studies have focused on magnetic vortex-core switching via external magnetic fields, spin-polarized currents, or spin waves, which have largely prohibited the investigation of novel spin configurations that could emerge from the ground states in ferromagnetic disks and their underlying dynamics. We report in situ visualization of femtosecond laser quenching-induced magnetic vortex changes in various symmetric ferromagnetic Permalloy disks by using Lorentz phase imaging of four-dimensional electron microscopy that enables in situ laser excitation. Besides the switching of magnetic vortex chirality and polarity, we observed with distinct occurrence frequencies a plenitude of complex magnetic structures that have never been observed by magnetic field- or current-assisted switching. These complex magnetic structures consist of a number of newly created topological magnetic defects (vortex and antivortex) strictly conserving the topological winding number, demonstrating the direct impact of topological invariants on magnetization dynamics in ferromagnetic disks. Their spin configurations show mirror or rotation symmetry due to the geometrical confinement of the disks. Combined micromagnetic simulations with the experimental observations reveal the underlying magnetization dynamics and formation mechanism of the optical quenching-induced complex magnetic structures. Their distinct occurrence rates are pertinent to their formation-growth energetics and pinning effects at the disk edge. On the basis of these findings, we propose a paradigm of optical quenching-assisted fast switching of vortex cores for the control of magnetic vortex-based information recording and spintronic devices.
Collapse
Affiliation(s)
- Xuewen Fu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Shawn D. Pollard
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Byung-Kuk Yoo
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
25
|
Draz MS, Lakshminaraasimulu NK, Krishnakumar S, Battalapalli D, Vasan A, Kanakasabapathy MK, Sreeram A, Kallakuri S, Thirumalaraju P, Li Y, Hua S, Yu XG, Kuritzkes DR, Shafiee H. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS NANO 2018; 12:5709-5718. [PMID: 29767504 PMCID: PMC6860978 DOI: 10.1021/acsnano.8b01515] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Zika virus (ZIKV) infection is an emerging pandemic threat to humans that can be fatal in newborns. Advances in digital health systems and nanoparticles can facilitate the development of sensitive and portable detection technologies for timely management of emerging viral infections. Here we report a nanomotor-based bead-motion cellphone (NBC) system for the immunological detection of ZIKV. The presence of virus in a testing sample results in the accumulation of platinum (Pt)-nanomotors on the surface of beads, causing their motion in H2O2 solution. Then the virus concentration is detected in correlation with the change in beads motion. The developed NBC system was capable of detecting ZIKV in samples with virus concentrations as low as 1 particle/μL. The NBC system allowed a highly specific detection of ZIKV in the presence of the closely related dengue virus and other neurotropic viruses, such as herpes simplex virus type 1 and human cytomegalovirus. The NBC platform technology has the potential to be used in the development of point-of-care diagnostics for pathogen detection and disease management in developed and developing countries.
Collapse
Affiliation(s)
- Mohamed Shehata Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nivethitha Kota Lakshminaraasimulu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Sanchana Krishnakumar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Dheerendranath Battalapalli
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Anish Vasan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Aparna Sreeram
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Shantanu Kallakuri
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Prudhvi Thirumalaraju
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Yudong Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Stephane Hua
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts 02129, United States
| | - Xu G. Yu
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts 02129, United States
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Corresponding Author
| |
Collapse
|
26
|
Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. Proc Natl Acad Sci U S A 2018; 115:5878-5883. [PMID: 29784824 DOI: 10.1073/pnas.1800945115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleation and growth of hydrogen nanobubbles are key initial steps in electrochemical water splitting. These processes remain largely unexplored due to a lack of proper tools to probe the nanobubble's interfacial structure with sufficient spatial and temporal resolution. We report the use of superresolution microscopy to image transient formation and growth of single hydrogen nanobubbles at the electrode/solution interface during electrocatalytic water splitting. We found hydrogen nanobubbles can be generated even at very early stages in water electrolysis, i.e., ∼500 mV before reaching its thermodynamic reduction potential. The ability to image single nanobubbles on an electrode enabled us to observe in real time the process of hydrogen spillover from ultrathin gold nanocatalysts supported on indium-tin oxide.
Collapse
|