1
|
Zhang X, Fu C, Yang Z, Tan Y, Li H, Zhang X, Chen M, Peng F, Li N. Bioinformatics-Guided Experimental Validation Identifies NQO1 as a Senescence-Ferroptosis Hub in Liver Fibrosis. Biomedicines 2025; 13:1249. [PMID: 40427075 PMCID: PMC12108982 DOI: 10.3390/biomedicines13051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: As a pivotal point for the development of liver diseases, liver fibrosis (LF) is closely associated with cellular senescence and ferroptosis. However, there is a lack of effective markers that accurately predict LF status. This study aims to identify key genes involved in LF through bioinformatics analysis and experimental validation. Methods: We used bioinformatics analysis of Gene Expression Omnibus (GEO) data to investigate the gene functions, prognostic value, and immune associations of characteristic genes in LF. Functional enrichment analysis of DEGs was performed using GO and KEGG. Immune cell types and their proportions were estimated with CIBERSORTx. In addition, we analyzed the role of NQO1 in LF using IHC, WB, PCR, and flow cytometry. Results: Bioinformatics analysis identified 10 hub genes, including AR, CDKN1A, GJA1, CTSB, HIF1A, HMGB1, NQO1, PARP1, PTEN, and TXN. Among them, NQO1 was strongly correlated with immune cell activity. Experimental validation confirmed that NQO1 is upregulated and promotes αSMA and COL1A1 expression in hepatic stellate cells (HSCs). Knockdown of NQO1 significantly affected the proliferation of HSCs. Conclusions: NQO1 plays a critical role in HSC senescence and ferroptosis, promoting HSC activation and contributing to LF progression. Our findings suggest that NQO1 may serve as a potential biomarker for LF.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Chunmeng Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyue Yang
- Department of Hepatobiliary Surgery, Liver Transplantation Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Tan
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangqian Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengru Chen
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
| |
Collapse
|
2
|
Tang D, Zylberberg J, Jia X, Choi H. Stimulus type shapes the topology of cellular functional networks in mouse visual cortex. Nat Commun 2024; 15:5753. [PMID: 38982078 PMCID: PMC11233648 DOI: 10.1038/s41467-024-49704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
On the timescale of sensory processing, neuronal networks have relatively fixed anatomical connectivity, while functional interactions between neurons can vary depending on the ongoing activity of the neurons within the network. We thus hypothesized that different types of stimuli could lead those networks to display stimulus-dependent functional connectivity patterns. To test this hypothesis, we analyzed single-cell resolution electrophysiological data from the Allen Institute, with simultaneous recordings of stimulus-evoked activity from neurons across 6 different regions of mouse visual cortex. Comparing the functional connectivity patterns during different stimulus types, we made several nontrivial observations: (1) while the frequencies of different functional motifs were preserved across stimuli, the identities of the neurons within those motifs changed; (2) the degree to which functional modules are contained within a single brain region increases with stimulus complexity. Altogether, our work reveals unexpected stimulus-dependence to the way groups of neurons interact to process incoming sensory information.
Collapse
Affiliation(s)
- Disheng Tang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
| | - Joel Zylberberg
- Department of Physics and Astronomy, and Centre for Vision Research, York University, Toronto, ON M3J 1P3, ON, Canada.
- Learning in Machines and Brains Program, CIFAR, Toronto, ON M5G 1M1, ON, Canada.
| | - Xiaoxuan Jia
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Hannah Choi
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| |
Collapse
|
3
|
Mangalam M, Seleznov I, Kolosova E, Popov A, Kelty-Stephen DG, Kiyono K. Postural control in gymnasts: anisotropic fractal scaling reveals proprioceptive reintegration in vestibular perturbation. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1393171. [PMID: 38699200 PMCID: PMC11063314 DOI: 10.3389/fnetp.2024.1393171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Dexterous postural control subtly complements movement variability with sensory correlations at many scales. The expressive poise of gymnasts exemplifies this lyrical punctuation of release with constraint, from coarse grain to fine scales. Dexterous postural control upon a 2D support surface might collapse the variation of center of pressure (CoP) to a relatively 1D orientation-a direction often oriented towards the focal point of a visual task. Sensory corrections in dexterous postural control might manifest in temporal correlations, specifically as fractional Brownian motions whose differences are more and less correlated with fractional Gaussian noises (fGns) with progressively larger and smaller Hurst exponent H. Traditional empirical work examines this arrangement of lower-dimensional compression of CoP along two orthogonal axes, anteroposterior (AP) and mediolateral (ML). Eyes-open and face-forward orientations cultivate greater variability along AP than ML axes, and the orthogonal distribution of spatial variability has so far gone hand in hand with an orthogonal distribution of H, for example, larger in AP and lower in ML. However, perturbing the orientation of task focus might destabilize the postural synergy away from its 1D distribution and homogenize the temporal correlations across the 2D support surface, resulting in narrower angles between the directions of the largest and smallest H. We used oriented fractal scaling component analysis (OFSCA) to investigate whether sensory corrections in postural control might thus become suborthogonal. OFSCA models raw 2D CoP trajectory by decomposing it in all directions along the 2D support surface and fits the directions with the largest and smallest H. We studied a sample of gymnasts in eyes-open and face-forward quiet posture, and results from OFSCA confirm that such posture exhibits the classic orthogonal distribution of temporal correlations. Head-turning resulted in a simultaneous decrease in this angle Δθ, which promptly reversed once gymnasts reoriented their heads forward. However, when vision was absent, there was only a discernible negative trend in Δθ, indicating a shift in the angle's direction but not a statistically significant one. Thus, the narrowing of Δθ may signify an adaptive strategy in postural control. The swift recovery of Δθ upon returning to a forward-facing posture suggests that the temporary reduction is specific to head-turning and does not impose a lasting burden on postural control. Turning the head reduced the angle between these two orientations, facilitating the release of postural degrees of freedom towards a more uniform spread of the CoP across both dimensions of the support surface. The innovative aspect of this work is that it shows how fractality might serve as a control parameter of adaptive mechanisms of dexterous postural control.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| | - Ivan Seleznov
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Elena Kolosova
- National University of Ukraine on Physical Education and Sport, Scientific Research Institute, Kyiv, Ukraine
- Department of Movement Physiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Anton Popov
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
- Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, Ukraine
| | - Damian G. Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, United States
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Pang X, Gao S, Liu T, Xu FX, Fan C, Zhang JF, Jiang H. Identification of STAT3 as a biomarker for cellular senescence in liver fibrosis: A bioinformatics and experimental validation study. Genomics 2024; 116:110800. [PMID: 38286349 DOI: 10.1016/j.ygeno.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Cellular senescence is associated with a dysregulated inflammatory response, which is an important driver of the development of liver fibrosis (LF). This study aimed to investigate the effect of cellular senescence on LF and identify potential key biomarkers through bioinformatics analysis combined with validation experiments in vivo and in vitro. METHODS The Gene Expression Omnibus (GEO) database and GeneCards database were used to download the LF dataset and the aging-related gene set, respectively. Functional enrichment analysis of differential genes was then performed using GO and KEGG. Hub genes were further screened using Cytoscape's cytoHubba. Diagnostic values for hub genes were evaluated with a receiver operating characteristic (ROC) curve. Next, CIBERSORTx was used to estimate immune cell types and ratios. Finally, in vivo and in vitro experiments validated the results of the bioinformatics analysis. Moreover, molecular docking was used to simulate drug-gene interactions. RESULTS A total of 44 aging-related differentially expressed genes (AgDEGs) were identified, and enrichment analysis showed that these genes were mainly enriched in inflammatory and immune responses. PPI network analysis identified 6 hub AgDEGs (STAT3, TNF, MMP9, CD44, TGFB1, and TIMP1), and ROC analysis showed that they all have good diagnostic value. Immune infiltration suggested that hub AgDEGs were significantly associated with M1 macrophages or other immune cells. Notably, STAT3 was positively correlated with α-SMA, COL1A1, IL-6 and IL-1β, and was mainly expressed in hepatocytes (HCs). Validation experiments showed that STAT3 expression was upregulated and cellular senescence was increased in LF mice. A co-culture system of HCs and hepatic stellate cells (HSCs) further revealed that inhibiting STAT3 reduced HCs senescence and suppressed HSCs activation. In addition, molecular docking revealed that STAT3 was a potential drug therapy target. CONCLUSIONS STAT3 may be involved in HCs senescence and promote HSCs activation, which in turn leads to the development of LF. Our findings suggest that STAT3 could be a potential biomarker for LF.
Collapse
Affiliation(s)
- Xue Pang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Shang Gao
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Tao Liu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Feng Xia Xu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Jia Fu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China.
| |
Collapse
|
5
|
Kadelka C, Butrie TM, Hilton E, Kinseth J, Schmidt A, Serdarevic H. A meta-analysis of Boolean network models reveals design principles of gene regulatory networks. SCIENCE ADVANCES 2024; 10:eadj0822. [PMID: 38215198 PMCID: PMC10786419 DOI: 10.1126/sciadv.adj0822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Gene regulatory networks (GRNs) play a central role in cellular decision-making. Understanding their structure and how it impacts their dynamics constitutes thus a fundamental biological question. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data are sparse. We assembled the largest repository of expert-curated Boolean GRN models. A meta-analysis of this diverse set of models reveals several design principles. GRNs exhibit more canalization, redundancy, and stable dynamics than expected. Moreover, they are enriched for certain recurring network motifs. This raises the important question why evolution favors these design mechanisms.
Collapse
Affiliation(s)
- Claus Kadelka
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| | | | - Evan Hilton
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Jack Kinseth
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| | - Addison Schmidt
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Haris Serdarevic
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Gyorgy A. Competition and evolutionary selection among core regulatory motifs in gene expression control. Nat Commun 2023; 14:8266. [PMID: 38092759 PMCID: PMC10719253 DOI: 10.1038/s41467-023-43327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Gene products that are beneficial in one environment may become burdensome in another, prompting the emergence of diverse regulatory schemes that carry their own bioenergetic cost. By ensuring that regulators are only expressed when needed, we demonstrate that autoregulation generally offers an advantage in an environment combining mutation and time-varying selection. Whether positive or negative feedback emerges as dominant depends primarily on the demand for the target gene product, typically to ensure that the detrimental impact of inevitable mutations is minimized. While self-repression of the regulator curbs the spread of these loss-of-function mutations, self-activation instead facilitates their propagation. By analyzing the transcription network of multiple model organisms, we reveal that reduced bioenergetic cost may contribute to the preferential selection of autoregulation among transcription factors. Our results not only uncover how seemingly equivalent regulatory motifs have fundamentally different impact on population structure, growth dynamics, and evolutionary outcomes, but they can also be leveraged to promote the design of evolutionarily robust synthetic gene circuits.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
7
|
Tang D, Zylberberg J, Jia X, Choi H. Stimulus-dependent functional network topology in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547364. [PMID: 37461471 PMCID: PMC10349950 DOI: 10.1101/2023.07.03.547364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Information is processed by networks of neurons in the brain. On the timescale of sensory processing, those neuronal networks have relatively fixed anatomical connectivity, while functional connectivity, which defines the interactions between neurons, can vary depending on the ongoing activity of the neurons within the network. We thus hypothesized that different types of stimuli, which drive different neuronal activities in the network, could lead those networks to display stimulus-dependent functional connectivity patterns. To test this hypothesis, we analyzed electrophysiological data from the Allen Brain Observatory, which utilized Neuropixels probes to simultaneously record stimulus-evoked activity from hundreds of neurons across 6 different regions of mouse visual cortex. The recordings had single-cell resolution and high temporal fidelity, enabling us to determine fine-scale functional connectivity. Comparing the functional connectivity patterns observed when different stimuli were presented to the mice, we made several nontrivial observations. First, while the frequencies of different connectivity motifs (i.e., the patterns of connectivity between triplets of neurons) were preserved across stimuli, the identities of the neurons within those motifs changed. This means that functional connectivity dynamically changes along with the input stimulus, but does so in a way that preserves the motif frequencies. Secondly, we found that the degree to which functional modules are contained within a single brain region (as opposed to being distributed between regions) increases with increasing stimulus complexity. This suggests a mechanism for how the brain could dynamically alter its computations based on its inputs. Altogether, our work reveals unexpected stimulus-dependence to the way groups of neurons interact to process incoming sensory information.
Collapse
Affiliation(s)
- Disheng Tang
- School of Life Sciences, Tsinghua University
- Quantitative Biosciences Program, Georgia Institute of Technology
- IDG/McGovern Institute for Brain Research, Tsinghua University
| | - Joel Zylberberg
- Department of Physics and Astronomy, and Centre for Vision Research, York University
- Learning in Machines and Brains Program, CIFAR
- These authors jointly supervised this work: Joel Zylberberg, Xiaoxuan Jia, Hannah Choi
| | - Xiaoxuan Jia
- School of Life Sciences, Tsinghua University
- IDG/McGovern Institute for Brain Research, Tsinghua University
- Tsinghua–Peking Center for Life Sciences
- Allen Institute for Brain Science
- These authors jointly supervised this work: Joel Zylberberg, Xiaoxuan Jia, Hannah Choi
| | - Hannah Choi
- Quantitative Biosciences Program, Georgia Institute of Technology
- School of Mathematics, Georgia Institute of Technology
- These authors jointly supervised this work: Joel Zylberberg, Xiaoxuan Jia, Hannah Choi
| |
Collapse
|
8
|
Gyorgy A, Menezes A, Arcak M. A blueprint for a synthetic genetic feedback optimizer. Nat Commun 2023; 14:2554. [PMID: 37137895 PMCID: PMC10156725 DOI: 10.1038/s41467-023-37903-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Biomolecular control enables leveraging cells as biomanufacturing factories. Despite recent advancements, we currently lack genetically encoded modules that can be deployed to dynamically fine-tune and optimize cellular performance. Here, we address this shortcoming by presenting the blueprint of a genetic feedback module to optimize a broadly defined performance metric by adjusting the production and decay rate of a (set of) regulator species. We demonstrate that the optimizer can be implemented by combining available synthetic biology parts and components, and that it can be readily integrated with existing pathways and genetically encoded biosensors to ensure its successful deployment in a variety of settings. We further illustrate that the optimizer successfully locates and tracks the optimum in diverse contexts when relying on mass action kinetics-based dynamics and parameter values typical in Escherichia coli.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Amor Menezes
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Murat Arcak
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Network motifs shape distinct functioning of Earth's moisture recycling hubs. Nat Commun 2022; 13:6574. [PMID: 36323658 PMCID: PMC9630528 DOI: 10.1038/s41467-022-34229-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Earth's hydrological cycle critically depends on the atmospheric moisture flows connecting evaporation to precipitation. Here we convert a decade of reanalysis-based moisture simulations into a high-resolution global directed network of spatial moisture provisions. We reveal global and local network structures that offer a new view of the global hydrological cycle. We identify four terrestrial moisture recycling hubs: the Amazon Basin, the Congo Rainforest, South Asia and the Indonesian Archipelago. Network motifs reveal contrasting functioning of these regions, where the Amazon strongly relies on directed connections (feed-forward loops) for moisture redistribution and the other hubs on reciprocal moisture connections (zero loops and neighboring loops). We conclude that Earth's moisture recycling hubs are characterized by specific topologies shaping heterogeneous effects of land-use changes and climatic warming on precipitation patterns.
Collapse
|
10
|
Kelty-Stephen DG, Mangalam M. Turing's cascade instability supports the coordination of the mind, brain, and behavior. Neurosci Biobehav Rev 2022; 141:104810. [PMID: 35932950 DOI: 10.1016/j.neubiorev.2022.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Turing inspired a computer metaphor of the mind and brain that has been handy and has spawned decades of empirical investigation, but he did much more and offered behavioral and cognitive sciences another metaphor-that of the cascade. The time has come to confront Turing's cascading instability, which suggests a geometrical framework driven by power laws and can be studied using multifractal formalism and multiscale probability density function analysis. Here, we review a rapidly growing body of scientific investigations revealing signatures of cascade instability and their consequences for a perceiving, acting, and thinking organism. We review work related to executive functioning (planning to act), postural control (bodily poise for turning plans into action), and effortful perception (action to gather information in a single modality and action to blend multimodal information). We also review findings on neuronal avalanches in the brain, specifically about neural participation in body-wide cascades. Turing's cascade instability blends the mind, brain, and behavior across space and time scales and provides an alternative to the dominant computer metaphor.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, USA.
| | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
11
|
Zhivkoplias EK, Vavulov O, Hillerton T, Sonnhammer ELL. Generation of Realistic Gene Regulatory Networks by Enriching for Feed-Forward Loops. Front Genet 2022; 13:815692. [PMID: 35222536 PMCID: PMC8872634 DOI: 10.3389/fgene.2022.815692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
The regulatory relationships between genes and proteins in a cell form a gene regulatory network (GRN) that controls the cellular response to changes in the environment. A number of inference methods to reverse engineer the original GRN from large-scale expression data have recently been developed. However, the absence of ground-truth GRNs when evaluating the performance makes realistic simulations of GRNs necessary. One aspect of this is that local network motif analysis of real GRNs indicates that the feed-forward loop (FFL) is significantly enriched. To simulate this properly, we developed a novel motif-based preferential attachment algorithm, FFLatt, which outperformed the popular GeneNetWeaver network generation tool in reproducing the FFL motif occurrence observed in literature-based biological GRNs. It also preserves important topological properties such as scale-free topology, sparsity, and average in/out-degree per node. We conclude that FFLatt is well-suited as a network generation module for a benchmarking framework with the aim to provide fair and robust performance evaluation of GRN inference methods.
Collapse
Affiliation(s)
- Erik K. Zhivkoplias
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Oleg Vavulov
- Bioinformatics Institute, St. Petersburg, Russia
| | - Thomas Hillerton
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik L. L. Sonnhammer
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- *Correspondence: Erik L. L. Sonnhammer,
| |
Collapse
|
12
|
Goekoop R, de Kleijn R. Permutation Entropy as a Universal Disorder Criterion: How Disorders at Different Scale Levels Are Manifestations of the Same Underlying Principle. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1701. [PMID: 34946007 PMCID: PMC8700347 DOI: 10.3390/e23121701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
What do bacteria, cells, organs, people, and social communities have in common? At first sight, perhaps not much. They involve totally different agents and scale levels of observation. On second thought, however, perhaps they share everything. A growing body of literature suggests that living systems at different scale levels of observation follow the same architectural principles and process information in similar ways. Moreover, such systems appear to respond in similar ways to rising levels of stress, especially when stress levels approach near-lethal levels. To explain such communalities, we argue that all organisms (including humans) can be modeled as hierarchical Bayesian controls systems that are governed by the same biophysical principles. Such systems show generic changes when taxed beyond their ability to correct for environmental disturbances. Without exception, stressed organisms show rising levels of 'disorder' (randomness, unpredictability) in internal message passing and overt behavior. We argue that such changes can be explained by a collapse of allostatic (high-level integrative) control, which normally synchronizes activity of the various components of a living system to produce order. The selective overload and cascading failure of highly connected (hub) nodes flattens hierarchical control, producing maladaptive behavior. Thus, we present a theory according to which organic concepts such as stress, a loss of control, disorder, disease, and death can be operationalized in biophysical terms that apply to all scale levels of organization. Given the presumed universality of this mechanism, 'losing control' appears to involve the same process anywhere, whether involving bacteria succumbing to an antibiotic agent, people suffering from physical or mental disorders, or social systems slipping into warfare. On a practical note, measures of disorder may serve as early warning signs of system failure even when catastrophic failure is still some distance away.
Collapse
Affiliation(s)
- Rutger Goekoop
- Parnassia Group, PsyQ Parnassia Academy, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Lijnbaan 4, 2512 VA Den Haag, The Netherlands
| | - Roy de Kleijn
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands;
| |
Collapse
|
13
|
Stivala A, Lomi A. Testing biological network motif significance with exponential random graph models. APPLIED NETWORK SCIENCE 2021; 6:91. [PMID: 34841042 PMCID: PMC8608783 DOI: 10.1007/s41109-021-00434-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Analysis of the structure of biological networks often uses statistical tests to establish the over-representation of motifs, which are thought to be important building blocks of such networks, related to their biological functions. However, there is disagreement as to the statistical significance of these motifs, and there are potential problems with standard methods for estimating this significance. Exponential random graph models (ERGMs) are a class of statistical model that can overcome some of the shortcomings of commonly used methods for testing the statistical significance of motifs. ERGMs were first introduced into the bioinformatics literature over 10 years ago but have had limited application to biological networks, possibly due to the practical difficulty of estimating model parameters. Advances in estimation algorithms now afford analysis of much larger networks in practical time. We illustrate the application of ERGM to both an undirected protein-protein interaction (PPI) network and directed gene regulatory networks. ERGM models indicate over-representation of triangles in the PPI network, and confirm results from previous research as to over-representation of transitive triangles (feed-forward loop) in an E. coli and a yeast regulatory network. We also confirm, using ERGMs, previous research showing that under-representation of the cyclic triangle (feedback loop) can be explained as a consequence of other topological features. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s41109-021-00434-y.
Collapse
Affiliation(s)
- Alex Stivala
- Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | - Alessandro Lomi
- Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- The University of Exeter Business School, Rennes Drive, Exeter, EX4 4PU UK
| |
Collapse
|
14
|
Gyorgy A. Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters. Life (Basel) 2021; 11:life11111150. [PMID: 34833026 PMCID: PMC8624834 DOI: 10.3390/life11111150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Multistable switches are ubiquitous building blocks in both systems and synthetic biology. Given their central role, it is thus imperative to understand how their fundamental properties depend not only on the tunable biophysical properties of the switches themselves, but also on their genetic context. To this end, we reveal in this article how these factors shape the essential characteristics of toggle switches implemented using leaky promoters such as their stability and robustness to noise, both at single-cell and population levels. In particular, our results expose the roles that competition for scarce transcriptional and translational resources, promoter leakiness, and cell-to-cell heterogeneity collectively play. For instance, the interplay between protein expression from leaky promoters and the associated cost of relying on shared cellular resources can give rise to tristable dynamics even in the absence of positive feedback. Similarly, we demonstrate that while promoter leakiness always acts against multistability, resource competition can be leveraged to counteract this undesirable phenomenon. Underpinned by a mechanistic model, our results thus enable the context-aware rational design of multistable genetic switches that are directly translatable to experimental considerations, and can be further leveraged during the synthesis of large-scale genetic systems using computer-aided biodesign automation platforms.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
15
|
Pieters PA, Nathalia BL, van der Linden AJ, Yin P, Kim J, Huck WTS, de Greef TFA. Cell-Free Characterization of Coherent Feed-Forward Loop-Based Synthetic Genetic Circuits. ACS Synth Biol 2021; 10:1406-1416. [PMID: 34061505 PMCID: PMC8218305 DOI: 10.1021/acssynbio.1c00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Regulatory pathways
inside living cells employ feed-forward architectures
to fulfill essential signal processing functions that aid in the interpretation
of various types of inputs through noise-filtering, fold-change detection
and adaptation. Although it has been demonstrated computationally
that a coherent feed-forward loop (CFFL) can function as noise filter,
a property essential to decoding complex temporal signals, this motif
has not been extensively characterized experimentally or integrated
into larger networks. Here we use post-transcriptional regulation
to implement and characterize a synthetic CFFL in an Escherichia
coli cell-free transcription-translation system and build
larger composite feed-forward architectures. We employ microfluidic
flow reactors to probe the response of the CFFL circuit using both
persistent and short, noise-like inputs and analyze the influence
of different circuit components on the steady-state and dynamics of
the output. We demonstrate that our synthetic CFFL implementation
can reliably repress background activity compared to a reference circuit,
but displays low potential as a temporal filter, and validate these
findings using a computational model. Our results offer practical
insight into the putative noise-filtering behavior of CFFLs and show
that this motif can be used to mitigate leakage and increase the fold-change
of the output of synthetic genetic circuits.
Collapse
Affiliation(s)
- Pascal A. Pieters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bryan L. Nathalia
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ardjan J. van der Linden
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Jongmin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Eindhoven, The Netherlands
| |
Collapse
|
16
|
Momin MSA, Biswas A. Extrinsic noise of the target gene governs abundance pattern of feed-forward loop motifs. Phys Rev E 2021; 101:052411. [PMID: 32575309 DOI: 10.1103/physreve.101.052411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Feed-forward loop (FFL) is found to be a recurrent structure in bacterial and yeast gene transcription regulatory networks. In a generic FFL, transcription factor (TF) S regulates production of another TF X while both of these TFs regulate production of final gene-product Y. Depending upon the regulatory programs (activation or repression), FFLs are grouped into two broad classes: coherent (C) and incoherent (I), each class containing four distinct types (C1-C4 and I1-I4). These FFL types are experimentally observed to occur with varied frequencies, C1 and I1 being the abundant ones. Here we present a stochastic framework singling out the absolute value of the normalized covariance of X and Y to be the determining factor behind the abundance of FFLs while considering differential promoter activities of X and Y. Our theoretical construct employs two possible signal integration mechanisms (additive and multiplicative) to synthesize Y while steady-state population level of S remains fixed or becomes tunable reflecting two possible environmental signaling scenarios. Our model categorically points out that abundant FFLs exhibit higher amount of the designated metric which has a biophysical connotation of extrinsic noise for the target gene Y. Our predictions emanating from an overarching analytical expression utilizing biologically plausible parametric conditions are substantiated by stochastic simulation.
Collapse
Affiliation(s)
| | - Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009, India
| |
Collapse
|
17
|
Yong C, Gyorgy A. Stability and Robustness of Unbalanced Genetic Toggle Switches in the Presence of Scarce Resources. Life (Basel) 2021; 11:271. [PMID: 33805212 PMCID: PMC8064337 DOI: 10.3390/life11040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
While the vision of synthetic biology is to create complex genetic systems in a rational fashion, system-level behaviors are often perplexing due to the context-dependent dynamics of modules. One major source of context-dependence emerges due to the limited availability of shared resources, coupling the behavior of disconnected components. Motivated by the ubiquitous role of toggle switches in genetic circuits ranging from controlling cell fate differentiation to optimizing cellular performance, here we reveal how their fundamental dynamic properties are affected by competition for scarce resources. Combining a mechanistic model with nullcline-based stability analysis and potential landscape-based robustness analysis, we uncover not only the detrimental impacts of resource competition, but also how the unbalancedness of the switch further exacerbates them. While in general both of these factors undermine the performance of the switch (by pushing the dynamics toward monostability and increased sensitivity to noise), we also demonstrate that some of the unwanted effects can be alleviated by strategically optimized resource competition. Our results provide explicit guidelines for the context-aware rational design of toggle switches to mitigate our reliance on lengthy and expensive trial-and-error processes, and can be seamlessly integrated into the computer-aided synthesis of complex genetic systems.
Collapse
Affiliation(s)
- Chentao Yong
- Department of Chemical and Biological Engineering, New York University, New York, NY 10003, USA;
| | - Andras Gyorgy
- Department of Electrical and Computer Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
18
|
Harnessing the central dogma for stringent multi-level control of gene expression. Nat Commun 2021; 12:1738. [PMID: 33741937 PMCID: PMC7979795 DOI: 10.1038/s41467-021-21995-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Strictly controlled inducible gene expression is crucial when engineering biological systems where even tiny amounts of a protein have a large impact on function or host cell viability. In these cases, leaky protein production must be avoided, but without affecting the achievable range of expression. Here, we demonstrate how the central dogma offers a simple solution to this challenge. By simultaneously regulating transcription and translation, we show how basal expression of an inducible system can be reduced, with little impact on the maximum expression rate. Using this approach, we create several stringent expression systems displaying >1000-fold change in their output after induction and show how multi-level regulation can suppress transcriptional noise and create digital-like switches between ‘on’ and ‘off’ states. These tools will aid those working with toxic genes or requiring precise regulation and propagation of cellular signals, plus illustrate the value of more diverse regulatory designs for synthetic biology. Inducible gene expression systems should minimise leaky output and offer a large achievable range of expression. Here, the authors regulate transcription and translation together to suppress noise and create digital-like responses, while maintaining a large expression range in vivo and in vitro.
Collapse
|
19
|
Yang X, Medford JI, Markel K, Shih PM, De Paoli HC, Trinh CT, McCormick AJ, Ployet R, Hussey SG, Myburg AA, Jensen PE, Hassan MM, Zhang J, Muchero W, Kalluri UC, Yin H, Zhuo R, Abraham PE, Chen JG, Weston DJ, Yang Y, Liu D, Li Y, Labbe J, Yang B, Lee JH, Cottingham RW, Martin S, Lu M, Tschaplinski TJ, Yuan G, Lu H, Ranjan P, Mitchell JC, Wullschleger SD, Tuskan GA. Plant Biosystems Design Research Roadmap 1.0. BIODESIGN RESEARCH 2020; 2020:8051764. [PMID: 37849899 PMCID: PMC10521729 DOI: 10.34133/2020/8051764] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 10/19/2023] Open
Abstract
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - June I. Medford
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Henrique C. De Paoli
- Department of Biodesign, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cong T. Trinh
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1858, Frederiksberg, Copenhagen, Denmark
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology and the Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jessy Labbe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jun Hyung Lee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
20
|
Motifs enable communication efficiency and fault-tolerance in transcriptional networks. Sci Rep 2020; 10:9628. [PMID: 32541819 PMCID: PMC7296022 DOI: 10.1038/s41598-020-66573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Analysis of the topology of transcriptional regulatory networks (TRNs) is an effective way to study the regulatory interactions between the transcription factors (TFs) and the target genes. TRNs are characterized by the abundance of motifs such as feed forward loops (FFLs), which contribute to their structural and functional properties. In this paper, we focus on the role of motifs (specifically, FFLs) in signal propagation in TRNs and the organization of the TRN topology with FFLs as building blocks. To this end, we classify nodes participating in FFLs (termed motif central nodes) into three distinct roles (namely, roles A, B and C), and contrast them with TRN nodes having high connectivity on the basis of their potential for information dissemination, using metrics such as network efficiency, path enumeration, epidemic models and standard graph centrality measures. We also present the notion of a three tier architecture and how it can help study the structural properties of TRN based on connectivity and clustering tendency of motif central nodes. Finally, we motivate the potential implication of the structural properties of motif centrality in design of efficient protocols of information routing in communication networks as well as their functional properties in global regulation and stress response to study specific disease conditions and identification of drug targets.
Collapse
|
21
|
Wunderling N, Stumpf B, Krönke J, Staal A, Tuinenburg OA, Winkelmann R, Donges JF. How motifs condition critical thresholds for tipping cascades in complex networks: Linking micro- to macro-scales. CHAOS (WOODBURY, N.Y.) 2020; 30:043129. [PMID: 32357654 DOI: 10.1063/1.5142827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/02/2020] [Indexed: 05/24/2023]
Abstract
In this study, we investigate how specific micro-interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erdős-Rényi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the zero loop, and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled feed forward loops coincide with a strong 90% decrease in the critical coupling strength. For the highly clustered moisture recycling network in the Amazon, we observe regions of a very high motif occurrence for each of the four investigated motifs, suggesting that these regions are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erdős-Rényi network. This emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole.
Collapse
Affiliation(s)
- Nico Wunderling
- Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473 Potsdam, Germany
| | - Benedikt Stumpf
- Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473 Potsdam, Germany
| | - Jonathan Krönke
- Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473 Potsdam, Germany
| | - Arie Staal
- Stockholm Resilience Centre, Stockholm University, Stockholm SE-10691, Sweden
| | - Obbe A Tuinenburg
- Stockholm Resilience Centre, Stockholm University, Stockholm SE-10691, Sweden
| | - Ricarda Winkelmann
- Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473 Potsdam, Germany
| | - Jonathan F Donges
- Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473 Potsdam, Germany
| |
Collapse
|
22
|
Dey AK, Akcora CG, Gel YR, Kantarcioglu M. On the role of local blockchain network features in cryptocurrency price formation. CAN J STAT 2020. [DOI: 10.1002/cjs.11547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asim K. Dey
- Department of Mathematical Sciences The University of Texas at Dallas Dallas TX U.S.A
| | - Cuneyt G. Akcora
- Department of Computer Science The University of Texas at Dallas Dallas TX U.S.A
| | - Yulia R. Gel
- Department of Mathematical Sciences The University of Texas at Dallas Dallas TX U.S.A
| | - Murat Kantarcioglu
- Department of Computer Science The University of Texas at Dallas Dallas TX U.S.A
| |
Collapse
|
23
|
What network motifs tell us about resilience and reliability of complex networks. Proc Natl Acad Sci U S A 2019; 116:19368-19373. [PMID: 31511422 DOI: 10.1073/pnas.1819529116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Network motifs are often called the building blocks of networks. Analysis of motifs has been found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. This phenomenon of the impact of local structure has been recently documented in network fragility analysis and classification. At the same time, many studies of networks still tend to focus on global topological measures, often failing to unveil hidden mechanisms behind vulnerability of real networks and their dynamic response to malfunctions. In this paper, a study of motif-based analysis of network resilience and reliability under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of networks. These methods are demonstrated on electricity transmission networks of 4 European countries, and the results are compared with commonly used resilience and reliability measures.
Collapse
|
24
|
Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS One 2019; 14:e0220257. [PMID: 31365541 PMCID: PMC6668904 DOI: 10.1371/journal.pone.0220257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
The potential role of whole genome duplication (WGD) in evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary ‘dead end’, there is growing evidence that the long-term establishment of polyploidy might be linked to environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete non-polyploids at times of environmental upheaval remain indefinable. Here, we improved our recently developed bio-inspired framework, combining an artificial genome with an agent-based system, to form a population of so-called Digital Organisms (DOs), to examine the impact of WGD on evolution under different environmental scenarios mimicking extinction events of varying strength and frequency. We found that, under stable environments, DOs with non-duplicated genomes formed the majority, if not all, of the population, whereas the numbers of DOs with duplicated genomes increased under dramatically challenging environments. After tracking the evolutionary trajectories of individual genomes in terms of sequence and encoded gene regulatory networks (GRNs), we propose that duplicated GRNs might provide polyploids with better chances to acquire the drastic changes necessary to adapt to challenging conditions, thus endowing DOs with increased adaptive potential under extinction events. In contrast, under stable environments, random mutations might easily render the GRN less well adapted to such environments, a phenomenon that is exacerbated in duplicated, more complex GRNs. We believe that our results provide some additional insights into how genome duplication and polyploidy might help organisms to compete for novel niches and survive ecological turmoil, and confirm the usefulness of our computational simulation in studying the role of WGD in evolution and adaptation, helping to overcome some of the traditional limitations of evolution experiments with model organisms.
Collapse
|
25
|
Asllani M, Lambiotte R, Carletti T. Structure and dynamical behavior of non-normal networks. SCIENCE ADVANCES 2018; 4:eaau9403. [PMID: 30547090 PMCID: PMC6291309 DOI: 10.1126/sciadv.aau9403] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 05/27/2023]
Abstract
We analyze a collection of empirical networks in a wide spectrum of disciplines and show that strong non-normality is ubiquitous in network science. Dynamical processes evolving on non-normal networks exhibit a peculiar behavior, as initial small disturbances may undergo a transient phase and be strongly amplified in linearly stable systems. In addition, eigenvalues may become extremely sensible to noise and have a diminished physical meaning. We identify structural properties of networks that are associated with non-normality and propose simple models to generate networks with a tunable level of non-normality. We also show the potential use of a variety of metrics capturing different aspects of non-normality and propose their potential use in the context of the stability of complex ecosystems.
Collapse
Affiliation(s)
- Malbor Asllani
- Mathematical Institute, University of Oxford, Woodstock Rd, OX2 6GG Oxford, UK
- Department of Mathematics and naXys, Namur Institute for Complex Systems, University of Namur, rempart de la Vierge 8, B 5000 Namur, Belgium
| | - Renaud Lambiotte
- Mathematical Institute, University of Oxford, Woodstock Rd, OX2 6GG Oxford, UK
| | - Timoteo Carletti
- Department of Mathematics and naXys, Namur Institute for Complex Systems, University of Namur, rempart de la Vierge 8, B 5000 Namur, Belgium
| |
Collapse
|