1
|
Moyo B, Brown LBC, Khondaker II, Bao G. Engineering adeno-associated viral vectors for CRISPR/Cas based in vivo therapeutic genome editing. Biomaterials 2025; 321:123314. [PMID: 40203649 DOI: 10.1016/j.biomaterials.2025.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The recent approval of the first gene editing therapy for sickle cell disease and transfusion-dependent beta-thalassemia by the U.S. Food and Drug Administration (FDA) demonstrates the immense potential of CRISPR (clustered regularly interspaced short palindromic repeats) technologies to treat patients with genetic disorders that were previously considered incurable. While significant advancements have been made with ex vivo gene editing approaches, the development of in vivo CRISPR/Cas gene editing therapies has not progressed as rapidly due to significant challenges in achieving highly efficient and specific in vivo delivery. Adeno-associated viral (AAV) vectors have shown great promise in clinical trials as vehicles for delivering therapeutic transgenes and other cargos but currently face multiple limitations for effective delivery of gene editing machineries. This review elucidates these challenges and highlights the latest engineering strategies aimed at improving the efficiency, specificity, and safety profiles of AAV-packaged CRISPR/Cas systems (AAV-CRISPR) to enhance their clinical utility.
Collapse
Affiliation(s)
- Buhle Moyo
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Lucas B C Brown
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77030, USA
| | - Ishika I Khondaker
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Huang CW, Zhang WZ, Liao Y, Hu T, Li JM, Wang CL. A targeted approach: Gene and RNA editing for neurodegenerative disease treatment. Life Sci 2025; 376:123756. [PMID: 40412606 DOI: 10.1016/j.lfs.2025.123756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
With the global aging trend, neurodegenerative diseases (NDs) have emerged as a significant public health concern in the 21st century, imposing substantial economic burdens on families and society. NDs are characterized by cognitive and motor decline, resulting from a combination of genetic and environmental factors. Currently, there is no cure for NDs. Gene and RNA editing therapies offer new possibilities for addressing NDs. Gene editing involves modifying mutant genes associated with NDs, while RNA editing can directly modify RNA molecules to regulate the protein translation process, potentially influencing the expression of genes related to NDs. In this review, we examined the historical evolution, mechanisms of action, applications in NDs, advantages and disadvantages, as well as ethical and safety considerations of gene and RNA editing. While gene and RNA editing technologies hold promise for treating NDs, further research and development are needed to address safety, efficacy, and treatment timing issues, ultimately offering improved treatment options for ND patients. Our review provides valuable insights for future gene and RNA editing applications in ND treatment.
Collapse
Affiliation(s)
- Chen-Wei Huang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Wang-Zheqi Zhang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Jia-Mei Li
- Department of Neurology, The 971st Hospital of Navy, Qingdao 266071, China.
| | - Chang-Li Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
De Marchi F, Lombardi I, Bombaci A, Diamanti L, Olivero M, Perciballi E, Tornabene D, Vulcano E, Ferrari D, Mazzini L. Recent therapeutic advances in the treatment and management of amyotrophic lateral sclerosis: the era of regenerative medicine. Expert Rev Neurother 2025:1-17. [PMID: 40388191 DOI: 10.1080/14737175.2025.2508781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/17/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
INTRODUCTION Despite decades of research, effective disease-modifying treatments for Amyotrophic Lateral Sclerosis (ALS) remain scarce. The emergence of regenerative medicine presents a new frontier for ALS treatment. AREAS COVERED This review is based on a comprehensive literature search using PubMed, Scopus and clinical trials databases on the recent therapeutic advancements in ALS, giving focus to regenerative medicine. The article includes coverage of stem cell-based therapies, including mesenchymal, neural and induced pluripotent stem cells; all of which may offer potential neuroprotective and immunomodulatory effects. Gene therapy, particularly antisense oligonucleotides targeting ALS-related mutations, has gained traction, with tofersen becoming the first FDA-approved genetic therapy for ALS. The article also covers emerging approaches such as extracellular vesicles, immune-modulating therapies, and bioengineering techniques, including CRISPR-based gene editing and cellular reprogramming, that hold promise for altering disease progression. EXPERT OPINION While regenerative medicine provides hope for ALS patients, significant challenges remain. Biomarkers will play a crucial role in guiding personalized treatment strategies, ensuring targeted interventions. Future research should prioritize optimizing combinatory approaches, integrating different therapy strategies to maximize patient outcomes. Although regenerative medicine is still in its early clinical stages, its integration into ALS treatment paradigms could redefine disease management and alter its natural course.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Alessandro Bombaci
- Neurology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Luca Diamanti
- Neuroncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Marco Olivero
- Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Elisa Perciballi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Danilo Tornabene
- Neuroncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Edvige Vulcano
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Letizia Mazzini
- Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
4
|
Wang L, Ma L, Gao Z, Wang Y, Qiu J. Significance of gene therapy in neurodegenerative diseases. Front Neurosci 2025; 19:1515255. [PMID: 40406043 PMCID: PMC12095248 DOI: 10.3389/fnins.2025.1515255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/10/2025] [Indexed: 05/26/2025] Open
Abstract
Gene therapy is an approach that employs vectors to deliver genetic material to target cells, aiming to correct genes with pathogenic mutations and modulate one or more genes responsible for disease progression. It holds significant value for clinical applications and offers broad market potential due to the large patient population affected by various conditions. For instance, in 2023, the Food and Drug Administration (FDA) approved 55 new drugs, including five specifically for gene therapy targeting hematologic and rare diseases. Recently, with advancements in understanding the pathogenesis and development of neurodegenerative diseases (NDDs), gene therapy has emerged as a promising avenue for treating Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA), particularly in personalized medicine. Notably, the FDA has approved three clinical applications for combating SMA, utilizing viral vectors delivered via intravenous and intrathecal injections. However, gene therapy for other NDDs remains in clinical trials, necessitating improvements in viral vectors, exploration of new vectors, optimization of delivery routes, and further investigation into pathogenesis to identify novel targets. This review discusses recent advancements in gene therapy for NDDs, offering insights into developing new therapeutic strategies.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| | - Lin Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao, China
| | - Zihan Gao
- Department of Internal Medicine of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Wang
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| | - Jiaoxue Qiu
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| |
Collapse
|
5
|
Shiryaeva O, Tolochko C, Alekseeva T, Dyachuk V. Targets and Gene Therapy of ALS (Part 1). Int J Mol Sci 2025; 26:4063. [PMID: 40362304 PMCID: PMC12071412 DOI: 10.3390/ijms26094063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons, which causes muscle atrophy. Genetic forms of ALS are recorded only in 10% of cases. However, over the past decade, studies in genetics have substantially contributed to our understanding of the molecular mechanisms underlying ALS. The identification of key mutations such as SOD1, C9orf72, FUS, and TARDBP has led to the development of targeted therapy that is gradually being introduced into clinical trials, opening up a broad range of opportunities for correcting these mutations. In this review, we aimed to present an extensive overview of the currently known mechanisms of motor neuron degeneration associated with mutations in these genes and also the gene therapy methods for inhibiting the expression of their mutant proteins. Among these, antisense oligonucleotides, RNA interference (siRNA and miRNA), and gene-editing (CRISPR/Cas9) methods are of particular interest. Each has shown its efficacy in animal models when targeting mutant genes, whereas some of them have proven to be efficient in human clinical trials.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- Almazov Federal Medical Research Centre, 197341 Saint Petersburg, Russia; (O.S.); (C.T.); (T.A.)
| |
Collapse
|
6
|
Xie Q, Li K, Chen Y, Li Y, Jiang W, Cao W, Yu H, Fan D, Deng B. Gene therapy breakthroughs in ALS: a beacon of hope for 20% of ALS patients. Transl Neurodegener 2025; 14:19. [PMID: 40234983 PMCID: PMC12001736 DOI: 10.1186/s40035-025-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that remains incurable. Although the etiologies of ALS are diverse and the precise pathogenic mechanisms are not fully understood, approximately 20% of ALS cases are caused by genetic factors. Therefore, advancing targeted gene therapies holds significant promise, at least for the 20% of ALS patients with genetic etiologies. In this review, we summarize the main strategies and techniques of current ALS gene therapies based on ALS risk genes, and review recent findings from animal studies and clinical trials. Additionally, we highlight ALS-related genes with well-understood pathogenic mechanisms and the potential of numerous emerging gene-targeted therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wenhua Jiang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Binbin Deng
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China.
| |
Collapse
|
7
|
González-Sánchez M, Ramírez-Expósito MJ, Martínez-Martos JM. Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies. Life (Basel) 2025; 15:647. [PMID: 40283201 PMCID: PMC12029092 DOI: 10.3390/life15040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and evolving therapeutic strategies. Mechanistically, ALS arises from complex interactions between genetic mutations (e.g., in C9orf72, SOD1, TARDBP (TDP-43), and FUS) and dysregulated cellular pathways, including impaired RNA metabolism, protein misfolding, nucleocytoplasmic transport defects, and prion-like propagation of toxic aggregates. Phenotypic heterogeneity, manifesting as bulbar-, spinal-, or respiratory-onset variants, complicates its early diagnosis, which thus necessitates the rigorous application of the revised El Escorial criteria and emerging biomarkers such as neurofilament light chain. Clinically, ALS intersects with frontotemporal dementia (FTD) in up to 50% of the cases, driven by shared TDP-43 pathology and C9orf72 hexanucleotide expansions. Epidemiological studies have revealed a lifetime risk of 1:350, with male predominance (1.5:1) and peak onset between 50 and 70 years. Disease progression varies widely, with a median survival of 2-4 years post-diagnosis, underscoring the urgency for early intervention. Approved therapies, including riluzole (glutamate modulation), edaravone (antioxidant), and tofersen (antisense oligonucleotide), offer modest survival benefits, while dextromethorphan/quinidine alleviates the pseudobulbar affect. Non-pharmacological treatment advances, such as non-invasive ventilation (NIV), prolong survival by 13 months and improve quality of life, particularly in bulb-involved patients. Multidisciplinary care-integrating physical therapy, respiratory support, nutritional management, and cognitive assessments-is critical to addressing motor and non-motor symptoms (e.g., dysphagia, spasticity, sleep disturbances). Emerging therapies show promise in preclinical models. However, challenges persist in translating genetic insights into universally effective treatments. Ethical considerations, including euthanasia and end-of-life decision-making, further highlight the need for patient-centered communication and palliative strategies.
Collapse
Affiliation(s)
| | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, E23071 Jaén, Spain; (M.G.-S.); (M.J.R.-E.)
| |
Collapse
|
8
|
Ramadoss GN, Namaganda SJ, Hamilton JR, Sharma R, Chow KG, Macklin BL, Sun M, Liu JC, Fellmann C, Watry HL, Jin J, Perez BS, Espinoza CRS, Matia MP, Lu SH, Judge LM, Nussenzweig A, Adamson B, Murthy N, Doudna JA, Kampmann M, Conklin BR. Neuronal DNA repair reveals strategies to influence CRISPR editing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600517. [PMID: 38979269 PMCID: PMC11230251 DOI: 10.1101/2024.06.25.600517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Genome editing is poised to revolutionize treatment of genetic diseases, but poor understanding and control of DNA repair outcomes hinders its therapeutic potential. DNA repair is especially understudied in nondividing cells like neurons, which must withstand decades of DNA damage without replicating. This lack of knowledge limits the efficiency and precision of genome editing in clinically relevant cells. To address this, we used induced pluripotent stem cells (iPSCs) and iPSC-derived neurons to examine how postmitotic human neurons repair Cas9-induced DNA damage. We discovered that neurons can take weeks to fully resolve this damage, compared to just days in isogenic iPSCs. Furthermore, Cas9-treated neurons upregulated unexpected DNA repair genes, including factors canonically associated with replication. Manipulating this response with chemical or genetic perturbations allowed us to direct neuronal repair toward desired editing outcomes. By studying DNA repair in postmitotic human cells, we uncovered unforeseen challenges and opportunities for precise therapeutic editing.
Collapse
Affiliation(s)
- Gokul N Ramadoss
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | | | - Jennifer R Hamilton
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Rohit Sharma
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | | | | | - Mengyuan Sun
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Jia-Cheng Liu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Christof Fellmann
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
| | | | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Barbara S Perez
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Cindy R Sandoval Espinoza
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | | - Serena H Lu
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Niren Murthy
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
9
|
Xiong K, Wang X, Feng C, Zhang K, Chen D, Yang S. Vectors in CRISPR Gene Editing for Neurological Disorders: Challenges and Opportunities. Adv Biol (Weinh) 2025; 9:e2400374. [PMID: 39950370 DOI: 10.1002/adbi.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/13/2025] [Indexed: 03/18/2025]
Abstract
Diseases of the nervous system are recognized as the second leading cause of death worldwide. The global prevalence of neurological diseases, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease has seen a significant rise due to the increasing proportion of the aging population. The discovery of the clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technique has paved way for universal neurological diseases treatment. However, finding a safe and effective method to deliver CRISPR gene-editing tools remains a main challenge for genome editing therapies in vivo. Adeno-associated virus (AAV) is currently one of the most commonly used vector systems, but some issues remain unresolved, including capsid immunogenicity, off-target mutations, and potential genotoxicity. To address these concerns, researchers are actively encouraging the development of new delivery systems, like virus-like particles and nanoparticles. These novel systems have the potential to enhance targeting efficiency, thereby offering possible solutions to the current challenges. This article reviews CRISPR delivery vectors for neurological disorders treatment and explores potential solutions to overcome limitations in vector systems. Additionally, the delivery strategies of CRISPR systems are highlighted as valuable tools for studying neurological diseases, and the challenges and opportunities that these vectors present.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Xiaxia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Caicai Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| |
Collapse
|
10
|
McCallister TX, Lim CKW, Singh M, Zhang S, Ahsan NS, Terpstra WM, Xiong AY, Zeballos C MA, Powell JE, Drnevich J, Kang Y, Gaj T. A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD. Nat Commun 2025; 16:460. [PMID: 39779681 PMCID: PMC11711314 DOI: 10.1038/s41467-024-55548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
An abnormal expansion of a GGGGCC (G4C2) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the G4C2 repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits. This high-fidelity system possessed improved transcriptome-wide specificity compared to its native form and mediated targeting in motor neuron-like cells derived from a patient with ALS. These results lay the foundation for the implementation of RNA-targeting CRISPR technologies for C9ORF72-linked ALS/FTD.
Collapse
Affiliation(s)
- Tristan X McCallister
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Colin K W Lim
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mayuri Singh
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sijia Zhang
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Najah S Ahsan
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William M Terpstra
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alisha Y Xiong
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - M Alejandra Zeballos C
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson E Powell
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yifei Kang
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Liu Z, Chen S, Lo CH, Wang Q, Sun Y. All-in-one AAV-mediated Nrl gene inactivation rescues retinal degeneration in Pde6a mice. JCI Insight 2024; 9:e178159. [PMID: 39499900 DOI: 10.1172/jci.insight.178159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Retinitis pigmentosa (RP) is a complex group of inherited retinal diseases characterized by progressive death of photoreceptor cells and eventual blindness. Pde6a, which encodes a cGMP-specific phosphodiesterase, is a crucial pathogenic gene for autosomal recessive RP (RP43); there is no effective therapy for this form of RP. The compact CRISPR/Staphylococcus aureus Cas9 (CRISPR/SaCas9) system, which can be packaged into a single adeno-associated virus (AAV), holds promise for simplifying effective gene therapy. Here, we demonstrated that all-in-one AAV-SaCas9-mediated Nrl gene inactivation can efficiently prevent retinal degeneration in a RP mouse model with Pde6anmf363/nmf363 mutation. We screened single-guide RNAs capable of efficiently editing the mouse Nrl gene in N2a cells and then achieved effective gene editing by using a single AAV to codeliver SaCas9 and an optimal Nrl-sg2 into the mouse retina. Excitingly, in vivo inactivation of Nrl improved photoreceptor cell survival and rescued retinal function in treated Pde6a-deficient mice. Thus, we showed that a practical, gene-independent method, AAV-SaCas9-mediated Nrl inactivation, holds promise for future therapeutic applications in patients with RP.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
- Palo Alto Veterans Administration, Palo Alto, California, USA
| |
Collapse
|
12
|
Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed 2024; 6:1509924. [PMID: 39726634 PMCID: PMC11669675 DOI: 10.3389/fgeed.2024.1509924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine. Moreover, the current status of CRISPR therapeutics in clinical trials is discussed. Finally, we address the persisting challenges and prospects of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Rahin Shareef Hamad
- Nursing Department, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahra Kakamin Hamad
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Wan H, Qian W, Wei B, Tian K, Chen Z, Zhang J, Chen F. A bibliometric analysis of gene editing and amyotrophic lateral sclerosis (from 2004 to 2024). Front Neurosci 2024; 18:1499025. [PMID: 39659885 PMCID: PMC11629316 DOI: 10.3389/fnins.2024.1499025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Objective To learn more about gene editing and ALS, and to provide a comprehensive view of gene editing for further treatment of amyotrophic lateral sclerosis. Methods We searched 1981 records from Web of Science core collection and Pubmed, Scopus, of which 1,292 records were obtained after exclusion. We then scientifically and metrologically analyzed these records for spatial and temporal distribution, author distribution, subject categories, subject distribution, references, and keywords using R, software CiteSpace and VOSviewer. Results Our analysis provides basic information about research in the field, suggests that the field has stabilized over the past decade, and identifies potential partners for interested researchers. Current research in this area is focused on inflammatory mechanisms, immune mechanisms, related diseases, and associated cytokines in ALS. Conclusion RNA Editing, Antisense Bligonucleotide, and Glycine Receptor are cutting-edge research topics in this field, which is undergoing rapid development. We hope that this work will provide new ideas for advancing the scientific research and clinical application of ALS.
Collapse
Affiliation(s)
- Hejia Wan
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Nursing, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenli Qian
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking, China
| | - Bingqi Wei
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiyue Tian
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyi Chen
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiong Zhang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fang Chen
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Al-Khayri JM, Ravindran M, Banadka A, Vandana CD, Priya K, Nagella P, Kukkemane K. Amyotrophic Lateral Sclerosis: Insights and New Prospects in Disease Pathophysiology, Biomarkers and Therapies. Pharmaceuticals (Basel) 2024; 17:1391. [PMID: 39459030 PMCID: PMC11510162 DOI: 10.3390/ph17101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disorder marked by the gradual loss of motor neurons, leading to significant disability and eventual death. Despite ongoing research, there are still limited treatment options, underscoring the need for a deeper understanding of the disease's complex mechanisms and the identification of new therapeutic targets. This review provides a thorough examination of ALS, covering its epidemiology, pathology, and clinical features. It investigates the key molecular mechanisms, such as protein aggregation, neuroinflammation, oxidative stress, and excitotoxicity that contribute to motor neuron degeneration. The role of biomarkers is highlighted for their importance in early diagnosis and disease monitoring. Additionally, the review explores emerging therapeutic approaches, including inhibitors of protein aggregation, neuroinflammation modulators, antioxidant therapies, gene therapy, and stem cell-based treatments. The advantages and challenges of these strategies are discussed, with an emphasis on the potential for precision medicine to tailor treatments to individual patient needs. Overall, this review aims to provide a comprehensive overview of the current state of ALS research and suggest future directions for developing effective therapies.
Collapse
Affiliation(s)
- Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mamtha Ravindran
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Akshatha Banadka
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Chendanda Devaiah Vandana
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Kushalva Priya
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Praveen Nagella
- Department of Life Sciences, School of Sciences, Christ University, Bengaluru 560029, India;
| | - Kowshik Kukkemane
- Department of Life Sciences, School of Sciences, Christ University, Bengaluru 560029, India;
| |
Collapse
|
15
|
Ebrahimi P, Davoudi E, Sadeghian R, Zadeh AZ, Razmi E, Heidari R, Morowvat MH, Sadeghian I. In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7501-7530. [PMID: 38775852 DOI: 10.1007/s00210-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/01/2024] [Indexed: 10/04/2024]
Abstract
Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.
Collapse
Affiliation(s)
- Pouya Ebrahimi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Davoudi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Amin Zaki Zadeh
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emran Razmi
- Arak University of Medical Sciences, Arak, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Huang J, Fu Y, Wang A, Shi K, Peng Y, Yi Y, Yu R, Gao J, Feng J, Jiang G, Song Q, Jiang J, Chen H, Gao X. Brain Delivery of Protein Therapeutics by Cell Matrix-Inspired Biomimetic Nanocarrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405323. [PMID: 38718295 DOI: 10.1002/adma.202405323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, the cell matrix components hyaluronic acid (HA) and protamine (PRTM) are used to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitates the penetration of protein therapeutics across the BBB and enables their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitates rapid intracellular delivery and release of catalase (CAT) via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduces the latency of TBI mice and doubles the number of crossing platforms), and enhances motor function and prolongs survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jialin Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuli Fu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Antian Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexing Shi
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yidong Peng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Yi
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinchao Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyao Jiang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
17
|
Sharma R, Khan Z, Mehan S, Das Gupta G, Narula AS. Unraveling the multifaceted insights into amyotrophic lateral sclerosis: Genetic underpinnings, pathogenesis, and therapeutic horizons. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108518. [PMID: 39491718 DOI: 10.1016/j.mrrev.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS), a progressive neurodegenerative disease, primarily impairs upper and lower motor neurons, leading to debilitating motor dysfunction and eventually respiratory failure, widely known as Lou Gehrig's disease. ALS presents with diverse symptomatology, including dysarthria, dysphagia, muscle atrophy, and hyperreflexia. The prevalence of ALS varies globally, with incidence rates ranging from 1.5 to 3.8 per 100,000 individuals, significantly affecting populations aged 45-80. A complex interplay of genetic and environmental factors underpins ALS pathogenesis. Key genetic contributors include mutations in chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase type 1 (SOD1), Fusedin sarcoma (FUS), and TAR DNA-binding protein (TARDBP) genes, accounting for a considerable fraction of both familial (fALS) and sporadic (sALS) cases. The disease mechanism encompasses aberrant protein folding, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation, contributing to neuronal death. This review consolidates current insights into ALS's multifaceted etiology, highlighting the roles of environmental exposures (e.g., toxins, heavy metals) and their interaction with genetic predispositions. We emphasize the polygenic nature of ALS, where multiple genetic variations cumulatively influence disease susceptibility and progression. This aspect underscores the challenges in ALS diagnosis, which currently lacks specific biomarkers and relies on symptomatology and familial history. Therapeutic strategies for ALS, still in nascent stages, involve symptomatic management and experimental approaches targeting molecular pathways implicated in ALS pathology. Gene therapy, focusing on specific ALS mutations, and stem cell therapy emerge as promising avenues. However, effective treatments remain elusive, necessitating a deeper understanding of ALS's genetic architecture and the development of targeted therapies based on personalized medicine principles. This review aims to provide a comprehensive understanding of ALS, encouraging further research into its complex genetic underpinnings and the development of innovative, effective treatment modalities.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
18
|
Simões S, Lino M, Barrera A, Rebelo C, Tomatis F, Vilaça A, Breunig C, Neuner A, Peça J, González R, Carvalho A, Stricker S, Ferreira L. Near-Infrared Light Activated Formulation for the Spatially Controlled Release of CRISPR-Cas9 Ribonucleoprotein for Brain Gene Editing. Angew Chem Int Ed Engl 2024; 63:e202401004. [PMID: 38497898 DOI: 10.1002/anie.202401004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 03/19/2024]
Abstract
The CRISPR/Cas9 system has emerged as a promising platform for gene editing; however, the lack of an efficient and safe delivery system to introduce it into cells continues to hinder clinical translation. Here, we report a rationally designed gene-editing nanoparticle (NP) formulation for brain applications: an sgRNA:Cas9 ribonucleoprotein complex is immobilized on the NP surface by oligonucleotides that are complementary to the sgRNA. Irradiation of the formulation with a near-infrared (NIR) laser generates heat in the NP, leading to the release of the ribonucleoprotein complex. The gene-editing potential of the formulation was demonstrated in vitro at the single-cell level. The safety and gene editing of the formulation were also demonstrated in the brains of reporter mice, specifically in the subventricular zone after intracerebral administration and in the olfactory bulb after intranasal administration. The formulation presented here offers a new strategy for the spatially controlled delivery of the CRISPR system to the brain.
Collapse
Affiliation(s)
- Susana Simões
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Miguel Lino
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Angela Barrera
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina Rebelo
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Francesca Tomatis
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Andreia Vilaça
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Christopher Breunig
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Germany
| | - Andrea Neuner
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Germany
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Department of Life Science, University of Coimbra, Coimbra, Portugal
| | - Ricardo González
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Alexandra Carvalho
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Stefan Stricker
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Germany
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Deneault E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr Issues Mol Biol 2024; 46:4147-4185. [PMID: 38785523 PMCID: PMC11119904 DOI: 10.3390/cimb46050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks.
Collapse
Affiliation(s)
- Eric Deneault
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
20
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
21
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
22
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
| | | | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
23
|
Morshedzadeh F, Ghanei M, Lotfi M, Ghasemi M, Ahmadi M, Najari-Hanjani P, Sharif S, Mozaffari-Jovin S, Peymani M, Abbaszadegan MR. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol 2024; 66:179-197. [PMID: 37269466 PMCID: PMC10239226 DOI: 10.1007/s12033-023-00724-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/05/2023]
Abstract
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation in the process of gene therapy can be corrected by the CRISPR method to treat diseases that traditional methods were unable to cure. However, introduction of CRISPR/Cas9 into the clinic will be challenging because we still need to improve the technology's effectiveness, precision, and applications. In this review, we first describe the function and applications of the CRISPR-Cas9 system. We next delineate how this technology could be utilized for gene therapy of various human disorders, including cancer and infectious diseases and highlight the promising examples in the field. Finally, we document current challenges and the potential solutions to overcome these obstacles for the effective use of CRISPR-Cas9 in clinical practice.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Samaneh Sharif
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024; 11:268-282. [PMID: 37588217 PMCID: PMC10425811 DOI: 10.1016/j.gendis.2023.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
CRISPR/Cas9 is an effective gene editing tool with broad applications for the prevention or treatment of numerous diseases. It depends on CRISPR (clustered regularly interspaced short palindromic repeats) as a bacterial immune system and plays as a gene editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9 compared to other editing approaches, it has been broadly investigated to treat numerous hereditary and acquired illnesses, including cancers, hemolytic diseases, immunodeficiency disorders, cardiovascular diseases, visual maladies, neurodegenerative conditions, and a few X-linked disorders. CRISPR/Cas9 system has been used to treat cancers through a variety of approaches, with stable gene editing techniques. Here, the applications and clinical trials of CRISPR/Cas9 in various illnesses are described. Due to its high precision and efficiency, CRISPR/Cas9 strategies may treat gene-related illnesses by deleting, inserting, modifying, or blocking the expression of specific genes. The most challenging barrier to the in vivo use of CRISPR/Cas9 like off-target effects will be discussed. The use of transfection vehicles for CRISPR/Cas9, including viral vectors (such as an Adeno-associated virus (AAV)), and the development of non-viral vectors is also considered.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14155-6463, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14117-13116, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
25
|
Tuma J, Chen YJ, Collins MG, Paul A, Li J, Han H, Sharma R, Murthy N, Lee HY. Lipid Nanoparticles Deliver mRNA to the Brain after an Intracerebral Injection. Biochemistry 2023; 62:3533-3547. [PMID: 37729550 PMCID: PMC10760911 DOI: 10.1021/acs.biochem.3c00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Neurological disorders are often debilitating conditions with no cure. The majority of current therapies are palliative rather than disease-modifying; therefore, new strategies for treating neurological disorders are greatly needed. mRNA-based therapeutics have great potential for treating such neurological disorders; however, challenges with delivery have limited their clinical potential. Lipid nanoparticles (LNPs) are a promising delivery vector for the brain, given their safer toxicity profile and higher efficacy. Despite this, very little is known about LNP-mediated delivery of mRNA into the brain. Here, we employ MC3-based LNPs and successfully deliver Cre mRNA and Cas9 mRNA/Ai9 sgRNA to the adult Ai9 mouse brain; greater than half of the entire striatum and hippocampus was found to be penetrated along the rostro-caudal axis by direct intracerebral injections of MC3 LNP mRNAs. MC3 LNP Cre mRNA successfully transfected cells in the striatum (∼52% efficiency) and hippocampus (∼49% efficiency). In addition, we demonstrate that MC3 LNP Cas9 mRNA/Ai9 sgRNA edited cells in the striatum (∼7% efficiency) and hippocampus (∼3% efficiency). Further analysis demonstrates that MC3 LNPs mediate mRNA delivery to multiple cell types including neurons, astrocytes, and microglia in the brain. Overall, LNP-based mRNA delivery is effective in brain tissue and shows great promise for treating complex neurological disorders.
Collapse
Affiliation(s)
- Jan Tuma
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00 Plzen, Czech Republic
| | - Yu-Ju Chen
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Michael G. Collins
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Abhik Paul
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Rohit Sharma
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| |
Collapse
|
26
|
McCallister TX, Lim CKW, Terpstra WM, Alejandra Zeballos C M, Zhang S, Powell JE, Gaj T. A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571328. [PMID: 38168370 PMCID: PMC10760048 DOI: 10.1101/2023.12.12.571328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An abnormal expansion of a GGGGCC hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we developed a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform effectively curbed the expression of the GGGGCC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci and reversed transcriptional deficits. This high-fidelity Cas13 variant possessed improved transcriptome-wide specificity compared to its native form and mediated efficient targeting in motor neuron-like cells derived from a patient with ALS. Our results lay the foundation for the implementation of RNA-targeting CRISPR technologies for C9ORF72-linked ALS/FTD.
Collapse
Affiliation(s)
- Tristan X. McCallister
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Colin K. W. Lim
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William M. Terpstra
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - M. Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jackson E. Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Yang ZX, Fu YW, Zhao JJ, Zhang F, Li SA, Zhao M, Wen W, Zhang L, Cheng T, Zhang JP, Zhang XB. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1206-1220. [PMID: 36549468 PMCID: PMC11082263 DOI: 10.1016/j.gpb.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
A series of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) systems have been engineered for genome editing. The most widely used Cas9 is SpCas9 from Streptococcus pyogenes and SaCas9 from Staphylococcus aureus. However, a comparison of their detailed gene editing outcomes is still lacking. By characterizing the editing outcomes of 11 sites in human induced pluripotent stem cells (iPSCs) and K562 cells, we found that SaCas9 could edit the genome with greater efficiencies than SpCas9. We also compared the effects of spacer lengths of single-guide RNAs (sgRNAs; 18-21 nt for SpCas9 and 19-23 nt for SaCas9) and found that the optimal spacer lengths were 20 nt and 21 nt for SpCas9 and SaCas9, respectively. However, the optimal spacer length for a particular sgRNA was 18-21 nt for SpCas9 and 21-22 nt for SaCas9. Furthermore, SpCas9 exhibited a more substantial bias than SaCas9 for nonhomologous end-joining (NHEJ) +1 insertion at the fourth nucleotide upstream of the protospacer adjacent motif (PAM), indicating a characteristic of a staggered cut. Accordingly, editing with SaCas9 led to higher efficiencies of NHEJ-mediated double-stranded oligodeoxynucleotide (dsODN) insertion or homology-directed repair (HDR)-mediated adeno-associated virus serotype 6 (AAV6) donor knock-in. Finally, GUIDE-seq analysis revealed that SaCas9 exhibited significantly reduced off-target effects compared with SpCas9. Our work indicates the superior performance of SaCas9 to SpCas9 in transgene integration-based therapeutic gene editing and the necessity to identify the optimal spacer length to achieve desired editing results.
Collapse
Affiliation(s)
- Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Si-Ang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
28
|
Cheng W, Huang J, Fu XQ, Tian WY, Zeng PM, Li Y, Luo ZG. Intrathecal delivery of AAV-NDNF ameliorates disease progression of ALS mice. Mol Ther 2023; 31:3277-3289. [PMID: 37766430 PMCID: PMC10638056 DOI: 10.1016/j.ymthe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/22/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a uniformly lethal neurodegenerative disease characterized by progressive deterioration of motor neurons and neuromuscular denervation. Adeno-associated virus (AAV)-mediated delivery of trophic factors is being considered as a potential disease-modifying therapeutic avenue. Here we show a marked effect of AAV-mediated over-expression of neuron-derived neurotrophic factor (NDNF) on SOD1G93A ALS model mice. First, we adopt AAV-PHP.eB capsid to enable widespread expression of target proteins in the brain and spinal cord when delivered intrathecally. Then we tested the effects of AAV-NDNF on SOD1G93A mice at different stages of disease. Interestingly, AAV-NDNF markedly improved motor performance and alleviated weight loss when delivered at early post-symptomatic stage. Injection in the middle post-symptomatic stages still improved the locomotion ability, although it did not alleviate the loss of body weight. Injection in the late stage also extended the life span of SOD1G93A mice. Furthermore, NDNF expression promoted the survival of spinal motoneurons, reduced abnormal protein aggregation, and preserved the innervated neuromuscular functions. We further analyzed the signaling pathways of NDNF expression and found that it activates cell survival and growth-associated mammalian target of rapamycin signaling pathway and downregulates apoptosis-related pathways. Thus, intrathecally AAV-NDNF delivery has provided a potential strategy for the treatment of ALS.
Collapse
Affiliation(s)
- Wei Cheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiu-Qing Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Ya Tian
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
29
|
Khlidj Y. What did CRISPR-Cas9 accomplish in its first 10 years? Biochem Med (Zagreb) 2023; 33:030601. [PMID: 37545694 PMCID: PMC10373057 DOI: 10.11613/bm.2023.030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/01/2023] [Indexed: 08/08/2023] Open
Abstract
It's been 10 years now from the debut of clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) era in which gene engineering has never been so accessible, precise and efficient. This technology, like a refined surgical procedure, has offered the ability of removing different types of disease causing mutations and restoring key proteins activity with ease of outperforming the previous resembling methods: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Additionally, CRISPR-Cas9 systems can systematically introduce genetic sequences to the specific sites in the human genome allowing to stimulate desired functions such as anti-tumoral and anti-infectious faculties. The present brief review provides an updated resume of CRISPR-Cas9's top achievements from its first appearance to the current date focusing on the breakthrough research including in vitro, in vivo and human studies. This enables the evaluation of the previous phase 'the proof-of-concept phase' and marks the beginning of the next phase which will probably bring a spate of clinical trials.
Collapse
|
30
|
Guan T, Zhou T, Zhang X, Guo Y, Yang C, Lin J, Zhang JV, Cheng Y, Marzban H, Wang YT, Kong J. Selective removal of misfolded SOD1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. Cell Mol Life Sci 2023; 80:304. [PMID: 37752364 PMCID: PMC11072549 DOI: 10.1007/s00018-023-04956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. There is no cure currently. The discovery that mutations in the gene SOD1 are a cause of ALS marks a breakthrough in the search for effective treatments for ALS. SOD1 is an antioxidant that is highly expressed in motor neurons. Human SOD1 is prone to aberrant modifications. Familial ALS-linked SOD1 variants are particularly susceptible to aberrant modifications. Once modified, SOD1 undergoes conformational changes and becomes misfolded. This study aims to determine the effect of selective removal of misfolded SOD1 on the pathogenesis of ALS. METHODS Based on the chaperone-mediated protein degradation pathway, we designed a fusion peptide named CT4 and tested its efficiency in knocking down intracellularly misfolded SOD1 and its efficacy in modifying the pathogenesis of ALS. RESULTS Expression of the plasmid carrying the CT4 sequence in human HEK cells resulted in robust removal of misfolded SOD1 induced by serum deprivation. Co-transfection of the CT4 and the G93A-hSOD1 plasmids at various ratios demonstrated a dose-dependent knockdown efficiency on G93A-hSOD1, which could be further increased when misfolding of SOD1 was enhanced by serum deprivation. Application of the full-length CT4 peptide to primary cultures of neurons expressing the G93A variant of human SOD1 revealed a time course of the degradation of misfolded SOD1; misfolded SOD1 started to decrease by 2 h after the application of CT4 and disappeared by 7 h. Intravenous administration of the CT4 peptide at 10 mg/kg to the G93A-hSOD1 reduced human SOD1 in spinal cord tissue by 68% in 24 h and 54% in 48 h in presymptomatic ALS mice. Intraperitoneal administration of the CT4 peptide starting from 60 days of age significantly delayed the onset of ALS and prolonged the lifespan of the G93A-hSOD1 mice. CONCLUSIONS The CT4 peptide directs the degradation of misfolded SOD1 in high efficiency and specificity. Selective removal of misfolded SOD1 significantly delays the onset of ALS, demonstrating that misfolded SOD1 is the toxic form of SOD1 that causes motor neuron death. The study proves that selective removal of misfolded SOD1 is a promising treatment for ALS.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosha Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Chaoxian Yang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurobiology, Southwest Medical University, Luzhou, China
| | - Justin Lin
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jiasi Vicky Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yongquan Cheng
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
31
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
32
|
Shi Y, Zhao Y, Lu L, Gao Q, Yu D, Sun M. CRISPR/Cas9: implication for modeling and therapy of amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1223777. [PMID: 37483353 PMCID: PMC10359984 DOI: 10.3389/fnins.2023.1223777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a deadly neurological disease with a complicated and variable pathophysiology yet to be fully understood. There is currently no effective treatment available to either slow or terminate it. However, recent advances in ALS genomics have linked genes to phenotypes, encouraging the creation of novel therapeutic approaches and giving researchers more tools to create efficient animal models. Genetically engineered rodent models replicating ALS disease pathology have a high predictive value for translational research. This review addresses the history of the evolution of gene editing tools, the most recent ALS disease models, and the application of CRISPR/Cas9 against ALS disease.
Collapse
Affiliation(s)
- Yajun Shi
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinqin Gao
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongyi Yu
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Miao Sun
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
33
|
Duan W, Urani E, Mattson MP. The potential of gene editing for Huntington's disease. Trends Neurosci 2023; 46:365-376. [PMID: 36907678 PMCID: PMC10121915 DOI: 10.1016/j.tins.2023.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin gene resulting in long stretches of polyglutamine repeats in the huntingtin protein. The disease involves progressive degeneration of neurons in the striatum and cerebral cortex resulting in loss of control of motor function, psychiatric problems, and cognitive deficits. There are as yet no treatments that can slow disease progression in HD. Recent advances in gene editing using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) systems and demonstrations of their ability to correct gene mutations in animal models of a range of diseases suggest that gene editing may prove effective in preventing or ameliorating HD. Here we describe (i) potential CRISPR-Cas designs and cellular delivery methods for the correction of mutant genes that cause inherited diseases, and (ii) recent preclinical findings demonstrating the efficacy of such gene-editing approaches in animal models, with a focus on HD.
Collapse
Affiliation(s)
- Wenzhen Duan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ece Urani
- Program in Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Tanihara F, Hirata M, Namula Z, Wittayarat M, Do LTK, Lin Q, Takebayashi K, Hara H, Nagahara M, Otoi T. GHR-mutant pig derived from domestic pig and microminipig hybrid zygotes using CRISPR/Cas9 system. Mol Biol Rep 2023; 50:5049-5057. [PMID: 37101010 DOI: 10.1007/s11033-023-08388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Pigs are excellent large animal models with several similarities to humans. They provide valuable insights into biomedical research that are otherwise difficult to obtain from rodent models. However, even if miniature pig strains are used, their large stature compared with other experimental animals requires a specific maintenance facility which greatly limits their usage as animal models. Deficiency of growth hormone receptor (GHR) function causes small stature phenotypes. The establishment of miniature pig strains via GHR modification will enhance their usage as animal models. Microminipig is an incredibly small miniature pig strain developed in Japan. In this study, we generated a GHR mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes derived from domestic porcine oocytes and microminipig spermatozoa. METHODS AND RESULTS First, we optimized the efficiency of five guide RNAs (gRNAs) designed to target GHR in zygotes. Embryos that had been electroporated with the optimized gRNAs and Cas9 were then transferred into recipient gilts. After embryo transfer, 10 piglets were delivered, and one carried a biallelic mutation in the GHR target region. The GHR biallelic mutant showed a remarkable growth-retardation phenotype. Furthermore, we obtained F1 pigs derived from the mating of GHR biallelic mutant with wild-type microminipig, and GHR biallelic mutant F2 pigs through sib-mating of F1 pigs. CONCLUSIONS We have successfully demonstrated the generation of biallelic GHR-mutant small-stature pigs. Backcrossing of GHR-deficient pig with microminipig will establish the smallest pig strain which can contribute significantly to the field of biomedical research.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Koki Takebayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Hiromasa Hara
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, 3290498, Japan
- Laboratory of Regenerative And Cellular Medicine, Jichi Medical University, Tochigi, 3290498, Japan
| | - Megumi Nagahara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan.
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan.
| |
Collapse
|
35
|
Datta A, Sarmah D, Kaur H, Chaudhary A, Vadak N, Borah A, Shah S, Wang X, Bhattacharya P. Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cell Mol Neurobiol 2023; 43:1019-1035. [PMID: 35751791 PMCID: PMC11414438 DOI: 10.1007/s10571-022-01242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Neurological disorders have complicated pathophysiology that may involve several genetic mutations. Conventional treatment has limitations as they only treat apparent symptoms. Although, personalized medicine is emerging as a promising neuro-intervention, lack of precision is the major pitfall. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is evolving as a technological platform that may overcome the therapeutic limitations towards precision medicine. In the future, targeting genes in neurological disorders may be the mainstay of modern therapy. The present review on CRISPR/Cas9 and its application in various neurological disorders may provide a platform for its future clinical relevance towards developing precise and personalized medicine.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Antra Chaudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Namrata Vadak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sudhir Shah
- Department of Neurology, SVPIMSR and NHL Municipal Medical College & Sterling Hospital, Ahmedabad, Gujarat, 380006, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
36
|
Phan HTL, Kim K, Lee H, Seong JK. Progress in and Prospects of Genome Editing Tools for Human Disease Model Development and Therapeutic Applications. Genes (Basel) 2023; 14:483. [PMID: 36833410 PMCID: PMC9957140 DOI: 10.3390/genes14020483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas, are widely accepted because of their diversity and enormous potential for targeted genomic modifications in eukaryotes and other animals. Moreover, rapid advances in genome editing tools have accelerated the ability to produce various genetically modified animal models for studying human diseases. Given the advances in gene editing tools, these animal models are gradually evolving toward mimicking human diseases through the introduction of human pathogenic mutations in their genome rather than the conventional gene knockout. In the present review, we summarize the current progress in and discuss the prospects for developing mouse models of human diseases and their therapeutic applications based on advances in the study of programmable nucleases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
37
|
Dhuriya YK, Naik AA. CRISPR: a tool with potential for genomic reprogramming in neurological disorders. Mol Biol Rep 2023; 50:1845-1856. [PMID: 36507966 DOI: 10.1007/s11033-022-08136-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
The intricate neural circuitry of the brain necessitates precise and synchronized transcriptional programs. Any disturbance during embryonic or adult development, whether caused by genetic or environmental factors, may result in refractory and recurrent neurological disorders. Inadequate knowledge of the pathogenic mechanisms underlying neurological disorders is the primary obstacle to the development of effective treatments, necessitating the development of alternative therapeutic approaches to identify rational molecular targets. Recently, with the evolution of CRISPR-Cas9 technology, an engineered RNA system provides precise and highly effective correction or silencing of disease-causing mutations by modulating expression and thereby avoiding the limitations of the RNA interference strategy. This article discusses the CRISPR-Cas9 technology, its mechanisms, and the limitations of the new technology. We provide a glimpse of how the far-reaching implications of CRISPR can open new avenues for the development of tools to combat neurological disorders, as well as a review of recent attempts by neuroscientists to launch therapeutic correction.
Collapse
Affiliation(s)
| | - Aijaz A Naik
- National Institute of Mental Health (NIMH), Bethesda, USA.
| |
Collapse
|
38
|
Tanihara F, Hirata M, Namula Z, Do LTK, Yoshimura N, Lin Q, Takebayashi K, Sakuma T, Yamamoto T, Otoi T. Pigs with an INS point mutation derived from zygotes electroporated with CRISPR/Cas9 and ssODN. Front Cell Dev Biol 2023; 11:884340. [PMID: 36711037 PMCID: PMC9880039 DOI: 10.3389/fcell.2023.884340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Just one amino acid at the carboxy-terminus of the B chain distinguishes human insulin from porcine insulin. By introducing a precise point mutation into the porcine insulin (INS) gene, we were able to generate genetically modified pigs that secreted human insulin; these pigs may be suitable donors for islet xenotransplantation. The electroporation of the CRISPR/Cas9 gene-editing system into zygotes is frequently used to establish genetically modified rodents, as it requires less time and no micromanipulation. However, electroporation has not been used to generate point-mutated pigs yet. In the present study, we introduced a point mutation into porcine zygotes via electroporation using the CRISPR/Cas9 system to generate INS point-mutated pigs as suitable islet donors. We first optimized the efficiency of introducing point mutations by evaluating the effect of Scr7 and the homology arm length of ssODN on improving homology-directed repair-mediated gene modification. Subsequently, we prepared electroporated zygotes under optimized conditions and transferred them to recipient gilts. Two recipients became pregnant and delivered five piglets. Three of the five piglets carried only the biallelic frame-shift mutation in the INS gene, whereas the other two successfully carried the desired point mutation. One of the two pigs mated with a WT boar, and this desired point mutation was successfully inherited in the next F1 generation. In conclusion, we successfully established genetically engineered pigs with the desired point mutation via electroporation-mediated introduction of the CRISPR/Cas9 system into zygotes, thereby avoiding the time-consuming and complicated micromanipulation method.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Naoaki Yoshimura
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Koki Takebayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan,*Correspondence: Takeshige Otoi,
| |
Collapse
|
39
|
Lejman J, Panuciak K, Nowicka E, Mastalerczyk A, Wojciechowska K, Lejman M. Gene Therapy in ALS and SMA: Advances, Challenges and Perspectives. Int J Mol Sci 2023; 24:ijms24021130. [PMID: 36674643 PMCID: PMC9860634 DOI: 10.3390/ijms24021130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Gene therapy is defined as the administration of genetic material to modify, manipulate gene expression or alter the properties of living cells for therapeutic purposes. Recent advances and improvements in this field have led to many breakthroughs in the treatment of various diseases. As a result, there has been an increasing interest in the use of these therapies to treat motor neuron diseases (MNDs), for which many potential molecular targets have been discovered. MNDs are neurodegenerative disorders that, in their most severe forms, can lead to respiratory failure and death, for instance, spinal muscular atrophy (SMA) or amyotrophic lateral sclerosis (ALS). Despite the fact that SMA has been known for many years, it is still one of the most common genetic diseases causing infant mortality. The introduction of drugs based on ASOs-nusinersen; small molecules-risdiplam; and replacement therapy (GRT)-Zolgensma has shown a significant improvement in both event-free survival and the quality of life of patients after using these therapies in the available trial results. Although there is still no drug that would effectively alleviate the course of the disease in ALS, the experience gained from SMA gene therapy gives hope for a positive outcome of the efforts to produce an effective and safe drug. The aim of this review is to present current progress and prospects for the use of gene therapy in the treatment of both SMA and ALS.
Collapse
Affiliation(s)
- Jan Lejman
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Kinga Panuciak
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Emilia Nowicka
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Angelika Mastalerczyk
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Wojciechowska
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
40
|
Mani S, Jindal D, Singh M. Gene Therapy, A Potential Therapeutic Tool for Neurological and Neuropsychiatric Disorders: Applications, Challenges and Future Perspective. Curr Gene Ther 2023; 23:20-40. [PMID: 35345999 DOI: 10.2174/1566523222666220328142427] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Neurological and neuropsychiatric disorders are the main risks for the health care system, exhibiting a huge socioeconomic load. The available range of pharmacotherapeutics mostly provides palliative consequences and fails to treat such conditions. The molecular etiology of various neurological and neuropsychiatric disorders is mostly associated with a change in genetic background, which can be inherited/triggered by other environmental factors. To address such conditions, gene therapy is considered a potential approach claiming a permanent cure of the disease primarily by deletion, silencing, or edition of faulty genes and by insertion of healthier genes. In gene therapy, vectors (viral/nonvial) play an important role in delivering the desired gene to a specific region of the brain. Targeted gene therapy has unraveled opportunities for the treatment of many neurological and neuropsychiatric disorders. For improved gene delivery, the current techniques mainly focus on designing a precise viral vector, plasmid transfection, nanotechnology, microRNA, and in vivo clustered regulatory interspaced short palindromic repeats (CRISPR)-based therapy. These latest techniques have great benefits in treating predominant neurological and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, as well as rarer diseases. Nevertheless, all these delivery methods have their limitations, including immunogenic reactions, off-target effects, and a deficiency of effective biomarkers to appreciate the effectiveness of therapy. In this review, we present a summary of the current methods in targeted gene delivery, followed by the limitations and future direction of gene therapy for the cure of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Divya Jindal
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Manisha Singh
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| |
Collapse
|
41
|
Koike Y, Onodera O. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. Front Neurosci 2023; 17:1131758. [PMID: 36895420 PMCID: PMC9989161 DOI: 10.3389/fnins.2023.1131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons. Currently, there are no effective biomarkers and fundamental therapies for this disease. Dysregulation in RNA metabolism plays a critical role in the pathogenesis of ALS. With the contribution of Next Generation Sequencing, the functions of non-coding RNAs (ncRNAs) have gained increasing interests. Especially, micro RNAs (miRNAs), which are tissue-specific small ncRNAs of about 18-25 nucleotides, have emerged as key regulators of gene expression to target multiple molecules and pathways in the central nervous system (CNS). Despite intensive recent research in this field, the crucial links between ALS pathogenesis and miRNAs remain unclear. Many studies have revealed that ALS-related RNA binding proteins (RBPs), such as TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS), regulate miRNAs processing in both the nucleus and cytoplasm. Of interest, Cu2+/Zn2+ superoxide dismutase (SOD1), a non-RBP associated with familial ALS, shows partially similar properties to these RBPs via the dysregulation of miRNAs in the cellular pathway related to ALS. The identification and validation of miRNAs are important to understand the physiological gene regulation in the CNS, and the pathological implications in ALS, leading to a new avenue for early diagnosis and gene therapies. Here, we offer a recent overview regarding the mechanism underlying the functions of multiple miRNAs across TDP-43, FUS, and SOD1 with the context of cell biology, and challenging for clinical applications in ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
42
|
Camu W, De La Cruz E, Esselin F. Therapeutic tools for familial ALS. Rev Neurol (Paris) 2023; 179:49-53. [PMID: 36503675 DOI: 10.1016/j.neurol.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Familial ALS (FALS) accounts for 10 to 15% of ALS cases. In more than 70% of FALS patients, a causal gene is identified and animal models have been developed for a subset of them, mainly for the most frequently mutated genes. Therapeutic tools to treat those patients are dominated by gene-specific therapy and the most advanced approaches target the SOD1 gene mutations. Either by direct delivery of antisense oligonucleotides (ASO) or using viral vectors such as adenoviruses (AAV) to deliver ASOs, gene specific therapies have shown promising results in animal models. The recent use of subpial injections of AAV9+anti SOD1 ASO now shows that the disease is completely prevented or stopped in the animal, depending on the moment of injection, e.g., before or after disease onset. However, the use of viral vectors in humans seems to be limited at least by their immunogenicity. Antibody-based therapies are also efficient to treat animal models, but to a lesser extent. Most of the experiments targeted the SOD1 protein in its misfolded conformation. This approach seems better tolerated than the AAV one, an important limit being the choice of the epitope. Unexpectedly, some advances in treating the C9ORF72 animal model have been obtained using a modulation of microbiota, and this strategy has the great advantage to have an easy route of administration and a good safety profile. The landscape of experimental FALS treatment is rapidly evolving and results are promising. This is an important unmet need for ALS patients and several human phase I, II and III trials are ongoing.
Collapse
Affiliation(s)
- W Camu
- Explorations neurologiques et centre de référence SLA, université de Montpellier, CHU Gui de Chauliac, INM, Inserm, Montpellier, France.
| | - E De La Cruz
- Explorations neurologiques et centre de référence SLA, université de Montpellier, CHU Gui de Chauliac, INM, Inserm, Montpellier, France
| | - F Esselin
- Explorations neurologiques et centre de référence SLA, université de Montpellier, CHU Gui de Chauliac, INM, Inserm, Montpellier, France
| |
Collapse
|
43
|
In vivo genome editing using novel AAV-PHP variants rescues motor function deficits and extends survival in a SOD1-ALS mouse model. Gene Ther 2022; 30:443-454. [PMID: 36450833 PMCID: PMC9713118 DOI: 10.1038/s41434-022-00375-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels. Here, we utilized AAV-PHP.B variants to deliver CRISPR-Cas9 guide RNAs designed to disrupt the human SOD1 (huSOD1) transgene in SOD1G93A mice. A one-time intracerebroventricular injection of AAV.PHP.B-huSOD1-sgRNA into neonatal H11Cas9 SOD1G93A mice caused robust and sustained mutant huSOD1 protein reduction in the cortex and spinal cord, and restored motor function. Neonatal treatment also reduced spinal motor neuron loss, denervation at neuromuscular junction (NMJ) and muscle atrophy, diminished axonal damage and preserved compound muscle action potential throughout the lifespan of treated mice. SOD1G93A treated mice achieved significant disease-free survival, extending lifespan by more than 110 days. Importantly, a one-time intrathecal or intravenous injection of AAV.PHP.eB-huSOD1-sgRNA in adult H11Cas9 SOD1G93A mice, immediately before symptom onset, also extended lifespan by at least 170 days. We observed substantial protection against disease progression, demonstrating the utility of our CRISPR editing preclinical approach for target evaluation. Our approach uncovered key parameters (e.g., AAV capsid, Cas9 expression) that resulted in improved efficacy compared to similar approaches and can also serve to accelerate drug target validation.
Collapse
|
44
|
Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials 2022; 291:121876. [PMID: 36334354 PMCID: PMC10018374 DOI: 10.1016/j.biomaterials.2022.121876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 12/07/2022]
Abstract
Since its mechanism discovery in 2012 and the first application for mammalian genome editing in 2013, CRISPR-Cas9 has revolutionized the genome engineering field and created countless opportunities in both basic science and translational medicine. The first clinical trial of CRISPR therapeutics was initiated in 2016, which employed ex vivo CRISPR-Cas9 edited PD-1 knockout T cells for the treatment of non-small cell lung cancer. So far there have been dozens of clinical trials registered on ClinicalTrials.gov in regard to using the CRISPR-Cas9 genome editing as the main intervention for therapeutic applications; however, most of these studies use ex vivo genome editing approach, and only a few apply the in vivo editing strategy. Compared to ex vivo editing, in vivo genome editing bypasses tedious procedures related to cell isolation, maintenance, selection, and transplantation. It is also applicable to a wide range of diseases and disorders. The main obstacles to the successful translation of in vivo therapeutic genome editing include the lack of safe and efficient delivery system and safety concerns resulting from the off-target effects. In this review, we highlight the therapeutic applications of in vivo genome editing mediated by the CRISPR-Cas9 system. Following a brief introduction of the history, biology, and functionality of CRISPR-Cas9, we showcase a series of exemplary studies in regard to the design and implementation of in vivo genome editing systems that target the brain, inner ear, eye, heart, liver, lung, muscle, skin, immune system, and tumor. Current challenges and opportunities in the field of CRISPR-enabled therapeutic in vivo genome editing are also discussed.
Collapse
Affiliation(s)
- Kun Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Daniel Zapata
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Yan Tang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Yamin Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
45
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
46
|
Chao Y, Qin Y, Zou X, Wang X, Hu C, Xia F, Zou C. Promising therapeutic aspects in human genetic imprinting disorders. Clin Epigenetics 2022; 14:146. [PMID: 36371218 PMCID: PMC9655922 DOI: 10.1186/s13148-022-01369-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon of monoallelic gene expression pattern depending on parental origin. In humans, congenital imprinting disruptions resulting from genetic or epigenetic mechanisms can cause a group of diseases known as genetic imprinting disorders (IDs). Genetic IDs involve several distinct syndromes sharing homologies in terms of genetic etiologies and phenotypic features. However, the molecular pathogenesis of genetic IDs is complex and remains largely uncharacterized, resulting in a lack of effective therapeutic approaches for patients. In this review, we begin with an overview of the genomic and epigenomic molecular basis of human genetic IDs. Notably, we address ethical aspects as a priority of employing emerging techniques for therapeutic applications in human IDs. With a particular focus, we delineate the current field of emerging therapeutics for genetic IDs. We briefly summarize novel symptomatic drugs and highlight the key milestones of new techniques and therapeutic programs as they stand today which can offer highly promising disease-modifying interventions for genetic IDs accompanied by various challenges.
Collapse
Affiliation(s)
- Yunqi Chao
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Yifang Qin
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Xinyi Zou
- grid.13402.340000 0004 1759 700XZhejiang University City College, Hangzhou, 310015 Zhejiang China
| | - Xiangzhi Wang
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chenxi Hu
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Fangling Xia
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chaochun Zou
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| |
Collapse
|
47
|
Efficient Gene Expression in Human Stem Cell Derived-Cortical Organoids Using Adeno Associated Virus. Cells 2022; 11:cells11203194. [PMID: 36291062 PMCID: PMC9601198 DOI: 10.3390/cells11203194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cortical organoids are 3D structures derived either from human embryonic stem cells or human induced pluripotent stem cells with their use exploding in recent years due to their ability to better recapitulate the human brain in vivo in respect to organization; differentiation; and polarity. Adeno-associated viruses (AAVs) have emerged in recent years as the vectors of choice for CNS-targeted gene therapy. Here; we compare the use of AAVs as a mode of gene expression in cortical organoids; over traditional methods such as lipofectamine and electroporation and demonstrate its ease-of-use in generating quick disease models through expression of different variants of the central gene—TDP-43—implicated in amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
|
48
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
49
|
De Plano LM, Calabrese G, Conoci S, Guglielmino SPP, Oddo S, Caccamo A. Applications of CRISPR-Cas9 in Alzheimer's Disease and Related Disorders. Int J Mol Sci 2022; 23:ijms23158714. [PMID: 35955847 PMCID: PMC9368966 DOI: 10.3390/ijms23158714] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura M. De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Salvatore P. P. Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
50
|
Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents. Cell 2022; 185:2806-2827. [PMID: 35798006 PMCID: PMC9454337 DOI: 10.1016/j.cell.2022.03.045] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
Abstract
In vivo gene editing therapies offer the potential to treat the root causes of many genetic diseases. Realizing the promise of therapeutic in vivo gene editing requires the ability to safely and efficiently deliver gene editing agents to relevant organs and tissues in vivo. Here, we review current delivery technologies that have been used to enable therapeutic in vivo gene editing, including viral vectors, lipid nanoparticles, and virus-like particles. Since no single delivery modality is likely to be appropriate for every possible application, we compare the benefits and drawbacks of each method and highlight opportunities for future improvements.
Collapse
Affiliation(s)
- Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|