1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Yamamoto T, Yamazaki T, Ninomiya K, Nakagawa S, Hirose T. Biophysical Aspect of Assembly and Regulation of Nuclear Bodies Scaffolded by Architectural RNA. J Mol Biol 2025; 437:169016. [PMID: 39978724 DOI: 10.1016/j.jmb.2025.169016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
A growing body of evidence suggests that nuclear bodies, condensates of RNAs and proteins within the nucleus, are assembled through liquid-liquid phase separation. Some nuclear bodies, such as paraspeckles, are scaffolded by a class of RNAs known as architectural RNAs. From a materials science perspective, RNAs are categorized as polymers, which have been extensively studied in soft matter physics. While soft matter physics has the potential to provide significant insights, it is not directly applicable because transcription and other biochemical processes differentiate RNAs from other polymers studied in this field. Therefore, an interdisciplinary research fusing molecular biology and soft matter physics offers a powerful approach to studying nuclear bodies. This review introduces the biophysical insights provided by such interdisciplinary research in the assembly and regulation of nuclear bodies.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan.
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Kensuke Ninomiya
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
3
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Duval KL, Artis AR, Goll MG. The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis. Genetics 2024; 228:iyae138. [PMID: 39166515 PMCID: PMC11457944 DOI: 10.1093/genetics/iyae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
The structural organization of eukaryotic genomes is contingent upon the fractionation of DNA into transcriptionally permissive euchromatin and repressive heterochromatin. However, we have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone 3 lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation, and bulk establishment of this mark is thought to help drive large-scale remodeling of an initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. Despite the prevalence of DNA transposons in the zebrafish genome, we found that LTR transposons are preferentially targeted for embryonic H3K9me3 deposition, with different families exhibiting distinct establishment timelines. High signal-to-noise ratios afforded by CUT&RUN revealed new, emerging sites of low-amplitude H3K9me3 that initiated before the major wave of zygotic genome activation (ZGA). Early sites of establishment predominated at specific subsets of transposons and were particularly enriched for transposon sequences with maternal piRNAs and pericentromeric localization. Notably, the number of H3K9me3 enriched sites increased linearly across blastula development, while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 min at the onset of major ZGA. Continued maturation of the H3K9me3 landscape was observed beyond the initial wave of bulk establishment.
Collapse
Affiliation(s)
- Katherine L Duval
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Ashley R Artis
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Fukushima HS, Ikeda T, Ikeda S, Takeda H. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. EMBO Rep 2024; 25:3300-3323. [PMID: 38943003 PMCID: PMC11315934 DOI: 10.1038/s44319-024-00188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Heterochromatin marks such as H3K9me3 undergo global erasure and re-establishment after fertilization, and the proper reprogramming of H3K9me3 is essential for early development. Despite the widely conserved dynamics of heterochromatin reprogramming in invertebrates and non-mammalian vertebrates, previous studies have shown that the underlying mechanisms may differ between species. Here, we investigate the molecular mechanism of H3K9me3 dynamics in medaka (Japanese killifish, Oryzias latipes) as a non-mammalian vertebrate model, and show that rapid cell cycle during cleavage stages causes DNA replication-dependent passive erasure of H3K9me3. We also find that cell cycle slowing, toward the mid-blastula transition, permits increasing nuclear accumulation of H3K9me3 histone methyltransferase Setdb1, leading to the onset of H3K9me3 re-accumulation. We further demonstrate that cell cycle length in early development also governs H3K9me3 reprogramming in zebrafish and Xenopus laevis. Together with the previous studies in invertebrates, we propose that a cell cycle length-dependent mechanism for both global erasure and re-accumulation of H3K9me3 is conserved among rapid-cleavage species of non-mammalian vertebrates and invertebrates such as Drosophila, C. elegans, Xenopus and teleost fish.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Integrative Medical Sciences, RIKEN, Yokohama, 230-0045, Japan.
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 603-8555, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Shinra Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| |
Collapse
|
6
|
Jash E, Azhar AA, Mendoza H, Tan ZM, Escher HN, Kaufman DS, Csankovszki G. XOL-1 regulates developmental timing by modulating the H3K9 landscape in C. elegans early embryos. PLoS Genet 2024; 20:e1011238. [PMID: 39146391 PMCID: PMC11349215 DOI: 10.1371/journal.pgen.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/27/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Sex determination in the nematode C. elegans is controlled by the master regulator XOL-1 during embryogenesis. Expression of xol-1 is dependent on the ratio of X chromosomes and autosomes, which differs between XX hermaphrodites and XO males. In males, xol-1 is highly expressed and in hermaphrodites, xol-1 is expressed at very low levels. XOL-1 activity is known to be critical for the proper development of C. elegans males, but its low expression was considered to be of minimal importance in the development of hermaphrodite embryos. Our study reveals that XOL-1 plays an important role as a regulator of developmental timing during hermaphrodite embryogenesis. Using a combination of imaging and bioinformatics techniques, we found that hermaphrodite embryos have an accelerated rate of cell division, as well as a more developmentally advanced transcriptional program when xol-1 is lost. Further analyses reveal that XOL-1 is responsible for regulating the timing of initiation of dosage compensation on the X chromosomes, and the appropriate expression of sex-biased transcriptional programs in hermaphrodites. We found that xol-1 mutant embryos overexpress the H3K9 methyltransferase MET-2 and have an altered H3K9me landscape. Some of these effects of the loss of xol-1 gene were reversed by the loss of met-2. These findings demonstrate that XOL-1 plays an important role as a developmental regulator in embryos of both sexes, and that MET-2 acts as a downstream effector of XOL-1 activity in hermaphrodites.
Collapse
Affiliation(s)
- Eshna Jash
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anati Alyaa Azhar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hector Mendoza
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zoey M. Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Halle Nicole Escher
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dalia S. Kaufman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Atinbayeva N, Valent I, Zenk F, Loeser E, Rauer M, Herur S, Quarato P, Pyrowolakis G, Gomez-Auli A, Mittler G, Cecere G, Erhardt S, Tiana G, Zhan Y, Iovino N. Inheritance of H3K9 methylation regulates genome architecture in Drosophila early embryos. EMBO J 2024; 43:2685-2714. [PMID: 38831123 PMCID: PMC11217351 DOI: 10.1038/s44318-024-00127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.
Collapse
Affiliation(s)
- Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085, Freiburg im Breisgau, Germany
| | - Iris Valent
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Fides Zenk
- Brain Mind Institute, School of Life Sciences EPFL, SV3809, 1015, Lausanne, Switzerland
| | - Eva Loeser
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Michael Rauer
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Shwetha Herur
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Piergiuseppe Quarato
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgos Pyrowolakis
- Centre for Biological signaling studies, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Germano Cecere
- Institute Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Cedex 15, Paris, France
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
8
|
Duval KL, Artis AR, Goll MG. The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.582530. [PMID: 38496550 PMCID: PMC10942377 DOI: 10.1101/2024.03.05.582530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The structural organization of eukaryotic genomes is contingent upon the fractionation of DNA into transcriptionally permissive euchromatin and repressive heterochromatin. However, we have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone 3 lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation and bulk establishment of this mark is thought to help drive large-scale remodeling of an initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. Despite the prevalence of DNA transposons in the zebrafish genome, we found that LTR transposons are preferentially targeted for embryonic H3K9me3 deposition, with different families exhibiting distinct establishment timelines. High signal-to-noise ratios afforded by CUT&RUN revealed new, emerging sites of low-amplitude H3K9me3 that initiated before the major wave of zygotic genome activation (ZGA). Early sites of establishment predominated at specific subsets of transposons and were particularly enriched for transposon sequences with maternal piRNAs and pericentromeric localization. Notably, the number of H3K9me3 enriched sites increased linearly across blastula development, while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 minutes at the onset of ZGA. Continued maturation of the H3K9me3 landscape was observed beyond the initial wave of bulk establishment.
Collapse
Affiliation(s)
| | - Ashley R. Artis
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Mary G. Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Gutnik S, You JE, Sawh AN, Andriollo A, Mango SE. Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes. Genome Biol 2024; 25:71. [PMID: 38486337 PMCID: PMC10941459 DOI: 10.1186/s13059-024-03199-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Recent advances in microscopy have enabled studying chromosome organization at the single-molecule level, yet little is known about inherited chromosome organization. Here we adapt single-molecule chromosome tracing to distinguish two C. elegans strains (N2 and HI) and find that while their organization is similar, the N2 chromosome influences the folding parameters of the HI chromosome, in particular the step size, across generations. Furthermore, homologous chromosomes overlap frequently, but alignment between homologous regions is rare, suggesting that transvection is unlikely. We present a powerful tool to investigate chromosome architecture and to track the parent of origin.
Collapse
Affiliation(s)
- Silvia Gutnik
- Biozentrum, University of Basel, 4056, Basel, Switzerland
- Current address: University Children's Hospital Zürich, Pediatric Oncology and Children's Research Center, Balgrist Campus AG, Lengghalde 5, 8008, Zürich, Switzerland
| | - Jia Emil You
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Ahilya N Sawh
- Biozentrum, University of Basel, 4056, Basel, Switzerland
- Current address: Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Aude Andriollo
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Susan E Mango
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
10
|
Mahana Y, Ariyoshi M, Nozawa RS, Shibata S, Nagao K, Obuse C, Shirakawa M. Structural evidence for protein-protein interaction between the non-canonical methyl-CpG-binding domain of SETDB proteins and C11orf46. Structure 2024; 32:304-315.e5. [PMID: 38159574 DOI: 10.1016/j.str.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
SETDB1 and SETDB2 mediate trimethylation of histone H3 lysine 9 (H3K9), an epigenetic hallmark of repressive chromatin. They contain a non-canonical methyl-CpG-binding domain (MBD) and bifurcated SET domain, implying interplay between H3K9 trimethylation and DNA methylation in SETDB functions. Here, we report the crystal structure of human SETDB2 MBD bound to the cysteine-rich domain of a zinc-binding protein, C11orf46. SETDB2 MBD comprises the conserved MBD core and a unique N-terminal extension. Although the MBD core has the conserved basic concave surface for DNA binding, it utilizes it for recognition of the cysteine-rich domain of C11orf46. This interaction involves the conserved arginine finger motif and the unique N-terminal extension of SETDB2 MBD, with a contribution from intermolecular β-sheet formation. Thus, the non-canonical MBD of SETDB1/2 seems to have lost methylated DNA-binding ability but gained a protein-protein interaction surface. Our findings provide insight into the molecular assembly of SETDB-associated repression complexes.
Collapse
Affiliation(s)
- Yutaka Mahana
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ryu-Suke Nozawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sachiko Shibata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan.
| |
Collapse
|
11
|
Kim S, Ramalho TR, Haynes CM. Regulation of proteostasis and innate immunity via mitochondria-nuclear communication. J Cell Biol 2024; 223:e202310005. [PMID: 38335010 PMCID: PMC10857905 DOI: 10.1083/jcb.202310005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Mitochondria are perhaps best known as the "powerhouse of the cell" for their role in ATP production required for numerous cellular activities. Mitochondria have emerged as an important signaling organelle. Here, we first focus on signaling pathways mediated by mitochondria-nuclear communication that promote protein homeostasis (proteostasis). We examine the mitochondrial unfolded protein response (UPRmt) in C. elegans, which is regulated by a transcription factor harboring both a mitochondrial- and nuclear-targeting sequence, the integrated stress response in mammals, as well as the regulation of chromatin by mitochondrial metabolites. In the second section, we explore the role of mitochondria-to-nuclear communication in the regulation of innate immunity and inflammation. Perhaps related to their prokaryotic origin, mitochondria harbor molecules also found in viruses and bacteria. If these molecules accumulate in the cytosol, they elicit the same innate immune responses as viral or bacterial infection.
Collapse
Affiliation(s)
- Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Theresa R. Ramalho
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M. Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
12
|
Abstract
Embryogenesis is characterized by dynamic chromatin remodeling and broad changes in chromosome architecture. These changes in chromatin organization are accompanied by transcriptional changes, which are crucial for the proper development of the embryo. Several independent mechanisms regulate this process of chromatin reorganization, including segregation of chromatin into heterochromatin and euchromatin, deposition of active and repressive histone modifications, and the formation of 3D chromatin domains such as TADs and LADs. These changes in chromatin structure are directly linked to developmental milestones such as the loss of developmental plasticity and acquisition of terminally differentiated cell identities. In this review we summarize these processes that underlie this chromatin reorganization and their impact on embryogenesis in the nematode C. elegans.
Collapse
Affiliation(s)
- Eshna Jash
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
An X, Lan X, Feng Z, Li X, Su Q. Histone modification: Biomarkers and potential therapies in colorectal cancer. Ann Hum Genet 2023; 87:274-284. [PMID: 37712180 DOI: 10.1111/ahg.12528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
The complex mechanism of colorectal cancer development is closely associated with epigenetic modifications and is caused by overexpression and/or inactivation of oncogenes. Histone modifying enzymes catalyze histone modifications to alter gene expression, which plays a crucial role in the development and progression of colorectal cancer. Currently, there is more frequent study on histone acetylation, methylation, and phosphorylation, and their mechanisms in colorectal cancer development are clearer. This article elaborates on the role of histone modification in epigenetics in colorectal cancer development and discusses recent advances in using it as biomarkers and therapeutic targets for the treatment of colorectal cancer. The review aims to demonstrate the significant role of histone modification as a new therapeutic target in colorectal cancer and provides insights into the novel diagnostic and therapeutic options it offers.
Collapse
Affiliation(s)
- Xin An
- First College for Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohua Lan
- School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zizhen Feng
- School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qisheng Su
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Qu M, Miao L, Chen H, Zhang X, Wang Y. SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis modulates transgenerational toxicity induced by nanoplastics with different surface charges in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131840. [PMID: 37327611 DOI: 10.1016/j.jhazmat.2023.131840] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of nanoplastics on transgenerational toxicity in environmental organisms and the involved mechanisms remain poorly comprehended. This study aimed to identify the role of SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis in response to transgenerational toxicity caused by changes in nanoplastic surface charges in Caenorhabditis elegans (C. elegans). Our results revealed that compared with the wild-type control and PS exposed groups, exposure to PS-NH2 or PS-SOOOH at environmentally relevant concentrations (ERC) of ≥ 1 μg/L caused transgenerational reproductive toxicity, inhibited mitochondrial unfolded protein responses (UPR) by downregulating the transcription levels of hsp-6, ubl-5, dve-1, atfs-1, haf-1, and clpp-1, membrane potential by downregulating phb-1 and phb-2, and promoted mitochondrial apoptosis by downregulating ced-4 and ced-3 and upregulating ced-9, DNA damage by upregulating hus-1, cep-1, egl-1, reactive oxygen species (ROS) by upregulating nduf-7 and nuo-6, ultimately resulting in mitochondrial homeostasis. Additionally, further study indicated that SKN-1/Nrf2 mediated antioxidant response to alleviate PS-induced toxicity in the P0 generation and dysregulated mitochondrial homeostasis to enhance PS-NH2 or PS-SOOOH-induced transgenerational toxicity. Our study highlights the momentous role of SKN-1/Nrf2 mediated mitochondrial homeostasis in the response to nanoplastics caused transgenerational toxicity in environmental organisms.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Long Miao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210009, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
15
|
Gleason RJ, Guo Y, Semancik CS, Ow C, Lakshminarayanan G, Chen X. Developmentally programmed histone H3 expression regulates cellular plasticity at the parental-to-early embryo transition. SCIENCE ADVANCES 2023; 9:eadh0411. [PMID: 37027463 PMCID: PMC10081851 DOI: 10.1126/sciadv.adh0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
During metazoan development, the marked change in developmental potential from the parental germline to the embryo raises an important question regarding how the next life cycle is reset. As the basic unit of chromatin, histones are essential for regulating chromatin structure and function and, accordingly, transcription. However, the genome-wide dynamics of the canonical, replication-coupled (RC) histones during gametogenesis and embryogenesis remain unknown. In this study, we use CRISPR-Cas9-mediated gene editing in Caenorhabditis elegans to investigate the expression pattern and role of individual RC histone H3 genes and compare them to the histone variant, H3.3. We report a tightly regulated epigenome landscape change from the germline to embryos that are regulated through differential expression of distinct histone gene clusters. Together, this study reveals that a change from a H3.3- to H3-enriched epigenome during embryogenesis restricts developmental plasticity and uncovers distinct roles for individual H3 genes in regulating germline chromatin.
Collapse
Affiliation(s)
- Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yanrui Guo
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Cindy Ow
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gitanjali Lakshminarayanan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
17
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 482] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
18
|
Wang Q, Zhang X, Qin T, Wang D, Lin X, Zhu Y, Tan H, Zhao L, Li J, Lin Z, Lin H, Chen W. Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases. Genes (Basel) 2022; 13:genes13081431. [PMID: 36011342 PMCID: PMC9408430 DOI: 10.3390/genes13081431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The deletion of chromosome 11p13 involving the WT1 and PAX6 genes has been shown to cause WAGR syndrome (OMIM #194072), a rare genetic disorder that features Wilms’ tumor, aniridia, genitourinary anomalies, as well as mental retardation. In this study, we expand the genotypic and phenotypic spectrum of WAGR syndrome by reporting on six patients from six unrelated families with different de novo deletions located on chromosome 11p13. Very rare phenotypes of lens automated absorption and lens thinning were detected in four of the six patients. We assessed the involvement of the ARL14EP gene in patients with and without severe lens abnormalities and found that its deletion may worsen the lens abnormalities in these patients.
Collapse
Affiliation(s)
- Qiwei Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Tingfeng Qin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoshan Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuanyuan Zhu
- Aegicare, 3803 Building 11A, Shenzhen Bay Ecological Technology Park, Nanshan District, Shenzhen 518063, China
| | - Haowen Tan
- Aegicare, 3803 Building 11A, Shenzhen Bay Ecological Technology Park, Nanshan District, Shenzhen 518063, China
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
- Correspondence:
| |
Collapse
|
19
|
Sawh AN, Mango SE. Chromosome organization in 4D: insights from C. elegans development. Curr Opin Genet Dev 2022; 75:101939. [PMID: 35759905 DOI: 10.1016/j.gde.2022.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
Eukaryotic genome organization is ordered and multilayered, from the nucleosome to chromosomal scales. These layers are not static during development, but are remodeled over time and between tissues. Thus, animal model studies with high spatiotemporal resolution are necessary to understand the various forms and functions of genome organization in vivo. In C. elegans, sequencing- and imaging-based advances have provided insight on how histone modifications, regulatory elements, and large-scale chromosome conformations are established and changed. Recent observations include unexpected physiological roles for topologically associating domains, different roles for the nuclear lamina at different chromatin scales, cell-type-specific enhancer and promoter regulatory grammars, and prevalent compartment variability in early development. Here, we summarize these and other recent findings in C. elegans, and suggest future avenues of research to enrich our in vivo knowledge of the forms and functions of nuclear organization.
Collapse
Affiliation(s)
- Ahilya N Sawh
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| | - Susan E Mango
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| |
Collapse
|
20
|
Rang FJ, de Luca KL, de Vries SS, Valdes-Quezada C, Boele E, Nguyen PD, Guerreiro I, Sato Y, Kimura H, Bakkers J, Kind J. Single-cell profiling of transcriptome and histone modifications with EpiDamID. Mol Cell 2022; 82:1956-1970.e14. [PMID: 35366395 PMCID: PMC9153956 DOI: 10.1016/j.molcel.2022.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 12/25/2022]
Abstract
Recent advances in single-cell sequencing technologies have enabled simultaneous measurement of multiple cellular modalities, but the combined detection of histone post-translational modifications and transcription at single-cell resolution has remained limited. Here, we introduce EpiDamID, an experimental approach to target a diverse set of chromatin types by leveraging the binding specificities of single-chain variable fragment antibodies, engineered chromatin reader domains, and endogenous chromatin-binding proteins. Using these, we render the DamID technology compatible with the genome-wide identification of histone post-translational modifications. Importantly, this includes the possibility to jointly measure chromatin marks and transcription at the single-cell level. We use EpiDamID to profile single-cell Polycomb occupancy in mouse embryoid bodies and provide evidence for hierarchical gene regulatory networks. In addition, we map H3K9me3 in early zebrafish embryogenesis, and detect striking heterochromatic regions specific to notochord. Overall, EpiDamID is a new addition to a vast toolbox to study chromatin states during dynamic cellular processes.
Collapse
Affiliation(s)
- Franka J Rang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Kim L de Luca
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Sandra S de Vries
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Christian Valdes-Quezada
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Ellen Boele
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Phong D Nguyen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Isabel Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
22
|
Lu T, Smit RB, Soueid H, Mains PE. STRIPAK regulation of katanin microtubule severing in the Caenorhabditis elegans embryo. Genetics 2022; 221:iyac043. [PMID: 35298637 PMCID: PMC9071564 DOI: 10.1093/genetics/iyac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.
Collapse
Affiliation(s)
- Tammy Lu
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Hanifa Soueid
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| |
Collapse
|
23
|
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 2022; 29:85-96. [PMID: 35102319 PMCID: PMC8850192 DOI: 10.1038/s41594-021-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-65 is physiologically relevant. Genetic and genome-wide analysis of a catalytically deficient SETDB1-like enzyme, MET-2, in Caenorhabditiselegans reveals that MET-2 promotes transcriptional silencing and fertility through both H3K9 methylation and focus formation, which blocks histone acetylation.
Collapse
|
24
|
Sánchez OF, Lin LF, Xie J, Freeman JL, Yuan C. Lead exposure induces dysregulation of constitutive heterochromatin hallmarks in live cells. Curr Res Toxicol 2021; 3:100061. [PMID: 35005634 PMCID: PMC8717252 DOI: 10.1016/j.crtox.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lead (Pb) is a heavy metal contaminant commonly found in air, soil, and drinking water due to legacy uses. Excretion of ingested Pb can result in extensive kidney damages due to elevated oxidative stress. Epigenetic alterations induced by exposure to Pb have also been implied but remain poorly understood. In this work, we assessed changes in repressive epigenetic marks, namely DNA methylation (meCpG) and histone 3 lysine 9 tri-methylation (H3K9me3) after exposure to Pb. Live cell epigenetic probes coupled to bimolecular fluorescence complementation (BiFC) were used to monitor changes in the selected epigenetic marks. Exposure to Pb significantly lowered meCpG and H3K9me3 levels in HEK293T cells suggesting global changes in constitutive heterochromatin. A heterodimeric pair of probes that tags chromatin regions enriched in both meCpG and H3K9me3 further confirmed our findings. The observed epigenetic changes can be partially attributed to aberrant transcriptional changes induced by Pb, such as overexpression of TET1 after Pb exposure. Lastly, we monitored changes in selected heterochromatin marks after removal of Pb and found that changes in these markers do not immediately recover to their original level suggesting potential long-term damages to chromatin structure.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Li F. Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Das S, Min S, Prahlad V. Gene bookmarking by the heat shock transcription factor programs the insulin-like signaling pathway. Mol Cell 2021; 81:4843-4860.e8. [PMID: 34648748 PMCID: PMC8642288 DOI: 10.1016/j.molcel.2021.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Sehee Min
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA; Department of Biology, 143 Biology Building, Iowa City, IA 52242-1324, USA; Iowa Neuroscience Institute, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
26
|
Wasson JA, Harris G, Keppler-Ross S, Brock TJ, Dar AR, Butcher RA, Fischer SEJ, Kagias K, Clardy J, Zhang Y, Mango SE. Neuronal control of maternal provisioning in response to social cues. SCIENCE ADVANCES 2021; 7:7/34/eabf8782. [PMID: 34417172 PMCID: PMC8378817 DOI: 10.1126/sciadv.abf8782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in Caenorhabditis elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRFamide (Phe-Met-Arg-Phe)-like peptides. Parental FMRFamide-like peptide signaling dampens oxidative stress resistance and promotes the deposition of mRNAs for translational components in progeny, which, in turn, reduces gene silencing. This study identifies a previously unknown pathway for intergenerational communication that links neuronal responses to maternal provisioning. We suggest that loss of social cues in the parental environment represents an adverse environment that stimulates stress responses across generations.
Collapse
Affiliation(s)
| | - Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biology, California State University Channel Islands, Camarillo, CA, USA
| | | | | | - Abdul R Dar
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Sylvia E J Fischer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Konstantinos Kagias
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Susan E Mango
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
27
|
Houri-Zeevi L, Teichman G, Gingold H, Rechavi O. Stress resets ancestral heritable small RNA responses. eLife 2021; 10:e65797. [PMID: 33729152 PMCID: PMC8021399 DOI: 10.7554/elife.65797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Transgenerational inheritance of small RNAs challenges basic concepts of heredity. In Caenorhabditis elegans nematodes, small RNAs are transmitted across generations to establish a transgenerational memory trace of ancestral environments and distinguish self-genes from non-self-elements. Carryover of aberrant heritable small RNA responses was shown to be maladaptive and to lead to sterility. Here, we show that various types of stress (starvation, high temperatures, and high osmolarity) induce resetting of ancestral small RNA responses and a genome-wide reduction in heritable small RNA levels. We found that mutants that are defective in various stress pathways exhibit irregular RNAi inheritance dynamics even in the absence of stress. Moreover, we discovered that resetting of ancestral RNAi responses is specifically orchestrated by factors that function in the p38 MAPK pathway and the transcription factor SKN-1/Nrf2. Stress-dependent termination of small RNA inheritance could protect from run-on of environment-irrelevant heritable gene regulation.
Collapse
Affiliation(s)
- Leah Houri-Zeevi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Guy Teichman
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
28
|
Abstract
Polycystic ovary syndrome (PCOS) is a complex genetic disorder with many genetic loci contributing small risk. Large genome-wide association studies identified 21 genetic risk loci for PCOS in European and Han Chinese women. The genetic architecture is similar across PCOS diagnostic categories. The next wave of analysis will incorporate large genotyped datasets linked to medical records, increasing numbers and ethnic subsets. The resulting genetic risk loci can then be used to create robust genetic risk scores enhanced with clinical information, environment and lifestyle data for a precision medicine approach to PCOS diagnosis and treatment.
Collapse
Affiliation(s)
- Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, 15 North 2030 East, 2110A, Salt Lake City, UT 84112, USA.
| |
Collapse
|
29
|
Schnabl J, Wang J, Hohmann U, Gehre M, Batki J, Andreev VI, Purkhauser K, Fasching N, Duchek P, Novatchkova M, Mechtler K, Plaschka C, Patel DJ, Brennecke J. Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev 2021; 35:392-409. [PMID: 33574069 PMCID: PMC7919418 DOI: 10.1101/gad.347989.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Nuclear Argonaute proteins, guided by their bound small RNAs to nascent target transcripts, mediate cotranscriptional silencing of transposons and repetitive genomic loci through heterochromatin formation. The molecular mechanisms involved in this process are incompletely understood. Here, we show that the SFiNX complex, a silencing mediator downstream from nuclear Piwi-piRNA complexes in Drosophila, facilitates cotranscriptional silencing as a homodimer. The dynein light chain protein Cut up/LC8 mediates SFiNX dimerization, and its function can be bypassed by a heterologous dimerization domain, arguing for a constitutive SFiNX dimer. Dimeric, but not monomeric SFiNX, is capable of forming molecular condensates in a nucleic acid-stimulated manner. Mutations that prevent SFiNX dimerization result in loss of condensate formation in vitro and the inability of Piwi to initiate heterochromatin formation and silence transposons in vivo. We propose that multivalent SFiNX-nucleic acid interactions are critical for heterochromatin establishment at piRNA target loci in a cotranscriptional manner.
Collapse
Affiliation(s)
- Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ulrich Hohmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maja Gehre
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veselin I Andreev
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Kim Purkhauser
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
30
|
Lister-Shimauchi EH, Dinh M, Maddox P, Ahmed S. Gametes deficient for Pot1 telomere binding proteins alter levels of telomeric foci for multiple generations. Commun Biol 2021; 4:158. [PMID: 33542458 PMCID: PMC7862594 DOI: 10.1038/s42003-020-01624-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Deficiency for telomerase results in transgenerational shortening of telomeres. However, telomeres have no known role in transgenerational epigenetic inheritance. C. elegans Protection Of Telomeres 1 (Pot1) proteins form foci at the telomeres of germ cells that disappear at fertilization and gradually accumulate during development. We find that gametes from mutants deficient for Pot1 proteins alter levels of telomeric foci for multiple generations. Gametes from pot-2 mutants give rise to progeny with abundant POT-1::mCherry and mNeonGreen::POT-2 foci throughout development, which persists for six generations. In contrast, gametes from pot-1 mutants or pot-1; pot-2 double mutants induce diminished Pot1 foci for several generations. Deficiency for MET-2, SET-25, or SET-32 methyltransferases, which promote heterochromatin formation, results in gametes that induce diminished Pot1 foci for several generations. We propose that C. elegans POT-1 may interact with H3K9 methyltransferases during pot-2 mutant gametogenesis to induce a persistent form of transgenerational epigenetic inheritance that causes constitutively high levels of heterochromatic Pot1 foci.
Collapse
Affiliation(s)
- Evan H Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Michael Dinh
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
31
|
An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output during C. elegans Development. Curr Biol 2020; 31:809-826.e6. [PMID: 33357451 DOI: 10.1016/j.cub.2020.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
Although precise tuning of gene expression levels is critical for most developmental pathways, the mechanisms by which the transcriptional output of dosage-sensitive molecules is established or modulated by the environment remain poorly understood. Here, we provide a mechanistic framework for how the conserved transcription factor BLMP-1/Blimp1 operates as a pioneer factor to decompact chromatin near its target loci during embryogenesis (hours prior to major transcriptional activation) and, by doing so, regulates both the duration and amplitude of subsequent target gene transcription during post-embryonic development. This priming mechanism is genetically separable from the mechanisms that establish the timing of transcriptional induction and functions to canalize aspects of cell-fate specification, animal size regulation, and molting. A key feature of the BLMP-1-dependent transcriptional priming mechanism is that chromatin decompaction is initially established during embryogenesis and maintained throughout larval development by nutrient sensing. This anticipatory mechanism integrates transcriptional output with environmental conditions and is essential for resuming normal temporal patterning after animals exit nutrient-mediated developmental arrests.
Collapse
|
32
|
Askjaer P, Harr JC. Genetic approaches to revealing the principles of nuclear architecture. Curr Opin Genet Dev 2020; 67:52-60. [PMID: 33338753 DOI: 10.1016/j.gde.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The spatial organization of chromosomes inside the eukaryotic nucleus is important for DNA replication, repair and gene expression. During development of multicellular organisms, different compendiums of genes are either repressed or activated to produce specific cell types. Genetic manipulation of tractable organisms is invaluable to elucidate chromosome configuration and the underlying mechanisms. Systematic inhibition of genes through RNA interference and, more recently, CRISPR/Cas9-based screens have identified new proteins with significant roles in nuclear organization. Coupling this with advances in imaging techniques, such as multiplexed DNA fluorescence in situ hybridization, and with tissue-specific genome profiling by DNA adenine methylation identification has increased our knowledge about the immense complexity and dynamics of the nucleus.
Collapse
Affiliation(s)
- Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain.
| | - Jennifer C Harr
- Department of Biological Sciences, St. Mary's University, One Camino Santa Maria, San Antonio, TX, 78228, USA.
| |
Collapse
|
33
|
DasGupta A, Lee TL, Li C, Saltzman AL. Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. Front Cell Dev Biol 2020; 8:590195. [PMID: 33195254 PMCID: PMC7649781 DOI: 10.3389/fcell.2020.590195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
In most eukaryotes, the genome is packaged with histones and other proteins to form chromatin. One of the major mechanisms for chromatin regulation is through post-translational modification of histone proteins. Recognition of these modifications by effector proteins, often dubbed histone “readers,” provides a link between the chromatin landscape and gene regulation. The diversity of histone reader proteins for each modification provides an added layer of regulatory complexity. In this review, we will focus on the roles of chromatin organization modifier (chromo) domain containing proteins in the model nematode, Caenorhabditis elegans. An amenability to genetic and cell biological approaches, well-studied development and a short life cycle make C. elegans a powerful system to investigate the diversity of chromo domain protein functions in metazoans. We will highlight recent insights into the roles of chromo domain proteins in the regulation of heterochromatin and the spatial conformation of the genome as well as their functions in cell fate, fertility, small RNA pathways and transgenerational epigenetic inheritance. The spectrum of different chromatin readers may represent a layer of regulation that integrates chromatin landscape, genome organization and gene expression.
Collapse
Affiliation(s)
- Abhimanyu DasGupta
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Arneet L Saltzman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Papareddy RK, Páldi K, Paulraj S, Kao P, Lutzmayer S, Nodine MD. Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol 2020; 21:251. [PMID: 32943088 PMCID: PMC7499886 DOI: 10.1186/s13059-020-02163-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic genomes are partitioned into euchromatic and heterochromatic domains to regulate gene expression and other fundamental cellular processes. However, chromatin is dynamic during growth and development and must be properly re-established after its decondensation. Small interfering RNAs (siRNAs) promote heterochromatin formation, but little is known about how chromatin regulates siRNA expression. RESULTS We demonstrate that thousands of transposable elements (TEs) produce exceptionally high levels of siRNAs in Arabidopsis thaliana embryos. TEs generate siRNAs throughout embryogenesis according to two distinct patterns depending on whether they are located in euchromatic or heterochromatic regions of the genome. siRNA precursors are transcribed in embryos, and siRNAs are required to direct the re-establishment of DNA methylation on TEs from which they are derived in the new generation. Decondensed chromatin also permits the production of 24-nt siRNAs from heterochromatic TEs during post-embryogenesis, and siRNA production from bipartite-classified TEs is controlled by their chromatin states. CONCLUSIONS Decondensation of heterochromatin in response to developmental, and perhaps environmental, cues promotes the transcription and function of siRNAs in plants. Our results indicate that chromatin-mediated siRNA transcription provides a cell-autonomous homeostatic control mechanism to help reconstitute pre-existing chromatin states during growth and development including those that ensure silencing of TEs in the future germ line.
Collapse
Affiliation(s)
- Ranjith K. Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Katalin Páldi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Subramanian Paulraj
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Stefan Lutzmayer
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michael D. Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
35
|
Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020; 12:E596. [PMID: 32486217 PMCID: PMC7354471 DOI: 10.3390/v12060596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
36
|
Akdogan-Ozdilek B, Duval KL, Goll MG. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res 2020; 9. [PMID: 32528656 PMCID: PMC7262572 DOI: 10.12688/f1000research.21809.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Early animal development is characterized by intense reorganization of the embryonic genome, including large-scale changes in chromatin structure and in the DNA and histone modifications that help shape this structure. Particularly profound shifts in the chromatin landscape are associated with the maternal-to-zygotic transition, when the zygotic genome is first transcribed and maternally loaded transcripts are degraded. The accessibility of the early zebrafish embryo facilitates the interrogation of chromatin during this critical window of development, making it an important model for early chromatin regulation. Here, we review our current understanding of chromatin dynamics during early zebrafish development, highlighting new advances as well as similarities and differences between early chromatin regulation in zebrafish and other species.
Collapse
Affiliation(s)
| | | | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos. Mol Cell 2020; 78:96-111.e6. [PMID: 32105612 DOI: 10.1016/j.molcel.2020.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/20/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
Current models suggest that chromosome domains segregate into either an active (A) or inactive (B) compartment. B-compartment chromatin is physically separated from the A compartment and compacted by the nuclear lamina. To examine these models in the developmental context of C. elegans embryogenesis, we undertook chromosome tracing to map the trajectories of entire autosomes. Early embryonic chromosomes organized into an unconventional barbell-like configuration, with two densely folded B compartments separated by a central A compartment. Upon gastrulation, this conformation matured into conventional A/B compartments. We used unsupervised clustering to uncover subpopulations with differing folding properties and variable positioning of compartment boundaries. These conformations relied on tethering to the lamina to stretch the chromosome; detachment from the lamina compacted, and allowed intermingling between, A/B compartments. These findings reveal the diverse conformations of early embryonic chromosomes and uncover a previously unappreciated role for the lamina in systemic chromosome stretching.
Collapse
|
38
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
39
|
Mutlu B, Chen HM, Gutnik S, Hall DH, Keppler-Ross S, Mango SE. Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development 2019; 146:dev174516. [PMID: 31540912 PMCID: PMC6803369 DOI: 10.1242/dev.174516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
Abstract
During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here, we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di-methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. Although loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing C. elegans embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2, and identify the cell cycle as a crucial parameter of MET-2 regulation.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huei-Mei Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Silvia Gutnik
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
40
|
Costello ME, Petrella LN. C. elegans synMuv B proteins regulate spatial and temporal chromatin compaction during development. Development 2019; 146:dev174383. [PMID: 31515206 PMCID: PMC6803374 DOI: 10.1242/dev.174383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Tissue-specific establishment of repressive chromatin through creation of compact chromatin domains during development is necessary to ensure proper gene expression and cell fate. Caenorhabditis elegans synMuv B proteins are important for the soma/germline fate decision and mutants demonstrate ectopic germline gene expression in somatic tissue, especially at high temperature. We show that C. elegans synMuv B proteins regulate developmental chromatin compaction and that the timing of chromatin compaction is temperature sensitive in both wild type and synMuv B mutants. Chromatin compaction in mutants is delayed into developmental time periods when zygotic gene expression is upregulated and demonstrates an anterior-to-posterior pattern. Loss of this patterned compaction coincides with the developmental time period of ectopic germline gene expression, which leads to a developmental arrest in synMuv B mutants. Finally, accelerated cell division rates at elevated temperature may contribute to a lack of coordination between expression of tissue specific transcription programs and chromatin compaction at high temperature. Thus, chromatin organization during development is regulated both spatially and temporally by synMuv B proteins to establish repressive chromatin in a tissue-specific manner to ensure proper gene expression.
Collapse
Affiliation(s)
- Meghan E Costello
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
41
|
Tsusaka T, Shimura C, Shinkai Y. ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. EMBO Rep 2019; 20:e48297. [PMID: 31576654 DOI: 10.15252/embr.201948297] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding of the appropriate regulation of enzymatic activities of histone-modifying enzymes remains poor. The lysine methyltransferase, SETDB1, is one of the enzymes responsible for the methylation of histone H3 at lysine 9 (H3K9) and plays a key role in H3K9 trimethylation-mediated silencing of genes and retrotransposons. Here, we reported that how SETDB1's enzymatic activities can be regulated by the nuclear protein, ATF7IP, a known binding partner of SETDB1. Mechanistically, ATF7IP mediates SETDB1 retention inside the nucleus, presumably by inhibiting its nuclear export by binding to the N-terminal region of SETDB1, which harbors the nuclear export signal motifs, and also by promoting its nuclear import. The nuclear localization of SETDB1 increases its ubiquitinated, enzymatically more active form. Our results provided an insight as to how ATF7IP can regulate the histone methyltransferase activity of SETDB1 accompanied by its nuclear translocation.
Collapse
Affiliation(s)
- Takeshi Tsusaka
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| |
Collapse
|
42
|
Osumi K, Sato K, Murano K, Siomi H, Siomi MC. Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing. EMBO Rep 2019; 20:e48296. [PMID: 31576653 DOI: 10.15252/embr.201948296] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
Eggless/SETDB1 (Egg), the only essential histone methyltransferase (HMT) in Drosophila, plays a role in gene repression, including piRNA-mediated transposon silencing in the ovaries. Previous studies suggested that Egg is post-translationally modified and showed that Windei (Wde) regulates Egg nuclear localization through protein-protein interaction. Monoubiquitination of mammalian SETDB1 is necessary for the HMT activity. Here, using cultured ovarian somatic cells, we show that Egg is monoubiquitinated and phosphorylated but that only monoubiquitination is required for piRNA-mediated transposon repression. Egg monoubiquitination occurs in the nucleus. Egg has its own nuclear localization signal, and the nuclear import of Egg is Wde-independent. Wde recruits Egg to the chromatin at target gene silencing loci, but their interaction is monoubiquitin-independent. The abundance of nuclear Egg is governed by that of nuclear Wde. These results illuminate essential roles of nuclear monoubiquitination of Egg and the role of Wde in piRNA-mediated transposon repression.
Collapse
Affiliation(s)
- Ken Osumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
44
|
Rechtsteiner A, Costello ME, Egelhofer TA, Garrigues JM, Strome S, Petrella LN. Repression of Germline Genes in Caenorhabditis elegans Somatic Tissues by H3K9 Dimethylation of Their Promoters. Genetics 2019; 212:125-140. [PMID: 30910798 PMCID: PMC6499516 DOI: 10.1534/genetics.118.301878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/16/2019] [Indexed: 12/20/2022] Open
Abstract
Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, and lin-37-all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex. LIN-15B has been proposed to work with the DREAM complex but has not been shown biochemically to be a member of the complex. We found that, in wild-type worms, synMuv B target genes and germline genes are enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 (H3K9me2) at their promoters. Genes with H3K9me2 promoter localization are evenly distributed across the autosomes, not biased toward autosomal arms, as are the broad H3K9me2 domains. Both synMuv B targets and germline genes display a dramatic reduction of H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and lin-37 mutants. This difference between lin-15B and DREAM complex mutants likely represents a difference in molecular function for these synMuv B proteins. In support of the pivotal role of H3K9me2 in regulation of germline genes by LIN-15B, global loss of H3K9me2 but not H3K9me3 results in phenotypes similar to synMuv B mutants, high-temperature larval arrest, and ectopic expression of germline genes in the soma. We propose that LIN-15B-driven enrichment of H3K9me2 at promoters of germline genes contributes to repression of those genes in somatic tissues.
Collapse
Affiliation(s)
- Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Meghan E Costello
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Thea A Egelhofer
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Jacob M Garrigues
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
45
|
Abstract
In this Perspective, Armstrong and Duronio discuss the findings in this issue of Genes & Developmnet by Seller et al., who developed a new technology for inhibiting maternal gene function to identify the H3K9 methyltransferase necessary for initiating constitutive heterochromatin formation during early Drosophila embryogenesis. Constitutive heterochromatin is a prevalent feature of eukaryotic genomes important for promoting cell differentiation and maintaining genome stability. During animal reproduction, constitutive heterochromatin is disassembled in gametes prior to formation of the zygote and then subsequently re-established as development ensues and cells differentiate. Despite progress in understanding the mechanisms that maintain heterochromatin in differentiated cell types, how constitutive heterochromatin is assembled de novo during early development remains poorly understood. In this issue of Genes & Development, Seller and colleagues (pp. 403–417) develop a new technology for inhibiting maternal gene function to identify the H3K9 methyltransferase necessary for initiating constitutive heterochromatin formation during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
46
|
Laue K, Rajshekar S, Courtney AJ, Lewis ZA, Goll MG. The maternal to zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish embryo. Nat Commun 2019; 10:1551. [PMID: 30948728 PMCID: PMC6449393 DOI: 10.1038/s41467-019-09582-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
The segregation of eukaryotic genomes into euchromatin and heterochromatin represents a fundamental and poorly understood process. Here, we demonstrate that genome-wide establishment of heterochromatin is triggered by the maternal to zygotic transition (MZT) during zebrafish embryogenesis. We find that prior to MZT, zebrafish lack hallmarks of heterochromatin including histone H3 lysine 9 trimethylation (H3K9me3) and condensed chromatin ultrastructure. Global establishment of heterochromatic features occurs following MZT and requires both activation of the zygotic genome and degradation of maternally deposited RNA. Mechanistically, we demonstrate that zygotic transcription of the micro RNA miR-430 promotes degradation of maternal RNA encoding the chromatin remodeling protein Smarca2, and that clearance of Smarca2 is required for global heterochromatin establishment in the early embryo. Our results identify MZT as a key developmental regulator of heterochromatin establishment during vertebrate embryogenesis and uncover functions for Smarca2 in protecting the embryonic genome against heterochromatinization. Eukaryotic genomes are segregated into euchromatin and heterochromatin. Here the authors show that heterochromatin establishment during zebrafish embryo development is controlled by zygotic transcription of miR-430 and subsequent degradation of maternal transcripts encoding the chromatin remodeling protein Smarca2.
Collapse
Affiliation(s)
- Kathrin Laue
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Srivarsha Rajshekar
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
| | - Abigail J Courtney
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Mary G Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
47
|
Seller CA, Cho CY, O'Farrell PH. Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila. Genes Dev 2019; 33:403-417. [PMID: 30808658 PMCID: PMC6446540 DOI: 10.1101/gad.321646.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
Acquisition of chromatin modifications during embryogenesis distinguishes different regions of an initially naïve genome. In many organisms, repetitive DNA is packaged into constitutive heterochromatin that is marked by di/trimethylation of histone H3K9 and the associated protein HP1a. These modifications enforce the unique epigenetic properties of heterochromatin. However, in the early Drosophila melanogaster embryo, the heterochromatin lacks these modifications, which appear only later, when rapid embryonic cell cycles slow down at the midblastula transition (MBT). Here we focus on the initial steps restoring heterochromatic modifications in the embryo. We describe the JabbaTrap, a technique for inactivating maternally provided proteins in embryos. Using the JabbaTrap, we reveal a major requirement for the methyltransferase Eggless/SetDB1 in the establishment of heterochromatin. In contrast, other methyltransferases contribute minimally. Live imaging reveals that endogenous Eggless gradually accumulates on chromatin in interphase but then dissociates in mitosis, and its accumulation must restart in the next cell cycle. Cell cycle slowing as the embryo approaches the MBT permits increasing accumulation and action of Eggless at its targets. Experimental manipulation of interphase duration shows that cell cycle speed regulates Eggless. We propose that developmental slowing of the cell cycle times embryonic heterochromatin formation.
Collapse
Affiliation(s)
- Charles A Seller
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | - Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
48
|
Delaney CE, Methot SP, Guidi M, Katic I, Gasser SM, Padeken J. Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. J Cell Biol 2019; 218:820-838. [PMID: 30737265 PMCID: PMC6400574 DOI: 10.1083/jcb.201811038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The segregation of the genome into accessible euchromatin and histone H3K9-methylated heterochromatin helps silence repetitive elements and tissue-specific genes. In Caenorhabditis elegans, MET-2, the homologue of mammalian SETDB1, catalyzes H3K9me1 and me2, yet like SETDB1, its regulation is enigmatic. Contrary to the cytosolic enrichment of overexpressed MET-2, we show that endogenous MET-2 is nuclear throughout development, forming perinuclear foci in a cell cycle-dependent manner. Mass spectrometry identified two cofactors that bind MET-2: LIN-65, a highly unstructured protein, and ARLE-14, a conserved GTPase effector. All three factors colocalize in heterochromatic foci. Ablation of lin-65, but not arle-14, mislocalizes and destabilizes MET-2, resulting in decreased H3K9 dimethylation, dispersion of heterochromatic foci, and derepression of MET-2 targets. Mutation of met-2 or lin-65 also disrupts the perinuclear anchoring of genomic heterochromatin. Loss of LIN-65, like that of MET-2, compromises temperature stress resistance and germline integrity, which are both linked to promiscuous repeat transcription and gene expression.
Collapse
Affiliation(s)
- Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen P Methot
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Micol Guidi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Faculty of Natural Sciences, Basel, Switzerland
| | - Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
49
|
Yang B, Xu X, Russell L, Sullenberger MT, Yanowitz JL, Maine EM. A DNA repair protein and histone methyltransferase interact to promote genome stability in the Caenorhabditis elegans germ line. PLoS Genet 2019; 15:e1007992. [PMID: 30794539 PMCID: PMC6402707 DOI: 10.1371/journal.pgen.1007992] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/06/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Histone modifications regulate gene expression and chromosomal events, yet how histone-modifying enzymes are targeted is poorly understood. Here we report that a conserved DNA repair protein, SMRC-1, associates with MET-2, the C. elegans histone methyltransferase responsible for H3K9me1 and me2 deposition. We used molecular, genetic, and biochemical methods to investigate the biological role of SMRC-1 and to explore its relationship with MET-2. SMRC-1, like its mammalian ortholog SMARCAL1, provides protection from DNA replication stress. SMRC-1 limits accumulation of DNA damage and promotes germline and embryonic viability. MET-2 and SMRC-1 localize to mitotic and meiotic germline nuclei, and SMRC-1 promotes an increase in MET-2 abundance in mitotic germline nuclei upon replication stress. In the absence of SMRC-1, germline H3K9me2 generally decreases after multiple generations at high culture temperature. Genetic data are consistent with MET-2 and SMRC-1 functioning together to limit replication stress in the germ line and in parallel to promote other germline processes. We hypothesize that loss of SMRC-1 activity causes chronic replication stress, in part because of insufficient recruitment of MET-2 to nuclei.
Collapse
Affiliation(s)
- Bing Yang
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Xia Xu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Logan Russell
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Judith L. Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|