1
|
Xu H, Yang Y, Zhou Q, Huo R, Zhao S, Sun Y, Wang J, He Q, Yu Q, Tang J, Jiao Y, Wang J, Cao Y. Map3k3 I441M Knock-In Mouse Model of Cerebral Cavernous Malformations. Stroke 2025; 56:1010-1025. [PMID: 40127145 DOI: 10.1161/strokeaha.124.049935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/31/2024] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) refer to vascular dysplasia primarily found in the brain, affecting ≈0.5% of the population. A somatic Map3k3I441M mutation has been found in ≈40% of patients with sporadic CCMs, which were typically accompanied by somatic gain-of-function mutations in PIK3CA. Although mouse models of adeno-associated virus-BR1-mediated mutant overexpression have been reported, these models have limitations in representing clinical specimens of CCMs, which typically harbor single allele mutation in Map3k3. A Map3k3I441M knock-in murine model of CCMs has not yet been established. METHODS The Map3k3I441M knock-in mice were crossed with Cdh5-creERT2 mice to induce mutant gene expression specifically in endothelial cells. Subsequently, Map3k3I441M mice were bred with Ptenfl/fl mice to generate Map3k3I441M; Ptenfl/fl mice. In both murine models, CCM lesions were examined using magnetic resonance imaging, while single-cell RNA sequencing and immunostaining were utilized to investigate the pathomechanism of the mutation. Finally, we administered an mTOR (mechanistic target of rapamycin) inhibitor to explore its therapeutic effect on lesions of both murine models. RESULTS Both endothelial Map3k3I441M mutant juvenile mice and Map3k3I441M; Ptenfl/fl mice developed abnormal lesions with human CCM characteristics. In Map3k3I441M mice, the mutant promoted endothelial apoptosis, while activation of the PI3K (phosphatidylinositol 3-kinase) pathway was able to activate the downstream AKT (protein kinase B)/mTOR/p-S6 (phosphorylated S6 ribosomal protein) pathway and upregulate VEGFA (vascular endothelial growth factor A) expression, counteracting apoptosis, and facilitating lesion progression. The activation of PI3K signaling is required for Map3k3I441M to generate CCM-like lesions in adult mice. Finally, we demonstrated that rapamycin effectively inhibited the formation of lesions in the Map3k3I441M mice and Map3k3I441M; Ptenfl/fl mice. CONCLUSIONS Map3k3I441M heterozygous is sufficient to induce lesions in juvenile mice, while the additional activation of PI3K signaling is required for the effective formation of CCMs at the adult stage. The Map3k3I441M murine model provides a preclinical model for further mechanistic and therapeutic studies of CCMs.
Collapse
MESH Headings
- Animals
- Mice
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hemangioma, Cavernous, Central Nervous System/diagnostic imaging
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Gene Knock-In Techniques
- MAP Kinase Kinase Kinase 3/genetics
- Mice, Transgenic
- TOR Serine-Threonine Kinases/metabolism
- Mutation
- PTEN Phosphohydrolase/genetics
Collapse
Affiliation(s)
- Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Yingxi Yang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China (Y.Y., Q.Z., Jiguang Wang)
| | - Qiuxia Zhou
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China (Y.Y., Q.Z., Jiguang Wang)
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Shaozhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Yingfan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Qifeng Yu
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Jinyi Tang
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China (Y.Y., Q.Z., Jiguang Wang)
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, China (Jiguang Wang)
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.), Capital Medical University, China
- Beijing Neurosurgical Institute (Y.C.), Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (H.X., R.H., S.Z., Y.S., Jie Wang, Q.H., Q.Y., J.T., Y.J., Y.C.)
| |
Collapse
|
2
|
Lin Z, Yang M, Yu X, Tan G, Zhong J. Ponatinib alleviates non-alcoholic steatohepatitis through TFEB-mediated autophagy. Front Pharmacol 2025; 15:1505768. [PMID: 39840105 PMCID: PMC11746897 DOI: 10.3389/fphar.2024.1505768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Objective Non-alcoholic steatohepatitis (NASH) is a progressive liver disease with lipid accumulation, inflammation, and liver fibrosis. Ponatinib, a third-generation tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia, was found to improve metabolic disorders in mice. However, the role of ponatinib in liver inflammation and fibrosis remains to be elucidated. Here we aimed to determine the effect of ponatinib in non-alcoholic steatohepatitis. Methods We explored the function and mechanism of ponatinib using a mouse model of NASH induced by a methionine and choline deficient (MCD) diet and LO2 cells cultured in MCD mimic medium. Results Here, we found that ponatinib reduced liver lipid deposition, fibrosis, and inflammation induced by MCD diet without affecting body weight and blood glucose. Meanwhile, we found that ponatinib attenuated steatohepatitis and inflammation in LO2 cells induced by MCD mimic medium. We further discovered that the expression levels of LC3II and lysosomal associated membrane protein 1 (LAMP1) were reduced and the expression level of p62 was upregulated in both mouse and cell models, suggesting that autophagy was inhibited, which was restored by ponatinib treatment. In addition, transcription factor EB (TFEB) is a major regulator of autophagy and lysosome biogenesis and the transcription and protein expression levels of TFEB were decreased in steatosis hepatocytes, which could be ameliorated by ponatinib treatment. Conclusion These results revealed that the beneficial effects of ponatinib on NASH via TFEB-mediated autophagy.
Collapse
Affiliation(s)
- Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People’s Hospital (Huangtang Hospital), Meizhou, China
| | - Meiqing Yang
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guozhu Tan
- Department of Orthopaedics and Traumatology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People’s Hospital (Huangtang Hospital), Meizhou, China
| |
Collapse
|
3
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
4
|
Kaewlert W, Sakonsinsiri C, Lert-Itthiporn W, Mahalapbutr P, Ali S, Rungrotmongkol T, Jusakul A, Armartmuntree N, Pairojkul C, Feng G, Ma N, Pinlaor S, Murata M, Thanan R. Buparlisib and ponatinib inhibit aggressiveness of cholangiocarcinoma cells via suppression of IRS1-related pathway by targeting oxidative stress resistance. Biomed Pharmacother 2024; 180:117569. [PMID: 39418964 DOI: 10.1016/j.biopha.2024.117569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an oxidative stress-driven liver cancer with bile duct epithelial cell phenotypes and currently lacks effective treatments, making targeted drug therapy urgently needed. Oxidative stress plays a critical role in CCA carcinogenesis, involving cells with oxidative stress resistance via upregulation of the PI3K and MEKK3 signaling pathways. In this study, we investigated the antineoplastic efficacy of a PI3K inhibitor (buparlisib) and a multi-tyrosine kinase inhibitor (ponatinib) on CCA. The cytotoxicity of the drug combination was studied in vitro using CCA cell lines and in vivo using CCA xenograft models. It was found that the drug combination suppressed growth, colony formation, and migration abilities of CCA cells and induced oxidative damage, cell cycle arrest, and autophagy by suppressing MEKK3 and YAP1 through inhibition of insulin receptor substrate 1 (IRS1) signaling. Moreover, the drugs would potentially bind to the IRS1 protein, significanly decreasing IRS1 phosphorylation. Additionally, the drug combination significantly diminished the expression of YAP1, the cell proliferation marker and an antioxidant regulator, and increased oxidative stress-responsive markers in the xenograft model. In conclusion, targeting oxidative stress resistance with combined buparlisib and ponatinib suppressed tumor growth and migration by repressing IRS1-related pathways and ultimately inducing oxidative damage, suggesting the potential for targeted therapy and clinical trials in CCA patients over the use of a single drug.
Collapse
Affiliation(s)
- Waleeporn Kaewlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduated School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apinya Jusakul
- The Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napat Armartmuntree
- Department of Medical Science, Amnatcharoen Campus, Mahidol University, Amnat Charoen 37000, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Guofei Feng
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan.
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
5
|
Tamargo IA, Baek KI, Xu C, Kang DW, Kim Y, Andueza A, Williams D, Demos C, Villa-Roel N, Kumar S, Park C, Choi R, Johnson J, Chang S, Kim P, Tan S, Jeong K, Tsuji S, Jo H. HEG1 Protects Against Atherosclerosis by Regulating Stable Flow-Induced KLF2/4 Expression in Endothelial Cells. Circulation 2024; 149:1183-1201. [PMID: 38099436 PMCID: PMC11001532 DOI: 10.1161/circulationaha.123.064735] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.
Collapse
Affiliation(s)
- Ian A. Tamargo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, United States
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Chenbo Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Dong Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Darian Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, United States
| | - Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Rachel Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Janie Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Seowon Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Paul Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Sheryl Tan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kiyoung Jeong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Shoutaro Tsuji
- Medical Technology & Clinical Engineering, Gunma University of Health and Welfare, Maebashi, Japan
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Park S, Ryu WJ, Kim TY, Hwang Y, Han HJ, Lee JD, Kim GM, Sohn J, Kim SK, Kim MH, Kim J. Overcoming BRAF and CDK4/6 inhibitor resistance by inhibiting MAP3K3-dependent protection against YAP lysosomal degradation. Exp Mol Med 2024; 56:987-1000. [PMID: 38622197 PMCID: PMC11059244 DOI: 10.1038/s12276-024-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 04/17/2024] Open
Abstract
Transcriptional programs governed by YAP play key roles in conferring resistance to various molecular-targeted anticancer agents. Strategies aimed at inhibiting YAP activity have garnered substantial interest as a means to overcome drug resistance. However, despite extensive research into the canonical Hippo-YAP pathway, few clinical agents are currently available to counteract YAP-associated drug resistance. Here, we present a novel mechanism of YAP stability regulation by MAP3K3 that is independent of Hippo kinases. Furthermore, we identified MAP3K3 as a target for overcoming anticancer drug resistance. Depletion of MAP3K3 led to a substantial reduction in the YAP protein level in melanoma and breast cancer cells. Mass spectrometry analysis revealed that MAP3K3 phosphorylates YAP at serine 405. This MAP3K3-mediated phosphorylation event hindered the binding of the E3 ubiquitin ligase FBXW7 to YAP, thereby preventing its p62-mediated lysosomal degradation. Robust YAP activation was observed in CDK4/6 inhibitor-resistant luminal breast cancer cells. Knockdown or pharmacological inhibition of MAP3K3 effectively suppressed YAP activity and restored CDK4/6 inhibitor sensitivity. Similarly, elevated MAP3K3 expression supported the prosurvival activity of YAP in BRAF inhibitor-resistant melanoma cells. Inhibition of MAP3K3 decreased YAP-dependent cell proliferation and successfully restored BRAF inhibitor sensitivity. In conclusion, our study reveals a previously unrecognized mechanism for the regulation of YAP stability, suggesting MAP3K3 inhibition as a promising strategy for overcoming resistance to CDK4/6 and BRAF inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Sanghyun Park
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Yeong Kim
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yumi Hwang
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ju Han
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Dong Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Gun Min Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
7
|
He J, Blazeski A, Nilanthi U, Menéndez J, Pirani SC, Levic DS, Bagnat M, Singh MK, Raya JG, García-Cardeña G, Torres-Vázquez J. Plxnd1-mediated mechanosensing of blood flow controls the caliber of the Dorsal Aorta via the transcription factor Klf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.576555. [PMID: 38328196 PMCID: PMC10849625 DOI: 10.1101/2024.01.24.576555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cardiovascular system generates and responds to mechanical forces. The heartbeat pumps blood through a network of vascular tubes, which adjust their caliber in response to the hemodynamic environment. However, how endothelial cells in the developing vascular system integrate inputs from circulatory forces into signaling pathways to define vessel caliber is poorly understood. Using vertebrate embryos and in vitro-assembled microvascular networks of human endothelial cells as models, flow and genetic manipulations, and custom software, we reveal that Plexin-D1, an endothelial Semaphorin receptor critical for angiogenic guidance, employs its mechanosensing activity to serve as a crucial positive regulator of the Dorsal Aorta's (DA) caliber. We also uncover that the flow-responsive transcription factor KLF2 acts as a paramount mechanosensitive effector of Plexin-D1 that enlarges endothelial cells to widen the vessel. These findings illuminate the molecular and cellular mechanisms orchestrating the interplay between cardiovascular development and hemodynamic forces.
Collapse
Affiliation(s)
- Jia He
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Uthayanan Nilanthi
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
| | - Javier Menéndez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Samuel C. Pirani
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Manvendra K. Singh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609
| | - José G Raya
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Cheng X, Zhang Z, Dong W, Lun Y, Liu B. Characteristics of intestinal flora in patients with cerebral infarction complicated with Type 2 diabetes mellitus. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1163-1175. [PMID: 37875356 PMCID: PMC10930844 DOI: 10.11817/j.issn.1672-7347.2023.220558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 10/26/2023]
Abstract
OBJECTIVES The intestinal microbial characteristics of patients with simple cerebral infarction (CI) and CI complicated with Type 2 diabetes mellitus (CI-T2DM) are still not clear. This study aims to analyze the differences in the variable characteristics of intestinal flora between patients simply with CI and CI-T2DM. METHODS This study retrospectively collected the patients who were admitted to the Affiliated Hospital of Putian University from September 2021 to September 2022. The patients were divided into a CI group (n=12) and a CI-T2DM group (n=12). Simultaneously, 12 healthy people were selected as a control group. Total DNA was extracted from feces specimens. Illumina Novaseq sequencing platform was used for metagenomic sequencing. The Knead Data software, Kraken2 software, and Bracken software were applied for sequencing analysis. RESULTS At phylum level, the average ratio of Firmicutes, Bacteroidetes, and Proteobacteria in the CI-T2DM group were 33.07%, 54.80%, and 7.00%, respectively. In the CI group, the ratios of each were 14.03%, 69.62%, and 11.13%, respectively, while in the control group, the ratios were 50.99%, 37.67%, and 5.24%, respectively. There was significant differences in the distribution of Firmicutes (F=6.130, P=0.011) among the 3 groups. At the family level, compared with the CI group, the relative abundance of Eubacteriaceae (t=8.062, P<0.001) in the CI-T2DM group was significantly increased, while Corynebacteriaceae (t=4.471, P<0.001), Methanobacteriaceae (t=3.406, P=0.003), and Pseudomonadaceae (t=2.352, P=0.028) were decreased significantly. At the genus level, compared with the CI group, there was a relative abundance of Cutibacterium (t=6.242, P<0.001), Eubacterium (t=8.448, P<0.001), and Blautia (t=3.442, P=0.002) in the CI-T2DM group which was significantly increased. In terms of Methanobrevibacter (t=3.466, P=0.002), Pyramidobacter (t=2.846, P=0.009) and Pseudomonas (t=2.352, P=0.028), their distributions were decreased significantly in the CI-T2DM group. At the species level, compared with the CI group, the relative abundance of Cutibacterium acnes (t=6.242, P<0.001) in the CI-T2DM group was significantly increased, while Pseudomonas aeruginosa (t=2.352, P=0.028) was decreased significantly. Still at the genus level, linear discriminant analysis effect size (LEfSe) analysis showed that the distributions of Pseudomonas and Blautia were determined to be the most significantly different between the CI-T2DM and the CI group. At the species level, the total number of operational taxonomic units (OTUs) in the 3 groups was 1 491. There were 169, 221, and 192 kinds of OTUs unique to the CI-T2DM, CI, and control group, respectively. CONCLUSIONS From phylum level to species level, the composition of intestinal flora in the patients with CI-T2DM is different from those in the patients simply with CI. The change in the proportion of Firmicutes, Bacteroidetes and Proteus compared with the healthy population is an important feature of intestinal flora imbalance in the patients with CI and with CI-T2DM. Attention should be paid to the differential distribution of Bacteroides monocytogenes and butyrate producing bacteria.
Collapse
Affiliation(s)
- Xueying Cheng
- Department of Neurology, Affiliated Hospital of Putian University, Putian Fujian 351100.
- Key Laboratory of Medical Microecology of Fujian Province University (Putian University), Putian Fujian 351100, China.
| | - Zhengqian Zhang
- Department of Neurology, Affiliated Hospital of Putian University, Putian Fujian 351100
| | - Wen Dong
- Department of Neurology, Affiliated Hospital of Putian University, Putian Fujian 351100
| | - Yongzhi Lun
- Department of Neurology, Affiliated Hospital of Putian University, Putian Fujian 351100.
| | - Ben Liu
- Department of Neurology, Affiliated Hospital of Putian University, Putian Fujian 351100.
| |
Collapse
|
9
|
Zhang TT, Lei QQ, He J, Guan X, Zhang X, Huang Y, Zhou ZY, Fan RX, Wang T, Li CX, Shang JY, Lin ZM, Peng WL, Xia LK, He YL, Hong CY, Ou JS, Pang RP, Fan XP, Huang H, Zhou JG. Bestrophin3 Deficiency in Vascular Smooth Muscle Cells Activates MEKK2/3-MAPK Signaling to Trigger Spontaneous Aortic Dissection. Circulation 2023; 148:589-606. [PMID: 37203562 DOI: 10.1161/circulationaha.122.063029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital (T.-T.Z., H.H., J.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (T.-T.Z., Y.H., H.H.)
| | - Qing-Qing Lei
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie He
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China (J.H., X.-P.F.)
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (J.H.), NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xin Guan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Huang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (T.-T.Z., Y.H., H.H.)
| | - Zi-Yue Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui-Xin Fan
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (R.-X.F., C.-X.L.)
| | - Ting Wang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chen-Xi Li
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (R.-X.F., C.-X.L.)
| | - Jin-Yan Shang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuo-Miao Lin
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wan-Li Peng
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li-Kai Xia
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Ling He
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan-Ying Hong
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (C.-Y.H., R.-P.P.)
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (J.-S.O.) NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui-Ping Pang
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (C.-Y.H., R.-P.P.)
| | - Xiao-Ping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China (J.H., X.-P.F.)
| | - Hui Huang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital (T.-T.Z., H.H., J.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (T.-T.Z., Y.H., H.H.)
| | - Jia-Guo Zhou
- Program of Cardiovascular Research, The Eighth Affiliated Hospital (T.-T.Z., H.H., J.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital (J.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Institute of Cardiovascular Disease, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, China (J.-G.Z.)
| |
Collapse
|
10
|
Qi C, Bujaroski RS, Baell J, Zheng X. Kinases in cerebral cavernous malformations: Pathogenesis and therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119488. [PMID: 37209718 DOI: 10.1016/j.bbamcr.2023.119488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Cerebral cavernous malformations (CCMs) are low-flow, hemorrhagic vascular lesions of the central nervous system of genetic origin, which can cause stroke-like symptoms and seizures. From the identification of CCM1, CCM2 and CCM3 as genes related to disease progression, molecular and cellular mechanisms for CCM pathogenesis have been established and the search for potential drugs to target CCM has begun. Broadly speaking, kinases are the major group signaling in CCM pathogenesis. These include the MEKK3/MEK5/ERK5 cascade, Rho/Rock signaling, CCM3/GCKIII signaling, PI3K/mTOR signaling, and others. Since the discovery of Rho/Rock in CCM pathogenesis, inhibitors for Rho signaling and subsequently other components in CCM signaling were discovered and applied in preclinical and clinical trials to ameliorate CCM progression. This review discusses the general aspects of CCM disease, kinase-mediated signaling in CCM pathogenesis and the current state of potential treatment options for CCM. It is suggested that kinase target drug development in the context of CCM might facilitate and meet the unmet requirement - a non-surgical option for CCM disease.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China
| | - Richard Sean Bujaroski
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China.
| |
Collapse
|
11
|
Grdseloff N, Boulday G, Rödel CJ, Otten C, Vannier DR, Cardoso C, Faurobert E, Dogra D, Tournier-Lasserve E, Abdelilah-Seyfried S. Impaired retinoic acid signaling in cerebral cavernous malformations. Sci Rep 2023; 13:5572. [PMID: 37019926 PMCID: PMC10076292 DOI: 10.1038/s41598-023-31905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.
Collapse
Affiliation(s)
- Nastasja Grdseloff
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Gwenola Boulday
- InsermNeuroDiderot, Université Paris Cité, 75019, Paris, France
| | - Claudia J Rödel
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Cécile Otten
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Daphné Raphaelle Vannier
- Institute for Advanced Biosciences, INSERM 1209 CNRS, University Grenoble Alpes, 5309, Grenoble, France
| | - Cécile Cardoso
- InsermNeuroDiderot, Université Paris Cité, 75019, Paris, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, INSERM 1209 CNRS, University Grenoble Alpes, 5309, Grenoble, France
| | - Deepika Dogra
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Elisabeth Tournier-Lasserve
- InsermNeuroDiderot, Université Paris Cité, 75019, Paris, France
- Service de Génétique Neurovasculaire, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany.
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
12
|
Yang X, Wu ST, Gao R, Wang R, Wang Y, Dong Z, Wang L, Qi C, Wang X, Schmitz ML, Liu R, Han Z, Wang L, Zheng X. Release of STK24/25 suppression on MEKK3 signaling in endothelial cells confers cerebral cavernous malformation. JCI Insight 2023; 8:160372. [PMID: 36692953 PMCID: PMC10077477 DOI: 10.1172/jci.insight.160372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function mutations in cerebral cavernous malformation (CCM) genes and gain-of-function mutation in the MAP3K3 gene encoding MEKK3 cause CCM. Deficiency of CCM proteins leads to the activation of MEKK3-KLF2/4 signaling, but it is not clear how this occurs. Here, we demonstrate that deletion of the CCM3 interacting kinases STK24/25 in endothelial cells causes defects in vascular patterning during development as well as CCM lesion formation during postnatal life. While permanent deletion of STK24/25 in endothelial cells caused developmental defects of the vascular system, inducible postnatal deletion of STK24/25 impaired angiogenesis in the retina and brain. More importantly, deletion of STK24/25 in neonatal mice led to the development of severe CCM lesions. At the molecular level, a hybrid protein consisting of the STK kinase domain and the MEKK3 interacting domain of CCM2 rescued the vascular phenotype caused by the loss of ccm gene function in zebrafish. Our study suggests that CCM2/3 proteins act as adapters to allow recruitment of STK24/25 to limit the constitutive MEKK3 activity, thus contributing to vessel stability. Loss of STK24/25 causes MEKK3 activation, leading to CCM lesion formation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Gao
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Zhenkun Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, and St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, and.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| |
Collapse
|
13
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
14
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
15
|
Yang X, Dai Z, Gao C, Yin Y, Shi C, Liu R, Zhuge Q, Huang Y, Zhou B, Han Z, Zheng X. Cerebral cavernous malformation development in chronic mouse models driven by dual recombinases induced gene deletion in brain endothelial cells. J Cereb Blood Flow Metab 2022; 42:2230-2244. [PMID: 35686705 PMCID: PMC9669998 DOI: 10.1177/0271678x221105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral cavernous malformation (CCM) is a brain vascular disease which can cause stroke, cerebral hemorrhage and neurological deficits in affected individuals. Loss-of-function mutations in three genes (CCM1, CCM2 and CCM3) cause CCM disease. Multiple mouse models for CCM disease have been developed although each of them are associated with various limitations. Here, we employed the Dre-Cre dual recombinase system to specifically delete Ccm genes in brain endothelial cells. In this new series of CCM mouse models, robust CCM lesions now develop in the cerebrum. The survival curve and lesion burden analysis revealed that Ccm2 deletion causes modest CCM lesions with a median life expectance of ∼10 months and Ccm3 gene deletion leads to the most severe CCM lesions with median life expectance of ∼2 months. The extended lifespan of these mutant mice enables their utility in behavioral analyses of neurologic deficits in adult mice, and allow the development of methods to quantify lesion burden in mice over time and also permit longitudinal drug testing in live animals.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zifeng Dai
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caixia Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Yin
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Lin Z, Lin X, Lai Y, Han C, Fan X, Tang J, Mo S, Su J, Liang S, Shang J, Lv X, Guo S, Pang R, Zhou J, Zhang T, Zhang F. Ponatinib modulates the metabolic profile of obese mice by inhibiting adipose tissue macrophage inflammation. Front Pharmacol 2022; 13:1040999. [DOI: 10.3389/fphar.2022.1040999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity-induced metabolic syndrome is a rapidly growing conundrum, reaching epidemic proportions globally. Chronic inflammation in obese adipose tissue plays a key role in metabolic syndrome with a series of local and systemic effects such as inflammatory cell infiltration and inflammatory cytokine secretion. Adipose tissue macrophages (ATM), as one of the main regulators in this process, are particularly crucial for pharmacological studies on obesity-related metabolic syndrome. Ponatinib, a multi-targeted tyrosine kinase inhibitor originally used to treat leukemia, has recently been found to improve dyslipidemia and atherosclerosis, suggesting that it may have profound effect on metabolic syndrome, although the mechanisms underlying have not yet been revealed. Here we discovered that ponatinib significantly improved insulin sensitivity in leptin deficient obese mice. In addition to that, ponatinib treatment remarkably ameliorated high fat diet-induced hyperlipidemia and inhibited ectopic lipid deposition in the liver. Interestingly, although ponatinib did not reduce but increase the weight of white adipose tissue (WAT), it remarkably suppressed the inflammatory response in WAT and preserved its function. Mechanistically, we showed that ponatinib had no direct effect on hepatocyte or adipocyte but attenuated free fatty acid (FFA) induced macrophage transformation from pro-inflammatory to anti-inflammatory phenotype. Moreover, adipocytes co-cultured with FFA-treated macrophages exhibited insulin resistance, while pre-treat these macrophages with ponatinib can ameliorate this process. These results suggested that the beneficial effects of ponatinib on metabolic disorders are achieved by inhibiting the inflammatory phenotypic transformation of ATMs, thereby maintaining the physiological function of adipose tissue under excessive obesity. The data here not only revealed the novel therapeutic function of ponatinib, but also provided a theoretical basis for the application of multi-target tyrosine kinase inhibitors in metabolic diseases.
Collapse
|
17
|
Renteria M, Belkin O, Aickareth J, Jang D, Hawwar M, Zhang J. Zinc's Association with the CmPn/CmP Signaling Network in Breast Cancer Tumorigenesis. Biomolecules 2022; 12:1672. [PMID: 36421686 PMCID: PMC9687477 DOI: 10.3390/biom12111672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
It is well-known that serum and cellular concentrations of zinc are altered in breast cancer patients. Specifically, there are notable zinc hyper-aggregates in breast tumor cells when compared to normal mammary epithelial cells. However, the mechanisms responsible for zinc accumulation and the consequences of zinc dysregulation are poorly understood. In this review, we detailed cellular zinc regulation/dysregulation under the influence of varying levels of sex steroids and breast cancer tumorigenesis to try to better understand the intricate relationship between these factors based on our current understanding of the CmPn/CmP signaling network. We also made some efforts to propose a relationship between zinc signaling and the CmPn/CmP signaling network.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
18
|
Dammann P, Santos AN, Wan XY, Zhu Y, Sure U. Cavernous Malformations. Neurosurg Clin N Am 2022; 33:449-460. [DOI: 10.1016/j.nec.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Rath M, Schwefel K, Malinverno M, Skowronek D, Leopoldi A, Pilz RA, Biedenweg D, Bekeschus S, Penninger JM, Dejana E, Felbor U. Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells. Cell Mol Life Sci 2022; 79:340. [PMID: 35661927 PMCID: PMC9166869 DOI: 10.1007/s00018-022-04355-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022]
Abstract
Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3−/− endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development.
Collapse
|
20
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
21
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
22
|
Venugopal V, Sumi S. Molecular Biomarkers and Drug Targets in Brain Arteriovenous and Cavernous Malformations: Where Are We? Stroke 2021; 53:279-289. [PMID: 34784742 DOI: 10.1161/strokeaha.121.035654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular malformations of the brain (VMB) comprise abnormal development of blood vessels. A small fraction of VMBs causes hemorrhages with neurological morbidity and risk of mortality in patients. Most often, they are symptomatically silent and are detected at advanced stages of disease progression. The most common forms of VMBs are arteriovenous and cavernous malformations in the brain. Radiopathological features of these diseases are complex with high phenotypic variability. Early detection of these malformations followed by preclusion of severe neurological deficits such as hemorrhage and stroke is crucial in the clinical management of patients with VMBs. The technological advances in high-throughput omics platforms have currently infused a zest in translational research in VMBs. Besides finding novel biomarkers and therapeutic targets, these studies have withal contributed significantly to the understanding of the etiopathogenesis of VMBs. Here we discuss the recent advances in predictive and prognostic biomarker research in sporadic and familial arteriovenous malformations as well as cerebral cavernous malformations. Furthermore, we analyze the clinical applicability of protein and noncoding RNA-based molecular-targeted therapies which may have a potentially key role in disease management.
Collapse
Affiliation(s)
- Vani Venugopal
- Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
23
|
Skowronek D, Pilz RA, Schwefel K, Much CD, Felbor U, Rath M. Bringing CCM into a dish: cell culture models for cerebral cavernous malformations. MED GENET-BERLIN 2021; 33:251-259. [PMID: 38835694 PMCID: PMC11006332 DOI: 10.1515/medgen-2021-2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/21/2021] [Indexed: 06/06/2024]
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that can cause severe neurological complications due to intracranial hemorrhage. Although the CCM disease genes, CCM1, CCM2, and CCM3, have been known for more than 15 years now, our understanding of CCM pathogenesis is still incomplete. CCM research currently focuses on three main disease mechanisms: (1) clonal expansion of endothelial cells with biallelic inactivation of CCM1, CCM2, or CCM3, (2) recruitment of cells with preserved CCM protein expression into the growing lesion, and (3) disruption of endothelial cell-cell junctions in CCMs. We here describe novel CRISPR/Cas9-based in vitro models of CCM and discuss their strengths and limitations in the context of high-throughput drug screening and repurposing approaches.
Collapse
Affiliation(s)
- Dariush Skowronek
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Robin A Pilz
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Fleischmannstraße 43, D-17475 Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
25
|
Retta SF, Perrelli A, Trabalzini L, Finetti F. From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease. Methods Mol Biol 2021; 2152:3-25. [PMID: 32524540 DOI: 10.1007/978-1-0716-0640-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy. .,CCM Italia Research Network, Torino, Italy.
| | - Andrea Perrelli
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Lorenza Trabalzini
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federica Finetti
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Choi JP, Yang X, He S, Song R, Xu ZR, Foley M, Wong JJL, Xu CR, Zheng X. CCM2L (Cerebral Cavernous Malformation 2 Like) Deletion Aggravates Cerebral Cavernous Malformation Through Map3k3-KLF Signaling Pathway. Stroke 2021; 52:1428-1436. [PMID: 33657857 DOI: 10.1161/strokeaha.120.031523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney Medical School (J.P.C., X.Z.), University of Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, School of Life Sciences, University of Technology Sydney, NSW, Australia (J.P.C.)
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (X.Y., X.Z.)
| | - Shuang He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, Sydney Medical School (R.S., J.J.-L.W.), University of Sydney, NSW, Australia
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Matthew Foley
- Australian Centre for Microscopy and Microanalysis (M.F.), University of Sydney, NSW, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, Sydney Medical School (R.S., J.J.-L.W.), University of Sydney, NSW, Australia
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Xiangjian Zheng
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney Medical School (J.P.C., X.Z.), University of Sydney, NSW, Australia.,Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (X.Y., X.Z.)
| |
Collapse
|
27
|
Sartages M, Floridia E, García-Colomer M, Iglesias C, Macía M, Peñas P, Couraud PO, Romero IA, Weksler B, Pombo CM, Zalvide J. High Levels of Receptor Tyrosine Kinases in CCM3-Deficient Cells Increase Their Susceptibility to Tyrosine Kinase Inhibition. Biomedicines 2020; 8:E624. [PMID: 33348877 PMCID: PMC7766026 DOI: 10.3390/biomedicines8120624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular malformations that can be the result of the deficiency of one of the CCM genes. Their only present treatment is surgical removal, which is not always possible, and an alternative pharmacological strategy to eliminate them is actively sought. We have studied the effect of the lack of one of the CCM genes, CCM3, in endothelial and non-endothelial cells. By comparing protein expression in control and CCM3-silenced cells, we found that the levels of the Epidermal Growth Factor Receptor (EGFR) are higher in CCM3-deficient cells, which adds to the known upregulation of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) in these cells. Whereas VEGFR2 is upregulated at the mRNA level, EGFR has a prolonged half-life. Inhibition of EGFR family members in CCM3-deficient cells does not revert the known cellular effects of lack of CCM genes, but it induces significantly more apoptosis in CCM3-deficient cells than in control cells. We propose that the susceptibility to tyrosine kinase inhibitors of CCM3-deficient cells can be harnessed to kill the abnormal cells of these lesions and thus treat CCMs pharmacologically.
Collapse
Affiliation(s)
- Miriam Sartages
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Ebel Floridia
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
- IQVIA RDS Ireland Limited, Eastpoint Business Park, Estuary House, Fairview, Dublin 3, D03 K7W7 Leinster, Ireland
| | - Mar García-Colomer
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Cristina Iglesias
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Manuel Macía
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, 15703 Santiago de Compostela, Spain; (M.M.); (P.P.)
| | - Patricia Peñas
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, 15703 Santiago de Compostela, Spain; (M.M.); (P.P.)
| | | | - Ignacio A. Romero
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK;
| | - Babette Weksler
- Weill Medical College, Cornell University, 1300 York Ave, New York, NY 10065, USA;
| | - Celia M. Pombo
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Juan Zalvide
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| |
Collapse
|
28
|
Abstract
Cerebral cavernous malformations (CCMs) are neurovascular abnormalities characterized by thin, leaky blood vessels resulting in lesions that predispose to haemorrhages, stroke, epilepsy and focal neurological deficits. CCMs arise due to loss-of-function mutations in genes encoding one of three CCM complex proteins, KRIT1, CCM2 or CCM3. These widely expressed, multi-functional adaptor proteins can assemble into a CCM protein complex and (either alone or in complex) modulate signalling pathways that influence cell adhesion, cell contractility, cytoskeletal reorganization and gene expression. Recent advances, including analysis of the structures and interactions of CCM proteins, have allowed substantial progress towards understanding the molecular bases for CCM protein function and how their disruption leads to disease. Here, we review current knowledge of CCM protein signalling with a focus on three pathways which have generated the most interest—the RhoA–ROCK, MEKK3–MEK5–ERK5–KLF2/4 and cell junctional signalling pathways—but also consider ICAP1-β1 integrin and cdc42 signalling. We discuss emerging links between these pathways and the processes that drive disease pathology and highlight important open questions—key among them is the role of subcellular localization in the control of CCM protein activity.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Cell Biology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
29
|
MEKK2 mediates aberrant ERK activation in neurofibromatosis type I. Nat Commun 2020; 11:5704. [PMID: 33177525 PMCID: PMC7658220 DOI: 10.1038/s41467-020-19555-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Neurofibromatosis type I (NF1) is characterized by prominent skeletal manifestations caused by NF1 loss. While inhibitors of the ERK activating kinases MEK1/2 are promising as a means to treat NF1, the broad blockade of the ERK pathway produced by this strategy is potentially associated with therapy limiting toxicities. Here, we have sought targets offering a more narrow inhibition of ERK activation downstream of NF1 loss in the skeleton, finding that MEKK2 is a novel component of a noncanonical ERK pathway in osteoblasts that mediates aberrant ERK activation after NF1 loss. Accordingly, despite mice with conditional deletion of Nf1 in mature osteoblasts (Nf1fl/fl;Dmp1-Cre) and Mekk2−/− each displaying skeletal defects, Nf1fl/fl;Mekk2−/−;Dmp1-Cre mice show an amelioration of NF1-associated phenotypes. We also provide proof-of-principle that FDA-approved inhibitors with activity against MEKK2 can ameliorate NF1 skeletal pathology. Thus, MEKK2 functions as a MAP3K in the ERK pathway in osteoblasts, offering a potential new therapeutic strategy for the treatment of NF1. Neurofibromatosis type I (NF1) is characterized by prominent skeletal abnormalities mediated in part by aberrant ERK pathway activation due to NF1 loss-of-function. Here, the authors report the MEKK2 is a key mediator of this aberrant ERK activation and that MEKK2 inhibitors, including ponatinib, ameliorate skeletal defects in a mouse model of NF1.
Collapse
|
30
|
Zhang Y, Yang X. The Roles of TGF-β Signaling in Cerebrovascular Diseases. Front Cell Dev Biol 2020; 8:567682. [PMID: 33072751 PMCID: PMC7530326 DOI: 10.3389/fcell.2020.567682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebrovascular diseases are one of the leading causes of death worldwide, however, little progress has been made in preventing or treating these diseases to date. The transforming growth factor-β (TGF-β) signaling pathway plays crucial and highly complicated roles in cerebrovascular development and homeostasis, and dysregulated TGF-β signaling contributes to cerebrovascular diseases. In this review, we provide an updated overview of the functional role of TGF-β signaling in the cerebrovascular system under physiological and pathological conditions. We discuss the current understanding of TGF-β signaling in cerebral angiogenesis and the maintenance of brain vessel homeostasis. We also review the mechanisms by which disruption of TGF-β signaling triggers or promotes the progression of cerebrovascular diseases. Finally, we briefly discuss the potential of targeting TGF-β signaling to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
31
|
Zeng P, Schmaier A. Ponatinib and other CML Tyrosine Kinase Inhibitors in Thrombosis. Int J Mol Sci 2020; 21:ijms21186556. [PMID: 32911643 PMCID: PMC7555546 DOI: 10.3390/ijms21186556] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Abl1 kinase has important biological roles. The Bcr-Abl1 fusion protein creates undesired kinase activity and is pathogenic in 95% of chronic myeloid leukemia (CML) and 30% of acute lymphoblastic leukemia (ALL) patients. Targeted therapies to these diseases are tyrosine kinase inhibitors. The extent of a tyrosine kinase inhibitor’s targets determines the degree of biologic effects of the agent that may influence the well-being of the patient. This fact is especially true with tyrosine kinase inhibitor effects on the cardiovascular system. Thirty-one percent of ponatinib-treated patients, the tyrosine kinase inhibitor with the broadest inhibitory spectrum, have thrombosis associated with its use. Recent experimental investigations have indicated the mechanisms of ponatinib-associated thrombosis. Further, an antidote to ponatinib is in development by re-purposing an FDA-approved medication.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Alvin Schmaier
- Departments of Medicine and Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0796; Fax: +1-216-368-3014
| |
Collapse
|
32
|
Ponatinib treatment promotes arterial thrombosis and hyperactive platelets. Blood Adv 2020; 3:2312-2316. [PMID: 31383636 DOI: 10.1182/bloodadvances.2019000034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023] Open
Abstract
Key Points
Ponatinib therapy heightens arterial thrombosis and platelet reactivity. Concurrent pioglitazone treatment reverses heightened thrombosis risk and platelet reactivity induced by ponatinib.
Collapse
|
33
|
Detter MR, Shenkar R, Benavides CR, Neilson CA, Moore T, Lightle R, Hobson N, Shen L, Cao Y, Girard R, Zhang D, Griffin E, Gallione CJ, Awad IA, Marchuk DA. Novel Murine Models of Cerebral Cavernous Malformations. Angiogenesis 2020; 23:651-666. [PMID: 32710309 DOI: 10.1007/s10456-020-09736-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.
Collapse
Affiliation(s)
- Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Christian R Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Catherine A Neilson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Le Shen
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Ying Cao
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Erin Griffin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA. .,James B Duke Professor, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Box 3175, Durham, NC, 27710, USA.
| |
Collapse
|
34
|
Abdelilah-Seyfried S, Tournier-Lasserve E, Derry WB. Blocking Signalopathic Events to Treat Cerebral Cavernous Malformations. Trends Mol Med 2020; 26:874-887. [PMID: 32692314 DOI: 10.1016/j.molmed.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Cerebral cavernous malformations (CCMs) are pathologies of the brain vasculature characterized by capillary-venous angiomas that result in recurrent cerebral hemorrhages. Familial forms are caused by a clonal loss of any of three CCM genes in endothelial cells, which causes the activation of a novel pathophysiological pathway involving mitogen-activated protein kinase and Krüppel-like transcription factor KLF2/4 signaling. Recent work has shown that cavernomas can undergo strong growth when CCM-deficient endothelial cells recruit wild-type neighbors through the secretion of cytokines. This suggests a treatment strategy based on targeting signalopathic events between CCM-deficient endothelial cells and their environment. Such approaches will have to consider recent evidence implicating 'third hits' from hypoxia-induced angiogenesis signaling or the microbiome in modulating the development of cerebral hemorrhages.
Collapse
Affiliation(s)
- Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany.
| | - Elisabeth Tournier-Lasserve
- INSERM UMR-1141, NeuroDiderot, Université de Paris, Paris, France; AP-HP, Groupe hospitalier Saint-Louis, Lariboisière, Fernand-Widal, Service de génétique moléculaire neuro-vasculaire, Paris, France
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Developmental and Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| |
Collapse
|
35
|
Cardoso C, Arnould M, De Luca C, Otten C, Abdelilah-Seyfried S, Heredia A, Leutenegger AL, Schwaninger M, Tournier-Lasserve E, Boulday G. Novel Chronic Mouse Model of Cerebral Cavernous Malformations. Stroke 2020; 51:1272-1278. [PMID: 31992178 DOI: 10.1161/strokeaha.119.027207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background and Purpose- Cerebral cavernous malformations (CCMs) are vascular malformations of the brain that lead to cerebral hemorrhages. A pharmacological treatment is needed especially for patients with nonoperable deep-seated lesions. We and others obtained CCM mouse models that were useful for mechanistic studies and rapid trials testing the preventive effects of candidate drugs. The shortened lifespan of acute mouse models hampered evaluation of compounds that would not only prevent lesion appearance but also cure preexisting lesions. Indirubin-3'-monoxime previously demonstrated its efficacy to reverse the cardiac phenotype of ccm2m201 zebrafish mutants and to prevent lesion development in an acute CCM2 mouse model. In the present article, we developed and characterized a novel chronic CCM2 mouse model and evaluated the curative therapeutic effect of indirubin-3'-monoxime after CCM lesion development. Methods- The chronic mouse model was obtained by a postnatal induction of brain-endothelial-cell-specific ablation of the Ccm2 gene using the inducible Slco1c1-CreERT2 mouse line. Results- We obtained a fully penetrant novel CCM chronic mouse model without any obvious off-target phenotypes and compatible with long-term survival. By 3 months of age, CCM lesions ranging in size from small isolated lesions to multiple caverns developed throughout the brain. Lesion burden was quantified in animals from 1 week to 5 months of age. Clear signs of intracerebral hemorrhages were noticed in brain-endothelial-cell-specific ablation of the Ccm2 gene. In contrast with its preventive effect in the acute CCM2 mouse model, a 20 mg/kg indirubin-3'-monoxime treatment for 3 weeks in 3-month old animals neither had any beneficial effect on the lesion burden nor alleviated cerebral hemorrhages. Conclusions- The brain-endothelial-cell-specific ablation of the Ccm2 gene chronic model is a strongly improved disease model for the CCM community whose challenge today is to decipher which candidate drugs might have a curative effect on patients' preexisting lesions. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Cécile Cardoso
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Minh Arnould
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Coralie De Luca
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Cécile Otten
- Institute of Biochemistry and Biology, Potsdam University, Germany (C.O., S.A.-S.)
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Germany (C.O., S.A.-S.).,Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Germany (S.A.-S.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore (A.H.)
| | - Anne-Louise Leutenegger
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany (M.S.)
| | - Elisabeth Tournier-Lasserve
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.).,Service de Génétique, AP-HP, Hopital Lariboisière, Paris, France (E.T.-L.)
| | - Gwénola Boulday
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| |
Collapse
|
36
|
Li X, Cai Y, Goines J, Pastura P, Brichta L, Lane A, Le Cras TD, Boscolo E. Ponatinib Combined With Rapamycin Causes Regression of Murine Venous Malformation. Arterioscler Thromb Vasc Biol 2020; 39:496-512. [PMID: 30626204 PMCID: PMC6392210 DOI: 10.1161/atvbaha.118.312315] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objective- Venous malformations (VMs) arise from developmental defects of the vasculature and are characterized by massively enlarged and tortuous venous channels. VMs grow commensurately leading to deformity, obstruction of vital structures, bleeding, and pain. Most VMs are associated with the activating mutation L914F in the endothelial cell (EC) tyrosine kinase receptor TIE2. Therapeutic options for VM are limited and ineffective while therapy with the mammalian target of rapamycin inhibitor rapamycin shows moderate efficacy. Here, we investigated novel therapeutic targets promoting VM regression. Approach and Results- We performed an unbiased screen of Food and Drug Administration-approved drugs in human umbilical vein ECs expressing the TIE2-L914F mutation (HUVEC-TIE2-L914F). Three ABL (Abelson) kinase inhibitors prevented cell proliferation of HUVEC-TIE2-L914F. Moreover, c-ABL, common target of these inhibitors, was highly phosphorylated in HUVEC-TIE2-L914F and VM patient-derived ECs with activating TIE2 mutations. Knockdown of c-ABL/ARG in HUVEC-TIE2-L914F reduced cell proliferation and vascularity of murine VM. Combination treatment with the ABL kinase inhibitor ponatinib and rapamycin caused VM regression in a xenograft model based on injection of HUVEC-TIE2-L914F. A reduced dose of this drug combination was effective in this VM murine model with minimal side effects. The drug combination was antiproliferative, enhanced cell apoptosis and vascular channel regression both in vivo and in a 3-dimensional fibrin gel assay. Conclusions- This is the first report of a combination therapy with ponatinib and rapamycin promoting regression of VM. Mechanistically, the drug combination enhanced AKT inhibition compared with single drug treatment and reduced PLCγ (phospholipase C) and ERK (extracellular signal-regulated kinase) activity.
Collapse
Affiliation(s)
- Xian Li
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Yuqi Cai
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Jillian Goines
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Patricia Pastura
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH
| | - Lars Brichta
- Chemistry Rx Compounding and Specialty Pharmacy, Philadelphia, PA (L.B.)
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency (A.L.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Timothy D Le Cras
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Elisa Boscolo
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| |
Collapse
|